## SSC Recreational Models Peer Review 9/20/2021



## Andrew (Lou) Carr-Harris

andrew.carr-harris@noaa.gov
Social Sciences Branch, Northeast Fisheries Science Center

## Outline

- Objectives and previous applications
- Current recreational demand model
$>$ Angler behavioral model
$>$ Fishery simulation


## Objectives and previous applications

## Recreational demand model objectives

- Predict the impact of management options on fishery outcomes
- Evaluate the economic and biological tradeoffs posed by alternative management options


## Approach

- Estimate demand for rec. fishing using utility-theoretic model of angler behavior
- Predict outcomes of individual fishing trips (harvest, release, angler welfare, likelihood of taking the trip, etc.) under current and alternative policies
- Previous applications of recreational demand modelling in fishery settings:
- Carr-Harris and Steinback 2020
- Lee et. al 2017


## Carr-Harris and Steinback 2020 Overview

- Recreational demand model for striped bass
- Choice experiment survey data to estimate angler preferences/values for keeping and releasing striped bass
- Fishery simulation to evaluate the effect of alternative policies on total fishing mortality, SSB fishing mortality, angler welfare


## Carr-Harris and Steinback 2020 Choice experiment survey results



Keeping one trophy = striper ( $\sim \$ 32$ )

Keeping 1.4 medium stripers


Keeping 2.2 small stripers

## Carr-Harris and Steinback 2020 Choice experiment survey results



Releasing one trophy $=$ striper ( $\sim \$ 16$ )


Keeping 0.7 medium- $=$ Keeping 1.1 sized stripers

## Carr-Harris and Steinback 2020 Simulation framework

Actual 2015 policy $\rightarrow$ alternative policy


Change in angler welfare

## Carr-Harris and Steinback 2020 Simulated policies

TABLE 6 | Alternative 2015 policies evaluated.

| Policy type | Minimum size limit |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $20^{\prime \prime}(\mathrm{O})$ |  | $24^{\prime \prime}(\square)$ |  | $28^{\prime \prime}(\Delta)$ |
| Minimum length only | A1: | 1 fish $\geq 20^{\prime \prime}$ | B1: | 1 fish $\geq 24^{\prime \prime}$ |  |  |
|  | A2: | 2 fish $\geq 20^{\prime \prime}$ | H2: | 2 fish $\geq 24^{\prime \prime}$ | O2: | 2 fish $\geq 28^{\prime \prime}$ |
| Narrow harvest slot | C1: | 1 fish 20-28 ${ }^{\prime \prime}$ | F1: | 1 fish 24-32 ${ }^{\prime \prime}$ | E1: | 1 fish 28-36 ${ }^{\prime \prime}$ |
|  | B2: | 2 fish 20-28 ${ }^{\prime \prime}$ | 12: | 2 fish 24-32" | P2: | 2 fish 28-36" |
| Wide harvest slot | D1: | 1 fish 20-36 ${ }^{\prime \prime}$ | G1: | 1 fish 24-40" | H1: | 1 fish 28-44" |
|  | C2: | 2 fish 20-36 ${ }^{\prime \prime}$ | J2: | 2 fish 24-40" | Q2: | 2 fish 28-44" |
| Dual harvest slot | E2: | 1 fish 20-28' ${ }^{\prime \prime}$ and | L2: | 1 fish 24-32 ${ }^{\prime \prime}$ and | S2: | 1 fish, 28-36" and |
|  |  | 1 fish > 28 to $36^{\prime \prime}$ |  | 1 fish > 32 to $40^{\prime \prime}$ |  | 1 fish > 36 to 44" |
| Partial harvest slot | D2: | 1 fish 20-28' ${ }^{\prime \prime}$ and | K2: | 1 fish 24-32' and | R2: | 1 fish 28-36" and |
|  |  | 1 fish > $28^{\prime \prime}$ |  | 1 fish > $32^{\prime \prime}$ |  | $1 \text { fish }>36^{\prime \prime}$ |
| Dual harvest slot option | G2: | 2 fish total, 20-28"; only 1 fish > 28 to $36^{\prime \prime}$ | N2: | 2 fish total, 24-32"; only $1>32$ to $40^{\prime \prime}$ | U2: | 2 fish total, 28-36"; <br> only 1 fish $>36$ to $44^{\prime \prime}$ |
| Partial harvest slot option | F2: | 2 fish total, 20-28"; only 1 fish $>28^{\prime \prime}$ | M2: | 2 fish total, 24-32"; only 1 fish > $32^{\prime \prime}$ | T2: | 2 fish total, 28-36"; only 1 fish $>36^{\prime \prime}$ |
| Protected harvest slot | 11: | 1 fish 20-24' or $>32^{\prime \prime}$ | M1: | 1 fish $24-28^{\prime \prime}$ or $>36^{\prime \prime}$ |  |  |
|  | J1: | 1 fish 20-24' or $>36^{\prime \prime}$ | N1: | 1 fish $24-28^{\prime \prime}$ or $>40^{\prime \prime}$ |  |  |
|  | K1: | 1 fish 20-28' or $>36^{\prime \prime}$ | 01: | 1 fish $24-32^{\prime \prime}$ or $>40^{\prime \prime}$ |  |  |
|  | L1: | 1 fish 20-28' or $>40^{\prime \prime}$ |  |  |  |  |

## Carr-Harris and Steinback 2020 Simulation model results



Good for female spawning stock

## Carr-Harris and Steinback 2020 Simulation model results

Good for anglers

\% change in total rec. removals (\# fish)
Good for total fishing mortality

## Lee et al. 2017 <br> Overview

- Recreational demand model for GoM cod and haddock
- Choice experiment survey data to estimate angler preferences for keeping/releasing cod and haddock
- Bio-economic simulation to evaluate the effect of alternative policies on SSB, removals, angler welfare
>Population dynamics model
>Recreational catch-at-length adjusts to pop. abundance


## Lee et al. (2017) <br> Results - predicted removals in 2014




## Lee et al. (2017) <br> Results - predicted angler welfare in 2014



Current recreational demand model

## Recreational demand model approach

1. Estimate angler preferences

- Data from a 2010 choice experiment (CE) survey

2. Simulate the fishery

- Historical catch and effort data from MRIP
- Parameterized with results of angler behavioral model
- Captures aggregate effect of policies on angler welfare/behavior and fishing outcomes


## Estimate angler preferences <br> Angler behavior model

- Data from a 2010 choice experiment (CE) survey
- Stated preference method for non-market valuation
- Non-market goods or attributes do not have well-defined markets, necessitating the use of alternative methods of valuation
- CEs ask people a series of questions that can be used to infer economic values, such as willingness-to-pay (WTP)
- Allow for valuation of virtually any policy-relevant attributes of interest (e.g., harvest, regulations, environmental quality), including those for which observational data are nonexistent or do not vary


## Choice experiment data

- 2010 saltwater fishing survey
- Administered in conjunction with MRIP intercepts
- Four regional sub-versions (ME-NY, NJ, DE/MD, VA/NC)
- 10,244 surveys distributed, 3,234 returned (RR=31.5\%)


## Saltwater Recreational Fishing Survey



Improve your fishing experiences!


Sponsored by NOAA Fisheries (National Marine Fisheries Service), Office of Science and Technology http://www.st.nmfs.noaa.gov/st5/index.html
This survey is voluntary and all responses are confidential.

## Choice experiment data

## Section B: Saltwater Fishing Trips

The following questions help us understand tradeoffs made by anglers when they go fishing. Compare Trip A, Trip B, and Trip C in the table below, then answer questions 2A and 2B. Compare only the trips on this page. Do not compare these trips to trips on other pages in this survey.


2A Choose your favorite trip. (Please mark only one trip with a $\square$ or a 図.)
Trip A $\square$
Trip B $\square$
Trip C
I would not go saltwater fishing

## Behavioral model

- Random utility model framework
- $U_{i}=V_{i}+e$
- Select alternative with largest $U$
- $V_{i}=f(\sqrt{\# B S B ~ k e p t}, \sqrt{\# \text { BSB released }}, \sqrt{\# \text { other fish kepts }}$, $\sqrt{\# \text { other fish releaseds }}$, Trip cost, Striper/bluefish alternative, No trip alternative)
- Panel mixed logit model


## Behavioral model results

Table 2 . Estimated utility parameters from panel mixed logit models.

|  |  | ME-NY |  | NJ |  | DE/MD |  | VA/NC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean parameters | Estimate | St. Error |
|  | trip cost | -0.012*** | 0.000 | -0.009*** | 0.000 | -0.009*** | 0.000 | -0.008*** | 0.000 |
| Fluke parameters BSB parameters | $\sqrt{\text { SF kept }}$ | $0.559^{+* *}$ | 0.063 | $0.762^{* *}$ | 0.067 | $0.807^{* * *}$ | 0.051 | $0.521 * * *$ | 0.033 |
|  | $\sqrt{\text { SF released }}$ | -0.061 | 0.046 | 0.013 | 0.043 | 0.040 | 0.034 | $0.108 * * *$ | 0.022 |
|  | $\sqrt{\text { BSB kept }}$ | $0.275^{* * *}$ | 0.034 | $0.174^{* *}$ | 0.034 | 0.239*** | 0.027 | $0.192^{* * *}$ | 0.019 |
|  | $\sqrt{\text { BSB released }}$ | -0.021 | 0.024 | 0.015 | 0.025 | -0.011 | 0.020 | 0.020 | 0.013 |
|  | $\sqrt{\text { scup kept }}$ | $0.075^{+* *}$ | 0.021 | $0.097^{* * *}$ | 0.021 |  |  |  |  |
|  | $\sqrt{\text { scup released }}$ | -0.010 | 0.015 | -0.039** | 0.016 |  |  |  |  |
|  | $\sqrt{\text { WF kept }}$ |  |  | $0.394^{* *}$ | 0.056 | 0.379*** | 0.045 | $0.231^{* * *}$ | 0.032 |
|  | $\sqrt{\text { WF released }}$ |  |  | 0.093** | 0.044 | $0.064^{*}$ | 0.036 | 0.030 | 0.024 |
|  | $\sqrt{\text { RD kept }}$ |  |  |  |  |  |  | $0.454^{* * *}$ | 0.040 |
|  | $\sqrt{R D \text { released }}$ |  |  |  |  |  |  | $0.081 * * *$ | 0.025 |
|  | do not fish | $-2.641^{+4 *}$ | 0.252 | $-2.095^{* * *}$ | 0.288 | $-2.963^{* * *}$ | 0.259 | $-3.908^{* * *}$ | 0.259 |
|  | fish for other species | $1.429^{+* *}$ | 0.181 | $1.139^{* * *}$ | 0.208 | $0.645^{* * *}$ | 0.159 | $0.454^{* * *}$ | 0.121 |
|  | No. choices | 3460 |  | 2768 |  | 4514 |  | 8340 |  |
|  | No. anglers | 449 |  | 359 |  | 594 |  | 1072 |  |
|  | Pseudo $\mathrm{R}^{2}$ | 0.332 |  | 0.274 |  | 0.323 |  | 0.307 |  |
|  | LL | -3203.6 |  | -2785.2 |  | -4236.5 |  | -8010.3 |  |
|  | LL(0) | -4796.6 |  | -3837.3 |  | -6257.7 |  | -11561.7 |  |
|  | AIC | 6441.1 |  | 5612.3 |  | 8506.9 |  | 16062.6 |  |
|  | BIC | 6569.2 |  | 5765.9 |  | 8639.6 |  | 16239.4 |  |

Notes: ${ }^{* * *}$, and ${ }^{* * *}$ represent significance at the $10 \%, 5 \%$, and $1 \%$ level of significance, respectively. SF $=$ summer flounder, $\mathrm{BSB}=$ black sea bass, $\mathrm{WF}=$ weakfish, $\mathrm{RD}=$ red drum.

## Estimated willingness-to-pay for keeping fish (ME-NY)


keeping 1 summer flounder $=$ keeping $\sim 2$ black sea bass
$=$ keeping $\sim 7.5$ scup

Willingness-to-pay for the first fish kept:

## Fishery simulation

- Uses historical MRIP catch and effort data to simulate individual fishing trips under baseline (state 0) and alternative (state 1) conditions
- Calculate expected utility ( $\mathrm{V}^{0}$ and $\mathrm{V}^{1}$ )
- Probability of taking a trip: $P=\frac{e^{V}}{1+e^{V}}$
- Compensating variation:

$$
C V_{n}=\frac{1}{\beta_{\text {trip cost }}}\left(\ln \left(\sum_{j=1}^{J} e^{V_{n j}^{1}}\right)-\ln \left(\sum_{j=1}^{J} e^{V_{n j}^{0}}\right)\right)
$$

## Example choice occasion

Trip outcomes from a change in attributes based on 100 utility parameter draws.

| Trip attributes | Baseline <br> scenario $\left(\mathrm{s}^{0}\right)$ | Alternative <br> scenario $\left(\mathrm{s}^{1}\right)$ |
| :--- | :---: | :---: |
| \# summer flounder kept | 1 | 3 |
| \# summer flounder released | 4 | 1 |
| \# black sea bass keep | 1 | 4 |
| \# black sea bass released | 3 | 0 |
| \# scup kept | 0 | 0 |
| \# scup kept | 0 | 0 |
| Trip cost | $\$ 55.85$ | $\$ 55.85$ |

Trip outcomes

| Trip probability | 0.51 | 0.69 |
| :--- | :---: | :---: |
|  | $(0.44,0.58)$ | $(0.62,0.75)$ |
| Expected BSB harvest <br> (prob. $\times$ BSB keep) | 0.50 | 2.75 |
| Expected BSB releases | $(0.43,0.57)$ | $(2.49,3.00)$ |
| (prob. $\times$ BSB release) | $(1.31,1.73)$ | 0 |
| Expected BSB mortality <br> (harvest $+0.1 \times$ releases) | 0.66 | 2.75 |
|  | $(0.58,0.74)$ | $(2.49,3.00)$ |
| $\mathrm{CV} \mathrm{s}{ }^{0} \rightarrow \mathrm{~s}^{1}$ | $-\$ 64.90$ |  |

## Fishery simulation <br> Method

- Simulated choice occasions are assigned:
- \#'s fish kept/released
- sizes of fish kept/released
- trip cost (2017 expenditure survey)
- Calibrate the model to baseline year (2019)
- Select $N$ simulated trips so that $\sum_{n=1}^{N} p=$ actual \# of trips
- Calculate baseline levels of welfare, harvest, release
- Re-run the simulation under alternative conditions


## Fishery simulation

## Data scale

- Regulations: state level
- Catch-per-trip and catch-at-length: MRIP aggregated across 3 regions (MA-NY, NJ, DE-NC)
- Survey results: 4 regions (MA-NY, NJ, DE/MD, VA/NC)
$>$ Fluke and BSB parameters available for all regions
- Trip cost data: state level by mode


## Fishery simulation Data

## 2019 actual regulations

| State | Period | Dates | Fluke regs. | BSB regs. | Scup regs. | Weakfish Regs. | Red drum regs. | Estimated \# directed fluke trips |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MA | 1 | Jan 1. - May 17 | closed | closed | 30 fish, 9" | N/A | N/A | 0 |
| MA | 2 | May 18 - Sep. 8 | 5 fish, 17" | 5 fish, 15" | 50 fish, 9" | N/A | N/A | 92,813 |
| MA | 3 | Sep. 9 - Oct. 9 | 5 fish, 17" | closed | 30 fish, 9" | N/A | N/A | 9,978 |
| MA | 4 | Oct. $10-$ Dec 31 | closed | closed | 30 fish, 9" | N/A | N/A | 1,460 |
| NJ | 1 | Jan. 1 - May 14 | closed | closed | 50 fish, 9 " | 1 fish, 13" | N/A | 2,463 |
| NJ | 2 | May 15 - June 30 | 3 fish, 18" | 10 fish, 12.5" | 50 fish, 9 " | 1 fish, 13" | N/A | 960,362 |
| NJ | 3 | July 1 - Aug. 31 | 3 fish, 18" | 2 fish, 12.5" | 50 fish, 9 " | 1 fish, 13" | N/A | 2,763,076 |
| NJ | 4 | Sep. 1-Sep. 30 | 3 fish, 18" | closed | 50 fish, 9" | 1 fish, 13" | N/A | 810,316 |
| NJ | 5 | Oct. 1-Oct. 31 | closed | 10 fish, 12.5" | 50 fish, 9 " | 1 fish, 13" | N/A | 41,088 |
| NJ | 6 | Nov. 1 - Dec. 31 | closed | 15 fish, 13" | 50 fish, 9 " | 1 fish, 13" | N/A | 1,891 |

## Fishery simulation <br> Data

- Catch-at-length
>In baseline year, use distribution fitted (gamma) to recent MRIP data
$>$ In prediction year, calculate and fit based on population abundance-at-length (equations 6 \& 7)


## Abundance-based catch-at-length example (fluke)

| Age | Numbers at age y1 | Numbers at age y2 |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 50361.35 | 75542.03 |  |
| 1 | 32063.45 | 48095.18 | Year 2 values 50\% <br> higher for ages 0-3 |
| $\mathbf{2}$ | 19979.2 | 29968.8 | 17210.1 |
| $\mathbf{3}$ | 11473.4 | 5072.85 |  |
| 4 | 10145.7 | 2358.453 | Year 2 values 50\% <br> lower for ages 4- <br> $7+$ |
| 5 | 4716.905 | 1188.755 |  |
| 6 | 2377.51 | 2077.64 |  |
| $7+$ | 4155.28 |  |  |



DE-MD



## Fishery simulation

## Data

- Catch-per-trip based on recent MRIP data
$>$ Account for correlation in fluke and BSB catch through the use of copulas
$>$ Specify marginal distributions for each series, select copula function that generates data with similar correlation structure
- Catch-per-trip of other species assumed independent


## Correlation between fluke and BSB

Observed catch on directed fluke trips, MA-NY 2019


Observed catch on directed BSB trips, MA-NY 2019


## Fishery simulation (summer flounder) Calibration

- Calibrate the model to baseline year (2019)
- Select $N$ simulated trips so that $\sum_{n=1}^{N} p=$ actual \# of trips


## Calibration results for summer flounder Harvest

Table 1. Simulated vs. estimated 2019 fluke harvest (\#'s fish)

| state | Simulation (95\% CI) | $\begin{gathered} \text { MRIP } \\ (95 \% \mathrm{CI}) \end{gathered}$ | Difference | \% difference |
| :---: | :---: | :---: | :---: | :---: |
| MA | 57,627 | 55,386 | 2,241 | 4.0 |
|  | $(56,938$ 58,316) | $(26,630 \quad 84,142)$ |  |  |
| RI | 104,350 | 213,592 | -109,242 | -51.1 |
|  | $(103,250$ 105,449) | $(59,161$ 368,022) |  |  |
| CT | 91,145 | 89,843 | 1,302 | 1.4 |
|  | $(90,136$ 92,153) | $(56,326$ 123,360) |  |  |
| NY | 709,441 | 561,173 | 148,268 | 26.4 |
|  | $(701,566$ 717,316) | $(321,106$ 801,240) |  |  |
| NJ | 1,058,311 | 1,108,158 | -49,847 | -4.5 |
|  | $(1,047,499$ 1,069,124) | (740,721 1,475,595) |  |  |
| DE | 55,132 | 91,025 | -35,893 | -39.4 |
|  | $(54,733$ 55,532) | $(58,913$ 123,137) |  |  |
| MD | 75,912 | 79,371 | -3,459 | -4.4 |
|  | $(75,395 \quad 76,429)$ | $(66,857$ 91,885) |  |  |
| VA | 106426 | 149,785 | -43,359 | -28.9 |
|  | $(105,963$ 106,889) | $(72,911$ 226,659) |  |  |
| NC | 8,660 | 34,895 | -26,235 | -75.2 |
|  | $(8,604 \quad 8,716)$ | $(23,833$ 45,956) |  |  |
| Total | 2,267,008 | 2,383,228 | -116,223 | -4.9 |
|  | $(2244221$ 2289795) | $(1,908,190 \quad 2,858,266)$ |  |  |

## Calibration results for summer flounder Discards

| state | Simulation (95\% CI) | $\begin{gathered} \text { MRIP } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | Difference | \% error |
| :---: | :---: | :---: | :---: | :---: |
| MA | 226,302 | 224,421 | 1,881 | 0.84 |
|  | (224,099 224,099) | $(83,344$ 365,498) |  |  |
| RI | 1,168,887 | 1,319,352 | -150,465 | -11.40 |
|  | $(1,159,973$ 1,177,801) | $(400,194$ 2,238,510) |  |  |
| CT | 1,025,365 | 1,065,404 | -40,039 | -3.76 |
|  | $(1,017,481 \quad 1,033,250)$ | $(674,356$ 1,456,452) |  |  |
| NY | 8,620,060 | 9,001,801 | -381,741 | -4.24 |
|  | $(8,551,801 \quad 8,688,317)$ | (6,144,099 11,859,503) |  |  |
| NJ | 12,703,465 | 13,068,170 | -364,705 | -2.79 |
|  | $(12,607,124 \quad 12,799,806)$ | (8,729,440 17,406,900) |  |  |
| DE | 663,235 | 441,178 | 222,057 | 50.33 |
|  | (660,637 665,833) | $(302,647$ 579,708) |  |  |
| MD | 902,174 | 938,193 | -36,019 | -3.84 |
|  | $(898,782$ 905,567) | (781,958 1,094,428) |  |  |
| VA | 1,307,589 | 1,367,380* | -61,986 | -4.53 |
|  | $(1,304,510$ 1,310,668) | (761,049 1,973,711) |  |  |
| NC | 39,621 | 1,469 | 38,152 | 2,597.14 |
|  | $(39,442$ 39,801) | $(-1,410 \quad 4,348)$ |  |  |
| Total | 26,656,701 | 28,359,562 | -772,865 | -2.82 |
|  | $(26,465,040 \quad 26,848,362)$ | $(22,868,977 \quad 33,850,147)$ |  |  |

*estimate exclude two anomalous observations that account for 933 k discarded fish

## Calibration results for summer flounder




Kolmogorov-Smirnov test for equality of distribution functions:
Sim. model vs. assessment $p$-value $=0.084$
Sim. model vs. MRIP p-value $=.175$

## Calibration results for summer flounder



Kolmogorov-Smirnov test for equality of distribution functions:
Sim. model vs. assessment $p$-value $=0.390$
Sim. model vs. MRIP p-value $=0.043$

## Calibration results for black sea bass <br> Harvest

Table 1. Simulated vs. estimated 2019 black sea bass harvest (\#'s fish)

| state | Simulation (95\% CI) | $\begin{gathered} \text { MRIP } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | Difference | \% difference |
| :---: | :---: | :---: | :---: | :---: |
| MA | 327,511 | 526,593 | -199,083 | -37.8 |
|  | $(326,810 \quad 328,211)$ | $(321,668$ 731,519) |  |  |
| RI | 456,037 | 517,032 | -60,996 | -11.8 |
|  | $(455,216$ 456,856) | $(337,340$ 696,724) |  |  |
| CT | 668,207 | 515,601 | 152,606 | 29.6 |
|  | $(666,873$ 669,540) | $(276,600 \quad 754,602)$ |  |  |
| NY | 1,575,259 | 157,7042 | -1,783 | -0.1 |
|  | (1,571,983 1,578,534) | (1,069,013 2,085,070) |  |  |
| NJ | 599,326 | 831,241 | -231,915 | -27.9 |
|  | $(597,729$ 600,922) | $(539,811$ 1,122,671) |  |  |
| DE | 51,861 | 43,434 | 8,426 | 19.4 |
|  | $(51,758$ 51,962) | $(19,184$ 67,684) |  |  |
| MD | 139,200 | 129,431 | 9,768 | 7.5 |
|  | $(138,939139,460)$ | $(58,667$ 200,196) |  |  |
| VA | 198,073 | 230,843 | -32,771 | -14.2 |
|  | $(197,808$ 198,336) | $(-33,141$ 494,828) |  |  |
| NC | 221,275 | 151,998 | 69,276 | 45.6 |
|  | $(220,980$ 221,570) | $(-17,270$ 321,268) |  |  |
| Total | 4,236,748 | 4,523,220 | -286,472 | -6.3 |
|  | $(4,228,184$ 4,245,311) | $(3,762,717 \quad 5,283,723)$ |  |  |

## Calibration results for black sea bass Discards

Table 2. Simulated vs. estimated 2019 black sea bass discards (\#'s fish)

| state | Simulation (95\% CI) | $\begin{gathered} \hline \text { MRIP } \\ (95 \% \mathrm{Cl}) \end{gathered}$ | Difference | \% difference |
| :---: | :---: | :---: | :---: | :---: |
| MA | 2,392,956 | 2,728,800 | -335,844 | -12.31 |
|  | $(2,388,455 \quad 2,397,456)$ | $(1,734,077 \quad 3,723,522)$ |  |  |
| RI | 3,263,576 | 8,646,693 | -172,647 | -5.02 |
|  | $(3,258,043$ 3,269,109) | $(6,471,292 \quad 10,821,676)$ |  |  |
| CT | 3,239,776 | 2,624,762 | 615,014 | 23.43 |
|  | $(3,234,031 \quad 3,245,519)$ | $(1,673,134 \quad 3,576,389)$ |  |  |
| NY | 8,596,060 | 9,725,431 | -1,129,371 | -11.61 |
|  | $(8,580,162$ 8,611,958) | $(7,401,427 \quad 12,048,987)$ |  |  |
| NJ | 5,367,557 | 5,352,818 | 14,739 | 0.28 |
|  | $(5,352,499 \quad 5,382,613)$ | $(4,002,933$ 6,702,703) |  |  |
| DE | 463,846 | 378,300 | 85,545 | 22.61 |
|  | $(463,116$ 464,575) | $(203,933$ 552,667) |  |  |
| MD | 1,240,920 | 1,635,747 | -394,827 | -24.14 |
|  | $(1,238,929$ 1,242,909) | $(4,005$ 3,267,489) |  |  |
| VA | 1,950,094 | 1,903,352 | 46,742 | 2.46 |
|  | $(1,948,118$ 1,952,068) | $(1,045,363$ 2,761,340) |  |  |
| NC | 2,708,943 | 2,802,990 | -94,047 | -3.36 |
|  | $(2,706,037$ 2,711,847) | $(1,756,042$ 3,849,9370) |  |  |
| Total | 29,223,726 | 30,588,422 | -1,364,696 | -4.46 |
|  | $(29,169,744$ 29,277,708) | $(26,593,505 \quad 34,583,339)$ |  |  |

## Simulation

- Implemented a variety of regulations across states
- Assumed $100 \%$ compliance
- Same catch-at-length distribution used for baseline and prediction year

Actual and hypothetical regulations used in summer flounder simulation.

| State | 2019 actual regulations | 2019 alternative <br> regulations | Change actual $\rightarrow$ <br> alternative |
| :---: | :---: | :---: | :---: |
| MA | 5 fish, $17 "$ | 5 fish, $19 "$ | Min. size +2 |
| RI | 6 fish, $19 "$ | 6 fish, $21 "$ | Min. size +2 |
| CT | 4 fish, $19 "$ | 4 fish, $17 "$ | Min. size -2 |
| NY | 4 fish, $19 "$ | 4 fish, $16 "-19 "$ | Slot limit |
| NJ | 3 fish, $18 "$ | 3 fish, $18 "$ | No change |
| DE | 4 fish, $16.5 "$ | 4 fish, $16.5 "$ | No change |
| MD | 4 fish, $16.5 "$ | No harvest | Harvest moratorium |
| VA | 4 fish, $16.5 "$ | No harvest | Harvest moratorium |
| NC | 4 fish, $16.5 "$ | No harvest | Harvest moratorium |

## Simulation results - angler welfare

Expected welfare responses to alternative regulations

| state | Regulation change | $\begin{gathered} \text { CV (\$) } \\ (95 \% \mathrm{Cl}) \end{gathered}$ |
| :---: | :---: | :---: |
| MA | $17^{\prime \prime} \rightarrow 19^{\prime \prime}$ min | $\begin{gathered} \hline 1,491,783 \\ (1,100,243 \quad 1,883,322) \end{gathered}$ |
| RI | $19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min | $\begin{gathered} 5,807,945 \\ (4,288,726 \quad 7,327,164) \end{gathered}$ |
| CT | $19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min | $\left.\begin{array}{c} -9,434,245 \\ (-11,909,176 \end{array}-6,959,314\right)$ |
| NY | $19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot | $\left.\begin{array}{c} -103,299,312 \\ (-130,189,418 \end{array}-76,409,206\right)$ |
| NJ | No change | $\begin{gathered} -60,721 \\ (-151,228 \quad 29,786) \end{gathered}$ |
| DE | No change | $\begin{gathered} 61,426 \\ (44,612 \quad 78,239) \end{gathered}$ |
| MD | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | $\begin{gathered} 12,329,541 \\ (10,463,853 \quad 14,195,228) \end{gathered}$ |
| VA | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | $\begin{gathered} 12,359,496 \\ (10,378,030 \quad 14,340,962) \end{gathered}$ |
| NC | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | $\begin{gathered} 996,390 \\ (834,756 \quad 1,158,025) \end{gathered}$ |
| Total |  | $\left.\begin{array}{c} -79,747,696 \\ (-10,3296,553 \end{array}-5,6198,839\right)$ |

Expected changes are in relation to actual regulations in 2019

## Simulation results - harvest

Expected harvest responses to alternative regulations

| state | Regulation change | Change in harvest (\# fish) (95\% CI) | \% change in harvest (\# fish) (95\% CI) |
| :---: | :---: | :---: | :---: |
| MA | $17^{\prime \prime} \rightarrow 19^{\prime \prime}$ min | -44,721 | -77.6 |
|  |  | $(-45,241-44,202)$ | $\left(\begin{array}{ll}-78.5 & -76.6)\end{array}\right.$ |
| RI | $19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min | -72,528 | -69.5 |
|  |  | $(-73,527-71,528)$ | (-69.78-69.2) |
| CT | $19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min | 149,119 | 163.6 |
|  |  | $(143,972$ 154,266) | $(159.3$ 167.9) |
| NY | $19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot | 1,652,488 | 232.9 |
|  |  | $(1,589,013$ 1,715,964) | (225.9 225.9) |
| NJ | No change | 1,440 | 0.14 |
|  |  | (725 2,156) | $\left(\begin{array}{ll}0.069 & 0.20\end{array}\right)$ |
| DE | No change | -215 | -0.39 |
|  |  | $(-235-196)$ | $(-0.42-0.35)$ |
| MD | fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | $-75,912$ | -100 |
| VA | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | $-106,426$ | -100 |
| NC | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | -8,660 | -100 |
|  |  | $(-8,716 \quad-8,604)$ | ( ) |
| Total |  | 1,494,583 | 65.9 |
|  |  | $(1,428,199$ 1,560,966) | $(63.52$ 68.31) |

Expected changes are in relation to actual regulations in 2019

## Simulation results - discards

Expected discard responses to alternative regulations

| state | Regulation change | Change in discards (\# fish) (95\% CI) | \% change in discards (\# fish) (95\% CI) |
| :---: | :---: | :---: | :---: |
| MA | $17^{\prime \prime} \rightarrow 19^{\prime \prime}$ min | -80,810 | -35.71 |
|  |  | $(-86,432-75,188)$ | $\left(\begin{array}{ll}-38.42 & -33.00)\end{array}\right.$ |
| RI | $19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min | 14,058 | 1.20 |
|  |  | (872 27,245) | (0.071 2.33) |
| CT | $19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min | -68,641 | -6.69 |
|  |  | $(-85,964-51,317)$ | $\left(\begin{array}{ll}-8.39 & -4.99)\end{array}\right.$ |
| NY | $19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot | -729,826 | -8.46 |
|  |  | (-903,398 -556,255) | $(-10.49-6.43)$ |
| NJ | No change | 12,545 | 0.09 |
|  |  | $(7,817$ 17,273) | (0.06 0.13) |
| DE | No change | 493 | 0.07 |
|  |  | $(405$ 580) | (0.06 0.08) |
| MD | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | 20,475 | 2.26 |
|  |  | $(12,424 \quad 28,527)$ | (1.37 3.16) |
| VA | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | 55,728 | 4.26 |
|  |  | $(48,546$ 62,911) | (3.70 4.81) |
| NC | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | 4,956 | 12.51 |
|  |  | $(4,309 \quad 5,603)$ | $(10.8414 .17)$ |
| Total |  | -771,019 | -2.89 |
|  |  | (-932,499 -609,538) | $\left(\begin{array}{ll}-3.50 & -2.27)\end{array}\right.$ |

Expected changes are in relation to actual regulations in 2019

## Simulation results - effort

Expected demand responses to alternative regulations

| state | Regulation change | Change in expected \# trips (95\% CI) | \% change in expected \# trips (95\% CI) |
| :---: | :---: | :---: | :---: |
| MA | $17^{\prime \prime} \rightarrow 19^{\prime \prime}$ min | -45,466 | -43.61 |
|  |  | $(-47,900-43,033)$ | $\left(\begin{array}{ll}-45.93-41.28)\end{array}\right.$ |
| RI | $19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min | -16,396 | -3.47 |
|  |  | $(-20,797-11,994)$ | $\left(\begin{array}{ll}-4.4 & -2.54\end{array}\right)$ |
| CT | $19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min | 26,625 | 6.4 |
|  |  | $(19,399 \quad 33,851)$ | (4.69 8.19) |
| NY | $19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot | 287,612 | 8.28 |
|  |  | $(209,778$ 365,445) | (6.037 10.51) |
| NJ | No change | 261 | 0.01 |
|  |  | $\left(\begin{array}{ll}-321 & 844)\end{array}\right.$ | $\left(\begin{array}{ll}-0.01 & 0.02)\end{array}\right.$ |
| DE | No change | -142 | -0.04 |
|  |  | $\left(\begin{array}{ll}-178 & -106\end{array}\right)$ | $(-0.04-0.03)$ |
| MD | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | -27,129 | -4.98 |
|  |  | $(-31,274-22,983)$ | $\left(\begin{array}{ll}-5.74 & -4.21)\end{array}\right.$ |
| VA | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium |  |  |
|  |  | -22,807 | -2.90 |
|  |  | $(-26,424-19,191)$ | $\left(\begin{array}{ll}-3.36 & -2.44\end{array}\right)$ |
| NC | 4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium | -1,686 | -6.32 |
|  |  | $(-1,972-1,399)$ | $\left(\begin{array}{ll}-7.39 & -5.25\end{array}\right)$ |
| Total |  | $(200,870)$ | 1.85 |
|  |  | $(128,216$ 273,523) | $\left(\begin{array}{ll}1.18 & 2.51\end{array}\right)$ |

Expected changes are in relation to actual regulations in 2019

## Other model outputs

- Harvest-, discards-, total rec. fishing mortality-atlength
$>$ Could feed into operating model
- Harvest, discards of other species on directed fluke trips


## Advantages compared to current process

- Model accounts for:
- changes in availability
- changes in angler behavior
- species interactions
- Can be used to model the effect of slight to extreme changes in regulations

Thank you!

