Short-term forecasts of species distributions for fisheries management

Payzant Sisters Rose

Malin Pinsky, Rutgers University Alexa Fredston, Rutgers University Brandon Muffley, Mid-Atlantic Fishery Management Council

Potential change in species distribution

Directional effect of climate change

Northeast Fisheries Climate Vulnerability Assessment (adapted from Hare et al. 2016)

Governance Issues

EAFM Guidance Document

Ecosystem Approach to Fisheries Management Guidance Document

Approved by Council August 8, 2016

Revised February 8, 2019

EAFM Guidance Document

Example Climate-Related Policies and Recommendations

- Develop and evaluate approaches for MAFMC fisheries and their management to become more adaptive to change
- Use models to develop short-term forecasts and medium-term projections
- Identify new species likely to become established in the Mid-Atlantic (from the South Atlantic) and species likely to expand or shift distribution into waters under the jurisdiction of New England

Species Distribution Shifts

- Collaborated with Morley et al. 2018 on *Projecting shifts in thermal habitat during the 21st century* project
- Highly informative and considered in a <u>strategic</u> way i.e., EAFM guidance document
- This project allows Council to consider distribution change in a more <u>tactical</u> way
 - Focus on Mid At species, but interest in South At changes e.g. blueline tilefish

Potential Council Application of Research

Continued development and implementation of EAFM guidance document

Risk Assessment Update 2020

Table 4: Species level risk analysis results; l=low risk (green), lm= low-moderate risk (yellow), mh=moderate to high risk (orange), h=high risk (red)

Species	Assess	Fstatus	Bstatus	FW1Pred	FW1Prey	FW2Prey	Climate	DistShift	EstHabitat
Ocean Quahog		l.		1	1	1.00			1
Surfclam	L.						mh	mh	
Summer flounder	L.		lm				lm		h
Scup	1		1				lm		
Black sea bass	1 B						mh		
Atl. mackerel	1	h	h	1			lm		
Butterfish	1.1	1	1				1	h	
Longfin squid	lm	lm	lm			lm	L		
Shortfin squid	lm	lm	lm			lm	1	h	
Golden tilefish	L.		lm					1	
Blueline tilefish	h	h	mh						
Bluefish	l. I		h	1					h
Spiny dogfish	lm		lm	1				h	1
Monkfish	h	lm	lm					mh	
Unmanaged forage	na	na	na	1	lm	lm	na	na	na
Deepsea corals	na	na	na	1	1	- L	na	na	na

Table 5: Ecosystem level risk analysis results; l=low risk (green), lm= low-moderate risk (yellow), mh=moderate to high risk (orange), h=high risk (red)

System	EcoProd	CommRev	RecVal	FishRes1	FishRes4	FleetDiv	Social	ComFood	RecFood
Mid-Atlantic	lm	mh	h	1	mh	1	lm	h	mh

Potential Applications of Research (cont.)

Les	s Uncertainty	More Uncertainty			
Ecosystem	Assessment considered	Assessment	Assessment either		
factors	habitat and ecosystem	considered	demonstrated that		
accounted	effects on stock productivity,	habitat/ <mark>ecosystem</mark> factors but did not	including appropriate		
accounted	distribution, mortality	demonstrate either	ecosystem/habitat factors increases		
	and quantitatively	reduced or inflated	short-term prediction		
		short-term prediction	uncertainty, or did not		
	included appropriate		consider habitat and		
	factors reducing uncertainty in short	uncertainty based on these factors.			
	term predictions.	Evidence outside the	ecosystem factors. Evidence outside the		
	Evidence outside the	assessment suggests	assessment suggests		
	assessment suggests	that ecosystem	that ecosystem		
	that ecosystem	productivity and	productivity and		
	productivity and	habitat quality are	habitat quality are		
	habitat quality are	variable, with mixed	variable and		
	stable. Comparable	productivity and	degrading.		
	species in the region	uncertainty signals	Comparable species in		
	have synchronous	among comparable	the region have high		
	production	species in the region.	uncertainty in short		
	characteristics and	Climate vulnerability	term predictions.		
	stable short-term	analysis suggests	Climate vulnerability		
	predictions. Climate	moderate risk of	analysis suggests high		
	vulnerability analysis	change in productivity	risk of changing		
	suggests low risk of	from changing	productivity from		
	change in productivity	<mark>climate.</mark>	changing climate.		
	due to changing				
	<mark>climate.</mark>				

From MAFMC Scientific and Statistical Committee OFL CV Guidance Document 2020 – https://www.mafmc.org/ssc

Potential Applications (cont.)

- Council Actions
 - Dynamic allocation strategies
- Stock Assessments and projections
 - Ecosystem TORs and ESP for assessments
- East Coast Climate Change and Distribution S Shift Scenario Planning Project
- Marine Spatial Planning/Coordination
 - Offshore wind and aquaculture development
- NOAA Fisheries Climate Ready Fisheries Management
- 7th National Science Coordination Subcommittee
 - Workshop Themes: Ecosystem indicators in assessments
 - Fishing level advice for stocks experiencing distribution change

Engagement with Council's EOP Committee and AP

Held a kick-off webinar in December 2019 to introduce research and get initial feedback on project goals and species considered

Research Questions

- 1. Can dynamic range models forecast changes in species distributions?
- 2. At what time-scales do forecasts have skill (1- 10 years)?
- 3. Does information on fishing pressure improve forecasts of species distributions?

Focal Species

Summer Flounder, Illex Squid, Spiny Dogfish, Gray Triggerfish Considerations: relevant to Council management, range of life history types, current/future shifts likely, data availability

Questions/topics for group to be thinking about

- What types model outputs and information would be most useful in both content and format?
- How/where could this type of information be applied in our science and management processes and decisions?
- What might be missing or what other considerations should the team be thinking about?
- Do the initial outputs for summer flounder make sense? What does/doesn't?

Further shifts by 2100

Morley et al. 2018 PLOS ONE

Stock definitions

- Stock definitions
- Stakeholder representation

- Stock definitions
- Stakeholder representation
- Spatial management

- Stock definitions
- Stakeholder representation
- Spatial management
- Incidental catch

- Stock definitions
- Stakeholder representation
- Spatial management
- Incidental catch
- Allocations

Mismatch in timescales

Adults

Adults

Develop and test dynamic range models for near-term forecasts

Images: phylopic.org FishWatch.gov

Research questions

1. Can dynamic range models **forecast** changes in species distributions?

Research questions

- 1. Can dynamic range models forecast changes in species distributions?
- 2. At what **time-scales** do forecasts have skill (1-10 years)?

Research questions

- 1. Can dynamic range models forecast changes in species distributions?
- 2. At what time-scales do forecasts have skill (1-10 years)?
- 3. Does information on **fishing** pressure improve forecasts of species distributions?

Goals

Test dynamic range model forecasts

Test dynamic range model forecasts

Learn how to use forecasts in management

Work plan

Work plan

Work plan

Model structure

Model structure

Model overview

Bayesian network diagram (for a model where temperature affects recruitment)

Bayesian network diagram

Model overview

Bayesian network diagram (for a model where temperature affects recruitment)

Research questions

1. Can dynamic range models **forecast** changes in species distributions?

Model fit to summer flounder training data

Model fit to summer flounder training data

Centroid Position

Summer flounder testing data

Summer flounder testing data

Observed

Summer flounder testing data Observed 44 -45°N Abundance highest in 44 43 middle of domain 42. Abundance 40 39 40°N · 41. 38 200,000 -atitude 37 40 <u>36</u> 35 150,000 35°N 39 100,000 38 50,000 37. 0 30°N 36 35 -25°N · 80°W 75°W 70°W 65°W

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Year

Summer flounder testing data

Observed

Year

Estimated

Year

Research questions

- 1. Can dynamic range models forecast changes in species distributions?
- 2. At what **time-scales** do forecasts have skill (1-10 years)?

Summer flounder centroid — data

Summer flounder centroid — forecast

Research questions

- 1. Can dynamic range models forecast changes in species distributions?
- 2. At what time-scales do forecasts have skill (1-10 years)?
- 3. Does information on **fishing** pressure improve forecasts of species distributions?

Best candidate model for summer flounder

Model structure decision	Yes	No
Use fishing to inform mortality rate	✓	
Incorporate age structure into process model	✓	
Fit to length data to inform age structure		~
Use stock-recruit relationship (instead of stochastic recruitment)		✓
Adults disperse among patches	✓	
Temperature affects recruitment	✓	
Temperature affects mortality		✓
Temperature affects migration *still under development		

Most models fail model fitting checks

Next steps

- 1. Repeat for shortfin squid, spiny dogfish, and gray triggerfish, developing additional model functionality along the way
- 2. "Compete" the best model(s) against traditional species distribution modeling methods
- 3. Formalize forecast evaluation
- 4. Package and share model code