Summer flounder simulation model overview

Core stakeholder group workshop 1b, July $14^{\text {th }}$
Andrew (Lou) Carr-Harris

Objectives

- MSE objective: "Evaluate the biological and economic benefits of minimizing discards and converting discards into landings in the recreational sector. Identify management strategies to effectively realize these benefits."
- Model objective: Quantify the tradeoffs created by current and alternative management strategies.

Model objective

Types of tradeoffs to consider?

Economic/angler impacts	Biological impacts
- Angler satisfaction/welfare	- Fluke SSB
- Angler fishing success	- Fluke fishing mortality
- \# of fluke fishing trips	- Fluke population size
- Economic impacts to related	- Fluke population composition
businesses (e.g., bait and tackle shops)	(age/sex distributions)
	Effects on other stocks (e.g., black sea bass)

Approach

- Bio-economic simulation model
- Predicts outcomes of individual fishing trips (harvest, release, satisfaction, etc.) under current and alternative management measures
- Aggregates outcomes across trips to assess the fishery-wide impacts of a given management measure
- Simulates the fishery for multiple years, using length-based stock projection model to capture growth and recruitment effects
- Similar model currently used to determine recreational Gulf of Maine cod and haddock regulations (Lee et al. 2017) ${ }^{1}$

[^0]
Bio-economic model for recreational GoM cod and haddock (Lee et al. 2017)

- Uses stock assessment data, MRIP data, angler survey data
- Angler satisfaction/recreational fishing effort responsive to policyinduced changes in harvest and releases
- Recreational catch-at-length function of population numbers-at-length
- Management options that have at least a 50% probability of keeping mortality of both species below their respective sub-ACLs are considered by the NEFMC and a preferred option is chosen

Lee et al. (2017) model output - predicted spawning stock biomass 3 years out

Lee et al. (2017) model output - predicted removals in 2014

Lee et al. (2017) model output - predicted angler welfare in 2014

Figure 4. Aggregate Angler CV in 2014 Evaluated Over Seven Alternative Fishing Policies
Note: Policy A is used as the baseline policy.

The recreational fisheries system

Fish stock dynamics including growth and recruitment (1) - "operating model", length-structure stock projection model

- Metrics related to fish stock are common mgt. indicators (12) (e.g., SSB)

Changes in fish populations (2; e.g. size distribution of catch) and management measures (15 and 16) affect the tradeoffs anglers face

Anglers act on those tradeoffs (3)

Anglers' actions lead to realized angler effort, wellbeing or satisfaction (5), and rec. fishing mortality (6)

- All can be mgt. indicators (4,8 , and 9)

Fenichel et al. 2013. "Modelling angler behaviour as a part of the management
Fish mortality affects the fish stock (10)

Implementation model

- Evaluates changes in angler satisfaction/welfare, fishing trips, and fishing mortality conditional on management measures and fish stock
- Can capture other metrics of angler success (e.g., \% trips that catch a keeper)
- Two components:

1. Estimation of angler behavior and preferences

- Data from a 2010 choice experiment (CE) survey

2. Fishery simulation

- Historical catch and effort data from MRIP
- Parameterized with results of angler behavioral model

Implementation model

1. Estimation of angler behavior and preferences

- Data from a 2010 choice experiment (CE) survey

Angler behavioral model

- Data from a 2010 discrete choice experiment (DCE) survey
- Stated preference method for non-market valuation
- Non-market goods or attributes do not have well-defined markets, necessitating the use of alternative methods of valuation. Examples:
- Clean air/water
- Household proximity to public parks/wind turbines/landfills
- Quality of public beaches
- Keeping and releasing fish on a recreational fishing trip
- Choice experiments ask people a series of questions that can be used to infer economic values, such as willingness-to-pay (WTP)
- Allow for valuation of virtually any policy-relevant attributes of interest (e.g., harvest, regulations, environmental quality), including those for which observational data are nonexistent or do not vary

DCEs and recreational fishing

DCEs have been used extensively in recreational fishing contexts, providing a variety of information that can be used for management:

- Value of a fishing trip
- Value of keeping or releasing an additional fish
- Value of other trip factors (e.g., gear restrictions)
- Tradeoffs between factors (e.g., value of keeping cod relative to haddock)
- Effect of changes in factors on the probability of participation (effort shifts)

2010 saltwater fishing survey

- Administered in conjunction with MRIP intercepts
- Four regional sub-versions (ME-NY, NJ, DE/MD, VA/NC)
- 10,244 surveys distributed, 3,234 returned (RR=31.5\%)

Saltwater Recreational Fishing Survey

Improve your fishing experiences!

Example DCE question from 2010 survey

Section B: Saltwater Fishing Trips

The following questions help us understand tradeoffs made by anglers when they go fishing Compare Trip A, Trip B, and Trip C in the table below, then answer questions 2A and 2B. Compare only the trips on this page. Do not compare these trips to trips on other pages in this survey.

Definitions:

- Regulations: The legal minimum size restriction and bag limit for this trip.
- Fish caught: The number of fish caught on this trip and the total length (TL) of those fish
- Fish kept: The number of fish you can legally keep on this trip.
- Total trip cost: Your portion of the costs associated with this trip, including bait, ice, fishing equipment purchase or rental, daily license fees, boat rental fees, boat fuel, trip fees, and round trip transportation costs associated with traveling to and from the fishing location. Travel costs may include vehicle fuel, car rental, tolls, aifare, and parking

2A Choose your favorite trip. (Please mark only one trip with a \square or a 区.)
Trip A \square
Trip B \square
Trip C \square
I would not go saltwater fishing \square

Key behavioral model output

1. Satisfaction an angler receives from each trip attribute, particularly the number of fluke kept and released on a trip
2. Satisfaction in dollar terms for these attributes (willingness-to-pay)
3. Changes in the probability of participation from changes in these attributes (effort shifts)

Estimated values of keeping fish (ME-NY)

Implementation model

- Two components:

1. Estimation of angler behavior and preferences

- Data from a 2010 choice experiment (CE) survey

2. Fishery simulation

- Historical catch and effort data from MRIP
- Parameterized with results of angler behavioral model

Implementation model

2. Fishery simulation

- Historical catch and effort data from MRIP
- Parameterized with results of angler behavioral model

Fishery simulation - method

- Simulate individual fishing trips using catch-per-trip data from MRIP and trip cost data from 2017 survey
- Catch-at-length is a function of population numbers-at-length
- Trips are assigned
- \#'s of fish caught for each species (SF and BSB, other species vary by region)
- size of each fish caught
- trip cost
- Impose bag and size limits at the state level, calculate numbers of fish kept and released
- Angler behavioral model results are used to calculate:
- Probability-weighted numbers of fish kept and released
- measures of success (e.g., angler welfare)
- probability of participation (e.g., fishing demand responds as regulations make fishing more or less attractive)
- Aggregate output across region, simulate for multiple years and under different management measures

Implementation model - calibration statistics

	SF harvest in 2019 (\#'s fish)				
Region	Model	MRIP	\% error	Abs. error	
MA-NY	953,868	919,994	3.68	33,874	
NJ	$1,038,184$	$1,108,158$	-6.31	$-69,974$	
DE-NC	240,562	355,076	-32.25	$-114,514$	
Coast-wide total	$2,232,615$	$2,383,228$	-6.32	$-150,613$	
	SF releases in 2019 (\#'s fish)				
Region	Model		MRIP		
MA-NY	$11,017,793$	$11,610,978$	-5.11	$-593,185$	
NJ	$12,615,577$	$13,068,170$	-3.46	$-452,593$	
DE-NC	$2,899,656$	$3,680,415^{*}$	-21.21	$-780,759$	
Coast-wide total	$26,533,025$	$28,359,563$	-6.44	$-1,826,538$	

*Two intercepted trips in VA, reportedly rec. fishing while actively tagging as part of tagging program, each released 100 fish which translates to 932,196 fish released

Implementation model - calibration statistics

	SF harvest in 2019 (\#'s fish)			
Region	Model	MRIP	\% error	Abs. error
MA-NY	953,868	919,994	3.68	33,874
NJ	$1,038,184$	$1,108,158$	-6.31	$-69,974$
DE-NC	240,562	355,076	-32.25	$-114,514$
Coast-wide total	$2,232,615$	$2,383,228$	-6.32	$-150,613$
	SF releases in 2019 (\#'s fish)			
	Model		MRIP	
Region	\% error	Abs. error		
MA-NY	$11,017,793$	$11,610,978$	-5.11	$-593,185$
NJ	$12,615,577$	$13,068,170$	-3.46	$-452,593$
DE-NC	$2,899,656$	$\mathbf{2 , 7 4 8 , 2 1 9}$	$\mathbf{5 . 5 1}$	$\mathbf{1 5 1 , 4 3 7}$
Coast-wide total	$\mathbf{2 6 , 5 3 3 , 0 2 5}$	$\mathbf{2 7 , 4 2 7 , 3 6 7}$	$\mathbf{- 3 . 2 6}$	$\mathbf{- 8 9 4 , 3 4 1}$

Combining implementation and operating model

- Implementation model output (rec. fishing mortality-at-length) will feed into the operating model, allowing for growth and recruitment effects over a given time horizon
- Can impose and predict the outcome of a variety of management measures (slot, minimum size limits, bag limits)
- Currently working on integrating the implementation with the operating model

Thank you!

Questions?

Fishery simulation - data

- Catch-per-trip distributions based on MRIP data

Figure 3. Detail of lower tail of 2019 catch-per-trip probability distributions. Distributions for scup, weakfish, and red drum not shown.

Fishery simulation - data

- Catch-at-length distributions (used for calibration) based on MRIP data

Figure 4. 2019 catch-at-length probability distributions. Distributions for scup, weakfish, and red drum not shown.

Mean parameters	ME-NY		NJ		$\mathrm{DE} / \mathrm{MD}$		VA/NC	
	Estimate	St. Error						
trip cost	-0.012***	0.000	-0.009***	0.000	-0.009***	0.000	-0.008***	0.000
$\sqrt{\text { SF kept }}$	$0.559^{+* *}$	0.063	$0.762^{\text {*** }}$	0.067	0.807**	0.051	$0.521{ }^{+\infty}$	0.033
$\sqrt{\text { SF released }}$	-0.061	0.046	0.013	0.043	0.040	0.034	$0.108^{* * *}$	0.022
$\sqrt{\text { BSB kept }}$	$0.275^{+* *}$	0.034	$0.174^{* *}$	0.034	0.239***	0.027	$0.192^{* * *}$	0.019
$\sqrt{\text { BSB released }}$	-0.021	0.024	0.015	0.025	-0.011	0.020	0.020	0.013
$\sqrt{\text { scup kept }}$	$0.075^{+* *}$	0.021	$0.097^{* * *}$	0.021				
$\sqrt{\text { scup released }}$	-0.010	0.015	-0.039**	0.016				
$\sqrt{\text { WF kept }}$			$0.394 * *$	0.056	0.379**	0.045	$0.231^{* * *}$	0.032
$\sqrt{\text { WF released }}$			$0.093^{* *}$	0.044	0.064^{*}	0.036	0.030	0.024
$\sqrt{\text { RD kept }}$							$0.454^{+* *}$	0.040
$\sqrt{\mathrm{RD} \text { released }}$							$0.081^{* * *}$	0.025
do not fish	-2.641^{++*}	0.252	$-2.095^{* * *}$	0.288	$-2.963 * * *$	0.259	$-3.908 * *$	0.259
fish for other species	$1.429^{* * *}$	0.181	$1.139^{* * *}$	0.208	$0.645^{* * *}$	0.159	$0.454^{* * *}$	0.121
St. dev. parameters								
$\sqrt{\text { SF kept }}$	$0.678^{+* *}$	0.081	$0.677^{* * *}$	0.081	$0.599^{* * *}$	0.065	$0.464^{+* *}$	0.044
$\sqrt{\text { SF released }}$	$0.336{ }^{+* *}$	0.064	$0.181^{* *}$	0.088	$0.317^{* * *}$	0.049	$0.221^{* * *}$	0.036
$\sqrt{\text { BSB kept }}$	$0.261+*$	0.043	$0.334^{* *}$	0.045	$0.287^{* * *}$	0.039	$0.200^{* * *}$	0.032
$\sqrt{\text { BSB released }}$	0.087	0.063	0.012	0.080	$0.160^{* * *}$	0.027	$0.131^{* * *}$	0.023
$\sqrt{\text { scup kept }}$	$0.143^{+* *}$	0.039	$0.113^{* *}$	0.045				
$\sqrt{\text { scup released }}$	0.014	0.067	$0.117^{* * *}$	0.022				
$\sqrt{\text { WF kept }}$			0.199^{*}	0.114	$0.381^{* * *}$	0.066	$0.393 * * *$	0.048
$\sqrt{\text { WF released }}$			$0.278{ }^{* * *}$	0.062	$0.227^{* * *}$	0.067	0.146^{+*}	0.057
$\sqrt{\text { RD kept }}$							$0.601^{* * *}$	0.059
$\sqrt{R D \text { released }}$							$0.356{ }^{+* *}$	0.035
do not fish	$2.554^{+* *}$	0.221	$2.394^{* * *}$	0.214	$2.448^{* * *}$	0.214	$2.918^{* * *}$	0.206
fish for other species	1.920 ***	0.135	$1.832^{* * *}$	0.142	1.900***	0.127	$1.991^{* * *}$	0.096
No. choices	3460		2768		4514		8340	
No. anglers	449		359		594		1072	
Pseudo R^{2}	0.332		0.274		0.323		0.307	
LL	-3203.6		-2785.2		-4236.5		-8010.3	
LL(0)	-4796.6		-3837.3		-6257.7		-11561.7	
AIC	6441.1		5612.3		8506.9		16062.6	
BIC	6569.2		5765.9		8639.6		16239.4	

Mean parameters	ME-NY	
	Estimate	St. Error
trip cost	-0.012 ${ }^{\text {+** }}$	0.000
$\sqrt{\text { SF kept }}$	$0.559^{+\cdots}$	0.063
$\sqrt{\text { SF released }}$	-0.061	0.046
$\sqrt{\text { BSB kept }}$	$0.275^{+\cdots}$	0.034
$\sqrt{\text { BSB released }}$	-0.021	0.024
$\sqrt{\text { scup kept }}$	$0.075^{+\cdots}$	0.021
$\sqrt{\text { scup released }}$	-0.010	0.015
do not fish	$-2.641^{\ldots+}$	0.252
fish for other species	$1.429^{* * *}$	0.181
St. dev. parameters		
$\sqrt{\text { SF kept }}$	$0.678^{+\cdots}$	0.081
$\sqrt{\text { SF released }}$	$0.336^{+\cdots}$	0.064
$\sqrt{\text { BSB kept }}$	$0.261^{\text {+** }}$	0.043
$\sqrt{\text { BSB released }}$	0.087	0.063
$\sqrt{\text { scup kept }}$	$0.143^{+\cdots}$	0.039
$\sqrt{\text { scup released }}$	0.014	0.067
$\sqrt{\text { WF kept }}$		
$\sqrt{\text { WF released }}$		
$\sqrt{\text { RD kept }}$		
$\sqrt{R D \text { released }}$		
do not fish	$2.554^{+\cdots}$	0.221
species	$1.920^{+\ldots+}$	0.135
No. choices	3460	
No. anglers	449	
Pseudo R^{2}	0.332	
LL	-3203.6	
LL(0)	-4796.6	
AIC	6441.1	
BIC	6569.2	

Regulations for 2019 (baseline year)

State	Period	Dates	Fluke regs.	BSB regs.	Scup regs.	Weakfish Regs.	Red drum regs.
MA	1	Jan 1. - May 17	closed	closed	30 fish, 9"	N/A	N/A
MA	2	May 18 - Sep. 8	5 fish, 17"	5 fish, 15"	50 fish, 9"	N/A	N/A
MA	3	Sep. 9 - Oct. 9	5 fish, 17"	closed	30 fish, 9"	N/A	N/A
MA	4	Oct. 10 - Dec 31	closed	closed	30 fish, 9"	N/A	N/A
NJ	1	Jan. 1 - May 14	closed	closed	50 fish, 9"	1 fish, 13"	N/A
NJ	2	May 15 - June 30	3 fish, 18"	10 fish, 12.5"	50 fish, 9 "	1 fish, 13"	N/A
NJ	3	July 1-Aug. 31	3 fish, 18"	2 fish, 12.5"	50 fish, 9 "	1 fish, 13"	N/A
NJ	4	Sep. 1-Sep. 30	3 fish, 18"	closed	50 fish, 9 "	1 fish, 13"	N/A
NJ	5	Oct. 1-Oct. 31	closed	10 fish, 12.5"	50 fish, 9"	1 fish, 13"	N/A
NJ	6	Nov. 1 - Dec. 31	closed	15 fish, 13"	50 fish, 9 "	1 fish, 13"	N/A

[^0]: ${ }^{1}$ Lee, M., S. Steinback, and K. Wallmo. 2017. "Applying a Bioeconomic Model to Recreational Fisheries Management: Groundfish in the Northeast United States." Marine Resource Economics 32 (2): 191-216.

