NTAP 2022 Restrictor Rope Experiment Data Exploration

VIMS/NEFSC

12/5/2022

Many efforts coordinating and performing field work

- Captain, crew from F/V Darana R
- VIMS staff
- RI DEM staff
- ROSA staff
- NEFSC staff

VIRGINIA INSTITUTE OF MARINE SCIENCE

Summary of objectives

- Conducted paired tows on the F/V Darana R
- Evaluate catch data and gear performance
- Key metrics
 - Net width
 - Net height
 - Door width
 - Aggregate weights
 - Length specific counts

Summary of 2022 research sampling

- Two sampling periods
 - Spring (5/30 6/6)
 - Fall (9/15 9/22)
- Completed 142 paired tows (71 pairs)
 - Depths between 60 ft and 200 ft
 - Sampling all in Block/Rhode Island Sounds
 - A few logistic challenges (hangs/weather) but very limited impact
 - 20 minute tows less than ¼ mile (~400 m) apart
 - Order of treatment varied (AB then BA)
- Samples processed using VIMS software and processing protocols
 - Individual lengths for all except the most common catch items
 - Weight based subsampling for most common/species
- Net performance measured with Simrad net mensuration system

Paired tow spacing

- Excellent job by F/V Darana R!
- Only three tows (2%) where mean distance is > 400 m
- Some tows appear to cross at various points (~40)
- Tow tracks could be slightly different than what was recorded (some GPS wobble)

Mean distance

Gear metrics

Gear metric thoughts

- There is a treatment effect on net performance
 - Net width is reduced and door width is reduced with restrictor rope
- Still working through whether variation generally is reduced with the restrictor rope
 - Need more input and discussion on this

Comparing catches in paired tows

- 1. Investigating species prevalences and research objectives
- 2. Looking at aggregate catch (total weight by species) with and without the restrictor
- 3. Fit linear model to test for significant differences in aggregate catches

Plotting catches in two dimensions

- No clear effect of restrictor
- Some effect of season
- Differences between seasons relate to spiny dogfish and fluke

Prevalence of different species in tows

Species focus for analysis

- Focus of this work was on roundfish, most likely to be impacted
- In previous experiments focused on flatfish we narrowed scope down to the most commonly encountered species
- Scup, butterfish, and silver hake the roundfish most commonly encountered in the experiment
- Others less commonly caught, might be difficult to draw conclusions about

Aggregate catches

- Again, tows without restrictor (each pair is a point)
- Would expect 1:1 if **no** effect of the restrictor
- Weights transformed
- log10 transformed weights
 - Mean 10% of mean weight added to zero catches
- Cubic root transformation gives similar results

Without restrictor

Aggregate catches

• Linear models suggest that there is no significant difference for these three species

> model <- lmer(Y ~ 1 + N * COMMON + SEASON + (1|PAIR), data = mod_data) > summ(model) MODEL INFO: Observations: 1136 Dependent Variable: Y Type: Mixed effects linear regression MODEL FIT: AIC = 2257.59, BIC = 2353.26 $Pseudo-R^2$ (fixed effects) = 0.79 $Pseudo-R^2$ (total) = 0.82 FIXED EFFECTS: Est. S.E. t val. d.f. n 0.12 1.72 811.97 0.09 (Intercept) 0.20 N 0.95 0.06 15.56 1108.58 0.00 COMMONsummer flounder 0.32 0.17 1.86 1092.50 0.06 COMMONsmooth doafish 1099.01 0.69 0.16 4.35 0.00 COMMONsilver hake 0.14 0.34 0.73 0.05 1085.19 COMMONscup 0.01 0.15 0.05 1092.34 0.96 COMMONlonafin inshore 0.20 0.96 4.89 1095.29 0.00 sauid COMMONlittle skate 0.18 0.43 2.37 1076.41 0.02 COMMONbutterfish 0.16 2.25 1097.74 0.35 0.02 SEASONSpring -0.18 0.07 -2.64 77.40 0.01 N:COMMONsummer flounder -0.26 0.10 -2.58 1098.87 0.01 N:COMMONsmooth dogfish -0.37 0.08 -4.62 1106.98 0.00 N:COMMONsilver hake -0.10 0.08 -1.27 1094.61 0.20 N:COMMONscup -0.02 0.07 -0.24 1102.85 0.81 N:COMMONlonafin inshore -0.270.08 -3.28 1102.84 0.00 sauid N:COMMON]ittle skate -0.180.08 -2.21 0.03 1078.41 N:COMMONbutterfish -0.06 0.07 -0.90 1107.29 0.37 -----

Aggregate weight thoughts

- Close to 1:1 when regressing catches without and catches with the restrictor rope
- No significant effects in the model we fit
- Suggests no detectable effect of the restrictor rope

Comparing catch in paired tows

- 1. Investigating species prevalences and research objectives
- 2. Looking at aggregate catch (total weight by species) with and without the restrictor
- 3. Fit linear model to test for significant differences in aggregate catches
- 4. Explored individual lengths for three of the most common roundfish species
- 5. Also fit statistical models to individual length data to test for statistical effects of the restrictor rope

Individual lengths

• Fit linear mixed models then generalized additive models

Individual lengths: Scup

> summ(length_mod_bi_5) MODEL INFO: Observations: 1612 Dependent Variable: cbind(Y, N) Type: Mixed effects generalized linear regression Error Distribution: binomial Link function: logit

MODEL FIT:

AIC = 3897242.32, BIC = 3897285.40 Pseudo-R^a (fixed effects) = 0.03 Pseudo-R^a (total) = 0.82

FIXED EFFECTS:

	Est.	S.E.	z val.	р
(Intercept)	-5.78	1.36	-4.24	0.00
LENGTH	-0.13	0.11	-1.15	0.25
DepthEnd	0.61	0.16	3.84	0.00
ORDERYN	0.35	0.62	0.56	0.57
SEASONS	-0.24	0.65	-0.37	0.71

RANDOM EFFECTS:

Group	Parameter	Std.	Dev.	
PAIR	(Intercept)	11.91		
PAIR	PAIR LENGTH		0.99	

- Linear mixed binomial models for scup
- No effect of length, order, or season
- Small positive effect of depth

Individual lengths: Scup

- Quasibinomial GAM models for scup
- Results of model are no effects of depth, order, season, or length

Individual lengths: Butterfish

> summ(length_mod_bi_5) MODEL INFO: Observations: 1500 Dependent Variable: cbind(Y, N) Type: Mixed effects generalized linear regression Error Distribution: binomial Link function: logit

MODEL FIT:

AIC = 7706354.00, BIC = 7706396.51 Pseudo-R² (fixed effects) = 0.01 Pseudo-R² (total) = 0.86

FIXED EFFECTS:

	Est.	S.E.	z val.	р		
(Intercept)	5.52	1.13	4.87	0.00		
LENGTH	0.02	0.14	0.14	0.89		
DepthEnd	-0.53	0.13	-3.98	0.00		
ORDERYN	0.14	0.50	0.27	0.79		
SEASONS	-0.07	0.55	-0.13	0.89		

RANDOM EFFECTS:

Group	Parameter	Std. Dev.	
PAIR	(Intercept)	9.79	
PAIR LENGTH		1.19	

- Linear mixed binomial models for butterfish
- No effect of length, order, or season
- Small negative effect of depth (decreasing catches with in R set)

Individual lengths: Butterfish

• No effect of season, length, depth, or order

• 1

Family: quas Link functio	ibinomial on: logit				
Formula: cbind(Y, N) s(DepthE s(LENGTH	~ s(LENGTH, ind, bs = "c 1, bs = "cr"	PAIR, bs r") + s(P/)	= "fs") AIR, bs	+ ORDER = "re")	+ SEASON +
Parametric c	oefficients	: d Ernor i	t value	Dr (> 1+1)	
(Tates and)	estimate st	0. 22010	o and	0 770	
(Intercept)	0.09555	0.33918	0.281	0.779	
ORDERYN	0.08001	0.39389	0.203	0.839	
SEASONS	0.01418	0.41259	0.034	0.973	
Approximate	significand	e of smoot	th terms	:	
	ed	f Ref.df	F	p-value	
s(LENGTH, PAI	R) 230.7628	5 652.000	11.570	<2e-16	***
s(DepthEnd)	2.4676	9 2.571	1.929	0.2893	
(0170)	0.0000	0 00 000	0 004		1 10 m

S(Depthenu)	2.40/0	2.3/1	1.929	0.2093		
s(PAIR)	0.08169	9 66.000	0.001	<2e-16	222	
s(LENGTH)	6.4481	6.910	1.701	0.0931	12	
Signif. codes:	0 '***'	0.001 '**	' 0.01	'÷' 0.0	5'.'	0.1

R-sq.(adj) = 0.919 Deviance explained = 91.9% GCV = 3670.7 Scale est. = 2673.5 n = 1500

Individual lengths: Silver hake

- Linear mixed binomial models for silver hake
- No effect of length, order, depth, or season

Individual lengths: Silver hake

Quasibinomial GAM models for silver hake

0

11.0

DenthEn

11.5 12.0 12.5

• Effect of order and depth

Individual lengths thoughts

- GLMMs: Small effects of depth (pos for scup and neg for butterfish) on catches, but otherwise no detectable effects
- GAMs: Some hints at non-linearity, but difficult to assess. Potential effect of depth and order in silver hake
- No consistent effects across GAMs and GLMMs
- Suggests limit (or no) effect of restrictor rope on catches at length for the species examined
- Possible that small effects were not detected because of noise/sample sizes (similar to wingspread study)

Overall summary

Gear comparison

- Some effect on net width and door width
 - Wider without restrictor
- Potential effect on net height
 - More work needed to look at variability

Aggregate weights

 No (or very subtle) effect on three focal species: butterfish, scup, or silver hake Individual lengths

- GLMMs: Small effects of depth on catches, but otherwise no detectable effects
- GAMs: Some hints at non-linearity, but difficult to assess. Potential effect of depth and order in silver hake
- No consistent effects across GAMs and GLMMs

Questions?

- Other species to include?
- Other ways to explore the data?
- Other modeling techniques to consider?
- Future direction for this research?
- Sufficient information for a publication?

Results:

- Ordination to look at gear variation among stations
- Unique gear performance of tows with and without restrictor

Results:

-2 -1 0 1 Theoretical Quantiles

Other plots/results to include?

Other plots/results to include?

