NTAP 2022 Restrictor Rope Experiment Data Exploration

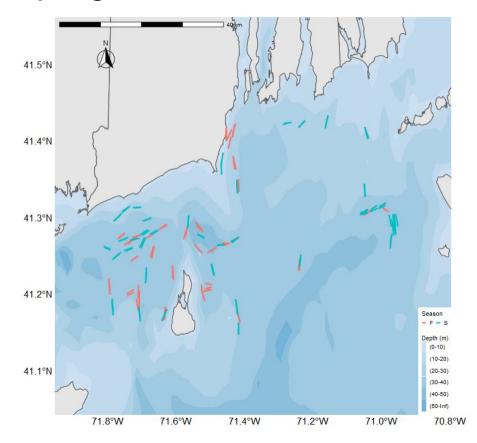
VIMS/NEFSC 1/19/2023

Many efforts coordinating and performing field work

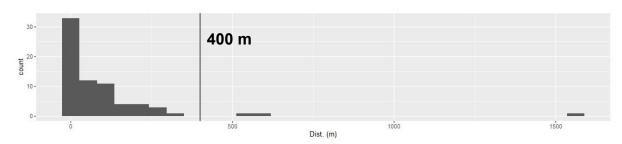
- Captain, crew from F/V Darana R
- VIMS staff
- RI DEM staff
- ROSA staff
- NEFSC staff

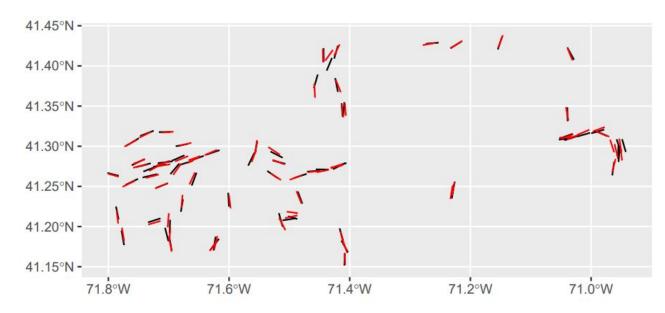
Summary of objectives

- Conducted paired tows on the F/V Darana R
- Evaluate catch data and gear performance
- Focus on neg. effects on catch

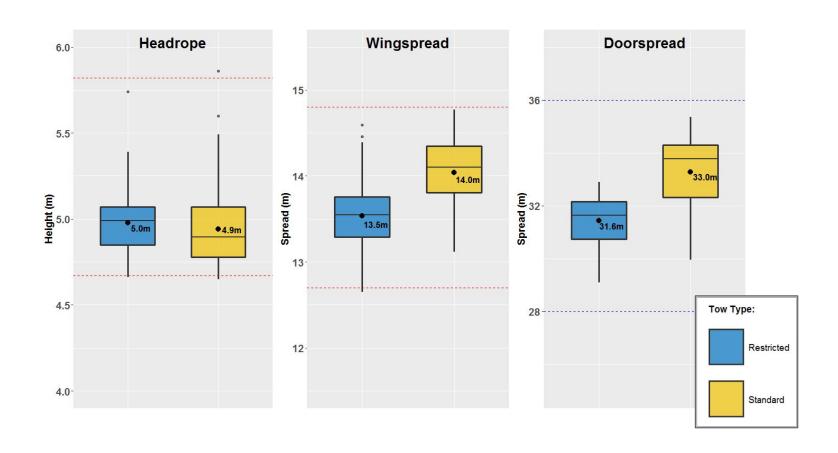


Summary of 2022 research sampling

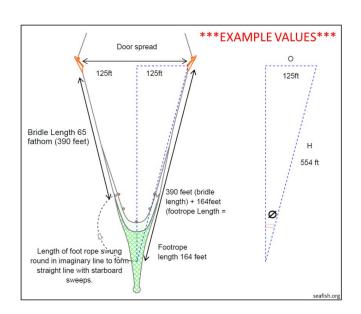

- Two sampling periods
 - o Spring (5/30 6/6)
 - o Fall (9/15 9/22)
- Completed 142 paired tows (71 pairs)
 - Depths between 60 ft and 200 ft
 - Sampling all in Block/Rhode Island Sounds
 - o A few logistic challenges (hangs/weather) but very limited impact
 - o 20 minute tows less than 1/4 mile (~400 m) apart
 - o Order of treatment varied (AB then BA)
- Samples processed using VIMS software and processing protocols
 - o Individual lengths for all except the most common catch items
 - Weight based subsampling for most common/species
- Net performance measured with Simrad net mensuration system

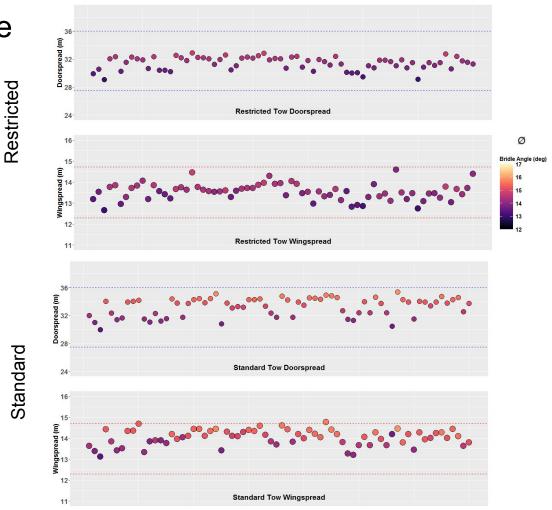


Paired tow spacing


- Excellent job by F/V Darana R!
- Only three tows (2%)
 where mean distance is > 400 m
- Some tows appear to cross at various points (~40)
- Tow tracks could be slightly different than what was recorded (some GPS wobble)

Mean distance




Gear metrics

Gear metrics - Bridle angle

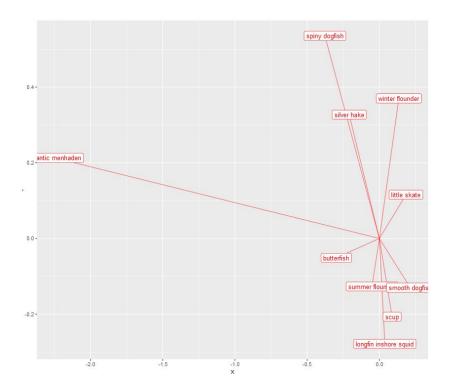
Angle between trawl direction and bridles

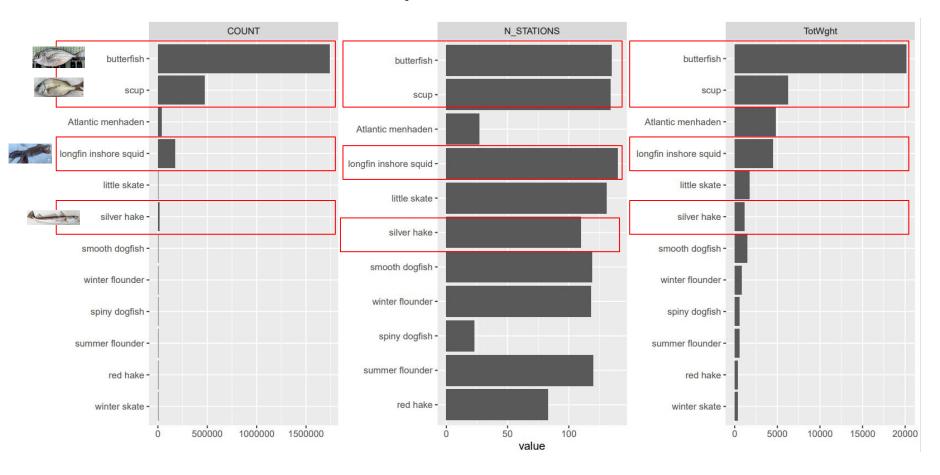
Gear metric thoughts

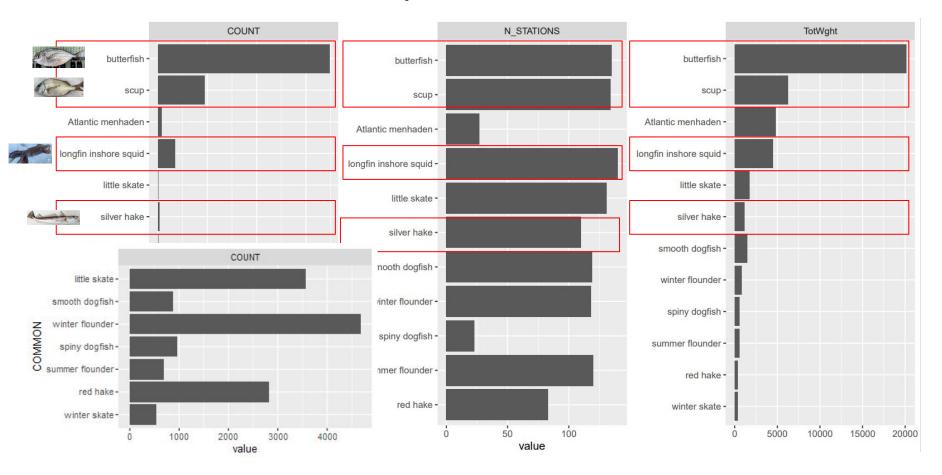
- There is a subtle treatment effect on net performance
- Bridal angle differences suggest restrictor is engaged and reducing variation in net geometry

Comparing catches in paired tows

 Investigating species prevalences and research objectives




Plotting catches in two dimensions


- No clear effect of restrictor
- Some effect of season
- Differences between seasons relate to spiny dogfish and fluke

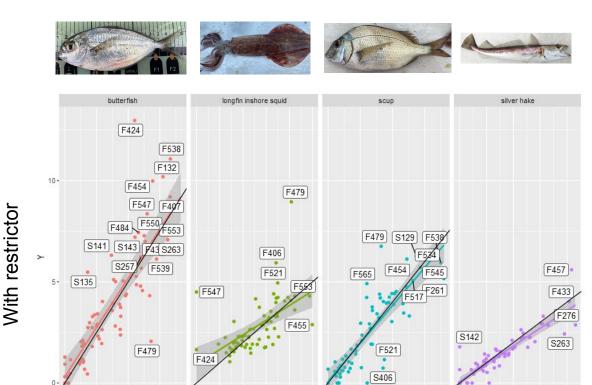
Prevalence of different species in tows

Prevalence of different species in tows

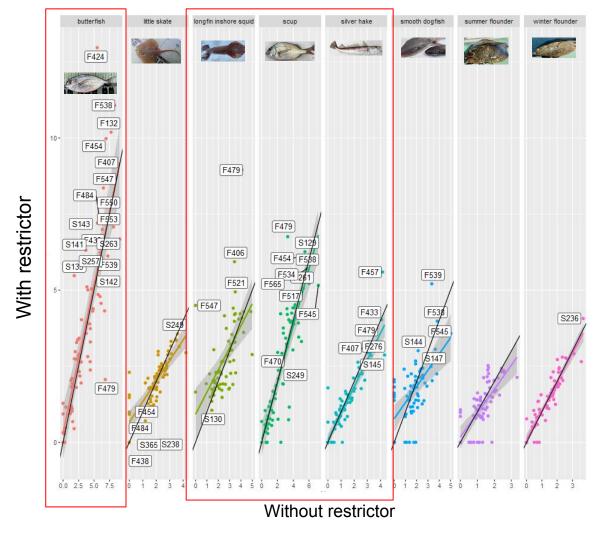
Species focus for analysis

- Focus of this work was on roundfish, most likely to be impacted
- In previous experiments focused on flatfish we narrowed scope down to the most commonly encountered species
- Scup, butterfish, and silver hake the roundfish most commonly encountered in the experiment
- Interest in longfin squid as well mobile and thought to have good vision
- Others less commonly caught, might be difficult to draw conclusions about

Comparing catches in paired tows

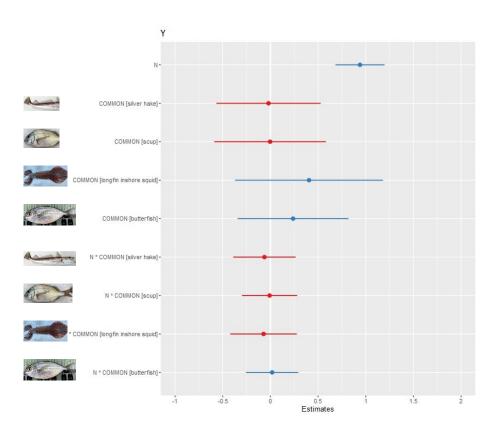

- 1. Investigating species prevalences and research objectives
- 2. Looking at aggregate catch (total weight by species) with and without the restrictor
- 3. Fit linear model to test for significant differences in aggregate catches

Aggregate catches


- First cubic root transformed catch data
- Each pair of points is a pair of stations
- X value is the station without a restrictor
- Y value is station with the restrictor
- Would expect 1:1 if there is a limited impact of the restrictor

Without restrictor

Aggregate catches

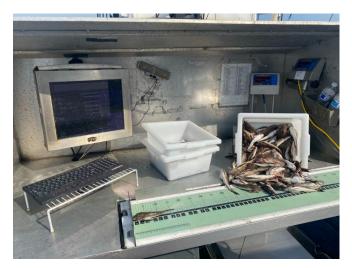

- First cubic root transformed catch data
- Each pair of points is a pair of stations
- X value is the station without a restrictor
- Y value is station with the restrictor
- Would expect 1:1 if there is a limited impact of the restrictor

Aggregate catches

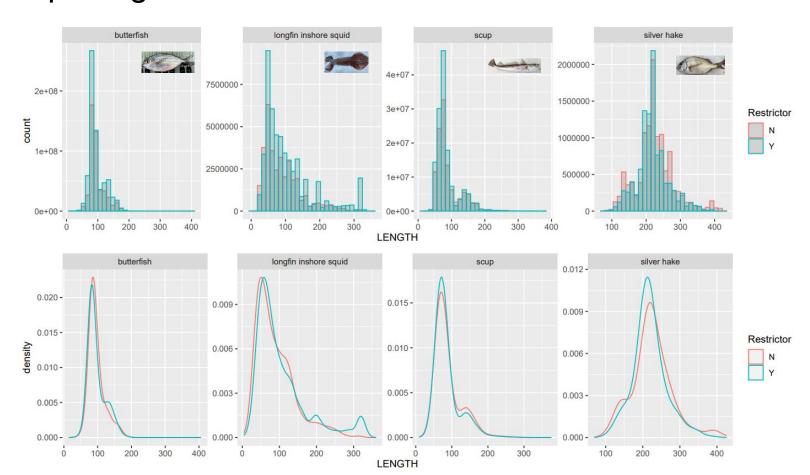
 Linear models suggest that there is no significant difference for these four species

> summ(model_3)				
MODEL INFO:				
Observations: 355				
Dependent Variable: Y				
Type: OLS linear regression				
MODEL FIT:				
F(9,345) = 120.12, p = 0.00				
$R^2 = 0.76$				
$Adj. R^2 = 0.75$				
Standard errors: OLS				
			t val.	
(Intercept)			0.44	
N			7.17	
***			-0.04	
COMMONs cup			-0.01	2000
COMMONIongfin inshore			2.15	
sauid	0.05	0.50	2.13	0.0.
	0.22	0.30	0.75	0.45
			-0.40	
N:COMMONscup			-0.05	
N:COMMONlongfin inshore			-1.22	
sauid				
	0.03	0.14	0.20	0.84
>				
10 I				

Aggregate catch


- Close to 1:1 when regressing catches without and catches with the restrictor rope
- No sig. effects in the model
- Many different model formulations result in similar results
- Suggests no detectable effect of the restrictor rope

Moving on to individual lengths

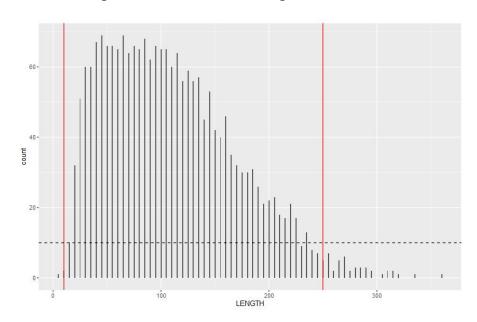

- Explored individual lengths for three of the most common roundfish species (and squid)
- Also fit statistical models to individual length data to test for statistical effects of the restrictor rope

Exploring ind. data

Raw histogram and the kernel density

Comparing catch in paired tows

- Fit GLMM and GAM models
- 2. Similar to Holst and Reville (2009)
- 3. Separate models for each species
- Trimmed to lengths that were caught at >10 stations for each species
- Included a set of variables in each model
 - a. Depth, order, season, solar zenith angle, and length
- 6. Preliminary exploration of patterns


Fisheries Research 95 (2009) 254-259

A simple statistical method for catch comparison studies

René Holst a, 1, Andrew Revill b, s, 1

Antional Institute of Aquatic Resources, Technical University of Denmark (DTU-Aqua), Box 101, DK-9850 Hirstshals, Denmark

Lengths used for modeling

Individual lengths: longfin

Linear mixed binomial models for longfin squid

No sig. effects

Odds Ratios

> summ(length_mod_b1_/)

MODEL INFO:

Observations: 2032

Dependent Variable: cbind(Y, N)

Type: Mixed effects generalized linear regression

Error Distribution: binomial

Link function: logit

MODEL ETT.

AIC = 3267111.62, BIC = 3267167.79 Pseudo-R² (fixed effects) = 0.01

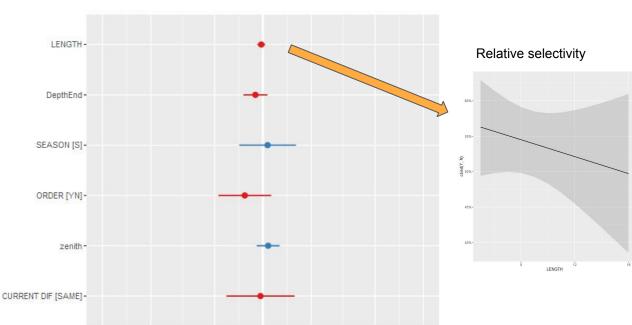
 $Pseudo-R^2$ (total) = 0.26

FIXED EFFECTS:

	Est.	S.E.	z val.	р
(Intercept)	1.15	1.15	1.00	0.32
LENGTH	-0.02	0.03	-0.83	0.41
DepthEnd	-0.11	0.09	-1.22	0.22
SEASONS	0.07	0.21	0.32	0.75
ORDERYN	-0.26	0.19	-1.34	0.18
zenith	0.08	0.08	0.89	0.37
CURRENT_DIFSAME	-0.04	0.25	-0.14	0.89

RANDOM EFFECTS:

ercept)	2.	22
IGTH	0.	24


Grouping variables:

Group	#	groups	ICC
PAIR		69	0.60

Relative selectivity

0.1

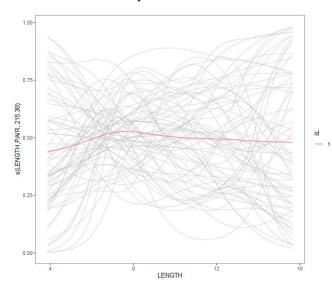
0.2

Individual lengths: longfin

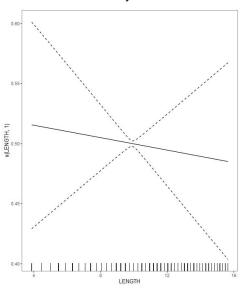
- Quasibinomial GAM models for longfin squid
- No effects of depth, order, season, length, or other covariates

> summary(length_mod_gb_5)

```
Family: quasibinomial
Link function: logit
Formula:
cbind(Y, N) ~ s(LENGTH, PAIR, bs = "fs") + ORDER + SEASON +
    s(DepthEnd, bs = "cr") + s(zenith) + CURRENT_DIF +
   s(LENGTH, bs = "cr", k = 3)
```


Parametric coefficients:

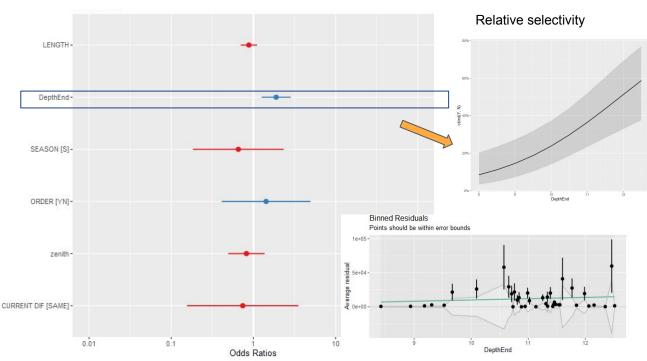
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.117078	0.198206	0.59069	0.55480
ORDERYN	-0.200478	0.203137	-0.98691	0.32381
SEASONS	0.168927	0.233179	0.72445	0.46888
CURRENT_DIFDIFFERENT	-0.254338	0.256146	-0.99294	0.32087


Approximate significance of smooth terms: s(LENGTH, PAIR) 215.38309 683.00000 1.62136 < 2e-16 s (DepthEnd) 7.54409 7.68575 1.97304 0.054838 s(zenith) 1.00282 1.00341 0.56813 0.451625 1.00112 1.00127 0.12491 0.724103 s (LENGTH)

Signif. codes: 0 'aaa' 0.001 'aa' 0.01 'a' 0.05 '.' 0.1 ' ' 1 R-sq.(adi) = 0.541 Deviance explained = 53.6% GCV = 1590.5 Scale est. = 1276.3 n = 2074

Relative selectivity

Relative selectivity



Individual lengths: Scup

- Linear mixed binomial models for scup
- No effect of length, order, or season
- Small positive effect of depth

Relative selectivity

> summ(length_mod_bi_7)

MODEL INFO: Observations: 1568

Dependent Variable: cbind(Y, N)

Type: Mixed effects generalized linear regression

Error Distribution: binomial

Link function: logit

MODEL FIT:

AIC = 3846337.64, BIC = 3846391.22 Pseudo-R² (fixed effects) = 0.03 Pseudo-R² (total) = 0.82

FIXED EFFECTS:

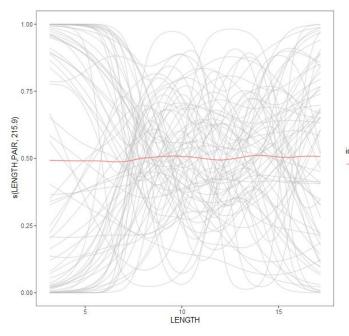
	Est.	S.E.	z val.	р
		3. E.	2 vai.	
(Intercept)	-4.45	1.34	-3.34	0.00
LENGTH	-0.13	0.12	-1.09	0.28
DepthEnd	0.64	0.21	3.05	0.00
SEASONS	-0.42	0.65	-0.65	0.52
ORDERYN	0.36	0.63	0.56	0.57
zenith	-0.20	0.26	-0.75	0.45
CURRENT_DIFSAME	-0.30	0.80	-0.37	0.71

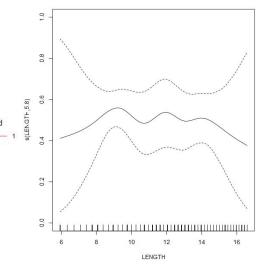
RANDOM EFFECTS:

Group	Parameter	Std. Dev.
PAIR	(Intercept)	12.10
PAIR	LENGTH	1.01

Grouping variables:

Group	# groups	ICC
PAIR	70	0.98


Individual lengths: Scup


- Quasibinomial GAM models for scup
- No effects of depth, order, season, or length

> summary(length_mod_qb_5) Family: quasibinomial Link function: logit cbind(Y, N) ~ s(LENGTH, PAIR, bs = "fs") + ORDER + SEASON + s(DepthEnd, bs = "cr") + s(zenith) + CURRENT_DIF + s(PAIR, bs = "re") + s(LENGTH, bs = "cr")Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.2133901 0.3601711 -0.59247 0.55364 ORDERYN 0.0841887 0.4226045 0.19921 **SEASONS** -0.0650268 0.4579787 -0.14199 0.88711 CURRENT_DIFDIFFERENT -0.1765737 0.5079312 -0.34763 0.72817 Approximate significance of smooth terms: s(LENGTH, PAIR) 182,77819 615,00000 16,52204 0,66807 s(zenith) 4,49716 1,48376 0,19659 s(PAIR) 34.17290 64.00000 1.22452 < 2e-16 s (LENGTH) 6.43149 1.02987 0.60785 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.862 Deviance explained = 85.4% GCV = 1506.2 Scale est. = 1263.3 n = 1568

Relative selectivity

Relative selectivity

Individual lengths: **Butterfish**

- Linear mixed binomial models for butterfish
- No effect of length, order, or season
- Small negative effect of depth, positive effect of current direction

> summ(length_mod_bi_7) MODEL INFO:

Observations: 1500

Dependent Variable: cbind(Y. N)

Type: Mixed effects generalized linear regression

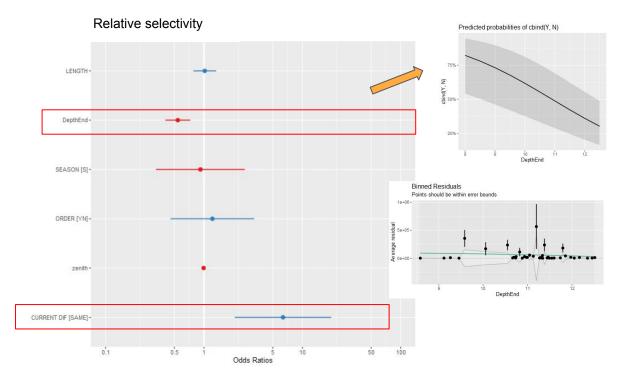
Error Distribution: binomial Link function: logit

MODEL FIT:

AIC = 7706351.10, BIC = 7706404.24 $Pseudo-R^2$ (fixed effects) = 0.03

 $Pseudo-R^2$ (total) = 0.86

FIXED EFFECTS:

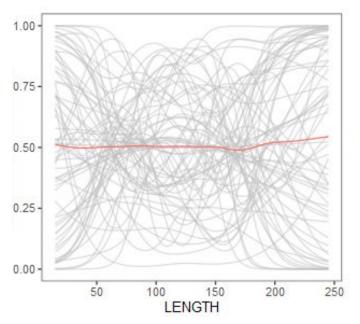

	Est.	5.E.	z val.	р
(Intercept)	5.37	1.22	4.39	0.00
LENGTH	0.02	0.14	0.13	0.90
DepthEnd	-0.61	0.15	-4.16	0.00
SEASONS	-0.08	0.53	-0.16	0.87
ORDERYN	0.20	0.50	0.39	0.69
zenith	-0.01	0.02	-0.54	0.59
CURRENT_DIFSAME	1.85	0.58	3.21	0.00

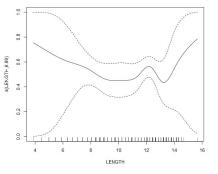
RANDOM EFFECTS:

Group	Parameter	Std. Dev.
PAIR	(Intercept)	9.59
PAIR	LENGTH	1.19

Grouping variables:

Group	#	groups	ICC
PAIR		70	0.97


Individual lengths: Butterfish


- Quasibinomial GAM models for butterfish
- No effect of season, length, depth, or order
- Sig effect of current

```
> summary(length_mod_qb_5)
Family: quasibinomial
Link function: logit
Formula:
cbind(Y, N) ~ s(LENGTH, PAIR, bs = "fs") + ORDER + SEASON +
   s(DepthEnd, bs = "cr") + s(zenith) + CURRENT_DIF +
   s(PAIR. bs = "re") + s(LENGTH. bs = "cr")
Parametric coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
ORDERYN
CURRENT_DIFDIFFERENT -1.1580247 0.5510147 -2.10162 0.035789
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                            Ref. df
                                          F p-value
s(LENGTH, PAIR) 219.52539 649.00000 29.23857 0.43607
s (DepthEnd)
s(zenith)
s(PAIR)
s (LENGTH)
                          7.59104 1.24439 0.19441
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adi) = 0.922 Deviance explained = 92.2%
GCV = 3622.9 Scale est. = 2623.5
```

Relative selectivity

Relative selectivity

Individual lengths: Butterfish

ICES Journal of Marine Science (2019), 76(4), 1189-1199. doi:10.1093/icesjms/fsy191

Original Article

Intercalibration of survey methods using paired fishing operations and log-Gaussian Cox processes

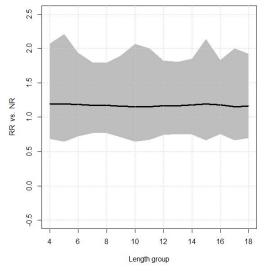
Uffe Høgsbro Thygesen¹*, Kasper Kristensen², Teunis Jansen^{2,3}, and Jan E. Beyer²

¹Department of Applied Mathematics and Computer Science, Technical University of Denmark, Building 303, 2800 Lyngby, Denmark

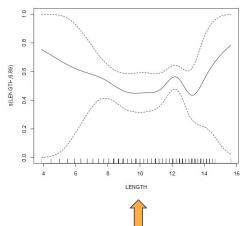
*National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Building 201, 2800 Lyngby, Denmark

*Oreenland Institute of Natural Resources, Kiviog 2, Nuuk, Greenland

*National Programment of Progra


*Corresponding author: tel: (+45) 45 25 30 60; e-mail: uhth@dtu.dk.

Thygesen, U. H., Kristensen, K., Jansen, T., and Beyer, J. E. Intercalibration of survey methods using paired fishing operations and log-Gaussian Cox processes. – ICES Journal of Marine Science, 76: 1189–1199.


Received 6 February 2018; revised 13 November 2018; accepted 15 November 2018; advance access publication 8 January 2019.

- Similar result from more recent log-Gaussian
 Cox method (thank you Jim and Tim)
- No covariates included

Relative selectivity

Relative selectivity

From previous GAM

Individual lengths: Silver hake

Est. S.E.

0.17

0.23

0.51

0.45

0.01

0.66

-0.82

-0.10

0.02

0.64

0.69

1.63

-0.39

-0.60

0.09

1.27

1.53

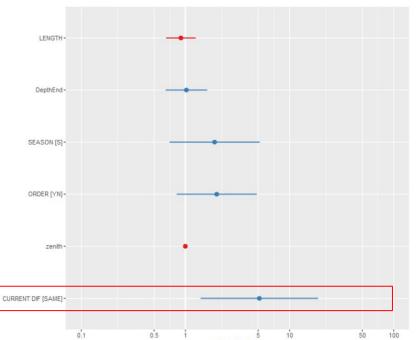
-0.10

2.47

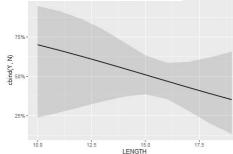
0.70

0.55

0.21


0.13

0.01



- Linear mixed binomial models for silver hake
- No effect of length, order, depth, or season
- Sig effect of current

Relative selectivity

Relative selectivity

RANDOM EFFECTS:

CURRENT_DIFSAME

> summ(length_mod_bi_7)

Dependent Variable: cbind(Y, N)

AIC = 1097753.06, BIC = 1097804.39 Pseudo-R² (fixed effects) = 0.03 Pseudo-R² (total) = 0.86

Error Distribution: binomial Link function: logit

Type: Mixed effects generalized linear regression

MODEL INFO: Observations: 1253

MODEL FIT:

FIXED EFFECTS:

(Intercept)

LENGTH

DepthEnd

SEASONS

ORDERYN

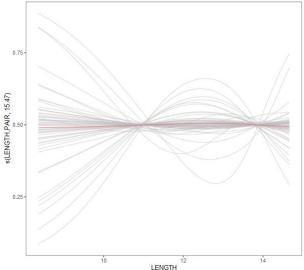
zenith

Group	Parameter	Std.	Dev.
PAIR	(Intercept)	24	. 03
PAIR	LENGTH	1.	53

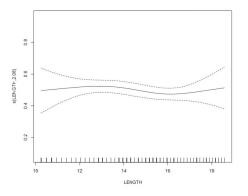
Grouping variables:

Group	# groups	ICC
PAIR	58	0.99

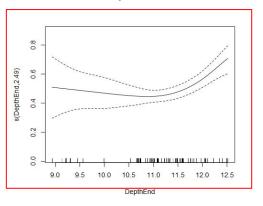
Individual lengths: Silver hake


- Quasibinomial GAM models for silver hake
- Effect of order and depth

> summary(length_mod_qb_5) Family: quasibinomial Link function: logit Formula: cbind(Y, N) ~ s(LENGTH, PAIR, bs = "fs") + ORDER + SEASON + s(DepthEnd, bs = "cr") + s(zenith) + CURRENT_DIF + s(PAIR. bs = "re") + s(LENGTH. bs = "cr")Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) ORDERYN CURRENT DIFDIFFERENT -0.4296184 0.2971050 -1.44602 0.148462 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Approximate significance of smooth terms: n-value s(LENGTH.PAIR) 55.59066 493.00000 0.43192 s(DepthEnd) s(zenith) 6.72345 7.21550 1.45595 0.186853 s(PAIR) 2.50451 52.00000 0.05744 s (LENGTH) 2.07817 2.48502 0.38051 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


R-sq.(adj) = 0.345 Deviance explained = 32.4%

GCV = 961.74 Scale est. = 723.47


Relative selectivity

Relative selectivity

Relative selectivity

Individual lengths thoughts

- Only a couple consistent effects across GAMs and GLMMs
- Suggests limit (or no) effect of restrictor rope on catches at length for the species examined
- GLMMs: Small effects of depth (pos for scup and neg for butterfish) on catches, and positive effect of current direction (pos for scup and hake)
- GAMs: Some hints at non-linearity, but difficult to assess. Potential effect of depth and order in silver hake. Some positive effects of current (butterfish).
- Possible that small effects were not detected because of noise/sample sizes (similar to wingspread study)
- Additional work needed to refine these models

Overall preliminary summary

Gear comparison

- Some effect on net width and door width
 - Wider without restrictor
- Impact on bridle angle

Aggregate weights

 No (or very subtle) effect on four focal species: butterfish, scup, silver hake, or longfin squid

Individual lengths

- GLMMs: Small effects of depth and current
- GAMs: Some hints at non-linearity, but difficult to assess
- Very few consistent effects across GAMs and GLMMs

Questions?

- Other species to include?
- Other ways to explore the data?
- Other modeling techniques to consider?
- Future direction for this research?
- Sufficient information for a publication?

