Short-term forecasts of species distributions for fisheries management

Potential change in species distribution

Directional effect of climate change

Governance Issues

EAFM Guidance Document

EAFM Guidance Document

Example Climate-Related Policies and Recommendations

- Develop and evaluate approaches for MAFMC fisheries and their management to become more adaptive to change
- Use models to develop short-term forecasts and medium-term projections
- Identify new species likely to become established in the MidAtlantic (from the South Atlantic) and species likely to expand or shift distribution into waters under the jurisdiction of New England

Species Distribution Shifts

- Collaborated with Morley et al. 2018 on Projecting shifts in thermal habitat during the 21st century project
- Highly informative and considered in a strategic way - i.e., EAFM guidance document
- This project allows Council to consider distribution change in a more tactical way
- Focus on Mid At species, but interest in South At changes - e.g. blueline tilefish

Potential Council Application of Research

- Continued development and implementation of EAFM guidance document
- EAFM Risk

Assessment

Risk Assessment Update 2020

Table 4: Species level risk analysis results; $l=$ low risk (green), $l \mathrm{~m}=\mathrm{low}$-moderate risk (yellow), mh=moderate to high risk (orange), $\mathrm{h}=$ high risk (red)

Species	Assess	Fstatus	Bstatus	FW1Pred	FW1Prey	FW2Prey	Climate	OistShift	EstHabitat
Ocean Quahog									
Surfclam				1	I	1	min	mir	
Summer flounder	1	,	lm	1	1	,	lm	mh	h
Scup	1	!		,	,	-	lm	mh	h
Black sea bass		1	1		1	1	mh	mh	h
Atl. mackerel		h	h	1	1	1	lm	ml	
Butterfish			1					h	
Longfin squid	lm	lm	lm	1	t	1 m	+	mh	1
Shortfin squid	1 m	lm	1 m		,	lm		\%	1
Golden tilefish	-		lm				mh		
Blueline tilefish	h	Ir	tht		1	+	mh		I
Bluefish			h					mh	h
Spiny dogfish	lm	1	lm	1	1	4	1	h	
Monkfish	h	lm	1 m		1	Im	1	min	,
Unmanaged forage	na	na	n		lm	lm	na	na	na
Deepsea corals	na	na	na				na	nа	na

Table 5: Ecosystem level risk analysis results; $l=$ low risk (green), $1 \mathrm{~m}=$ low-moderate risk (yellow), mh=moderate to high risk (orange), $\mathrm{h}=$ high risk (red)

| System | EcoProd | CommRev | RecVal | FishRes1 | FishRes4 | FleetDiv | Social | ComFood | RecFood |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mid-Atlantic | lm | | h | | | | | lm | |

Potential Applications of Research (cont.)

Ecosystem factors accounted	Assessment considered habitat and ecosystem effects on stock productivity, distribution, mortality and quantitatively included appropriate factors reducing uncertainty in short term predictions. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are stable. Comparable species in the region have synchronous production characteristics and stable short-term predictions. Climate vulnerability analysis suggests low risk of change in productivity due to changing climate.	Assessment considered habitat/ecosystem factors but did not demonstrate either reduced or inflated short-term prediction uncertainty based on these factors. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are variable, with mixed productivity and uncertainty signals among comparable species in the region. Climate vulnerability analysis suggests moderate risk of change in productivity from changing climate.	Assessment either demonstrated that including appropriate ecosystem/habitat factors increases short-term prediction uncertainty, or did not consider habitat and ecosystem factors. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are variable and degrading. Comparable species in the region have high uncertainty in short term predictions. Climate vulnerability analysis suggests high risk of changing productivity from changing climate.

From MAFMC Scientific and Statistical Committee OFL CV Guidance Document 2020 https://www.mafmc.org/ssc

Potential Applications (cont.)

- Council Actions
- Dynamic allocation strategies
- Stock Assessments and projections
- Ecosystem TORs and ESP for assessments
- East Coast Climate Change and Distribution S Shift Scenario Planning Project

- Marine Spatial Planning/Coordination
- Offshore wind and aquaculture development
- NOAA Fisheries Climate Ready Fisheries Management
- $7^{\text {th }}$ National Science Coordination Subcommittee
- Workshop Themes: Ecosystem indicators in assessments
- Fishing level advice for stocks experiencing distribution change

Engagement with Council's EOP Committee and AP

Held a kick-off webinar in December 2019 to introduce research and get initial feedback on project goals and species considered

Research Questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Focal Species

Summer Flounder, Illex Squid, Spiny Dogfish, Gray Triggerfish Considerations: relevant to Council management, range of life history types, current/future shifts likely, data availability

Questions/topics for group to be thinking about

- What types model outputs and information would be most useful - in both content and format?
- How/where could this type of information be applied in our science and management processes and decisions?
- What might be missing or what other considerations should the team be thinking about?
- Do the initial outputs for summer flounder make sense? What does/doesn't?

Further shifts by 2100

Fisheries management requires knowing where fish are

Fisheries management requires knowing where fish are

- Stock definitions

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management
- Incidental catch

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management
- Incidental catch
- Allocations

West Coast region
Alaska regio
Federal waters (generally extend from 3 to 200 nautical miles off the coast)

Mismatch in timescales

Adults

Adults

Develop and test dynamic range models for near-term forecasts

Focal species

Research questions

1. Can dynamic range models forecast changes in species distributions?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Goals

Goals Open-access
forecast system

Test dynamic range model forecasts

Goals Open-access
forecast system

Learn how to use forecasts in management

Work plan

Work plan

Work plan

Work plan

Model structure

Model structure

Model structure

Model structure

Model overview

Bayesian network diagram

(for a model where temperature affects recruitment)

Bayesian network diagram

Model overview

Bayesian network diagram

(for a model where temperature affects recruitment)

Research questions

1. Can dynamic range models forecast changes in species distributions?

Model fit to summer flounder training data

Model fit to summer flounder training data

Centroid Position

Summer flounder testing data

Observed

Summer flounder testing data

Observed

Summer flounder testing data

Observed

Summer flounder testing data

Observed

Summer flounder forecast abundance

Estimated

Abundance

- 80,000

60,000
40,000
20,000

Year

Summer flounder forecast abundance

Estimated

Summer flounder forecast abundance

Estimated

Summer flounder forecast abundance

Estimated

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Summer flounder centroid — data

Centroid Position

Summer flounder centroid - forecast

Centroid Position

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Best candidate model for summer flounder

Model structure decision	Yes	No
Use fishing to inform mortality rate	\checkmark	
Incorporate age structure into process model	\checkmark	
Fit to length data to inform age structure		\checkmark
Use stock-recruit relationship (instead of stochastic recruitment)		\checkmark
Adults disperse among patches	\boldsymbol{V}	
Temperature affects recruitment	\boldsymbol{V}	
Temperature affects mortality		\checkmark
Temperature affects migration *still under development		

Most models fail model fitting checks

Next steps

1. Repeat for shortfin squid, spiny dogfish, and gray triggerfish, developing additional model functionality along the way
2. "Compete" the best model(s) against traditional species distribution modeling methods
3. Formalize forecast evaluation
4. Package and share model code
