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Summary

1. Accumulating evidence suggests that the average body size of many organisms is declining
in response to climate warming. This phenomenon has been suggested to represent a universal
response to warming that may impose significant adverse effects on ecosystem functioning and
services.

2. However, we do not have a thorough understanding of why body sizes are commonly
declining, and why some organisms show the opposite response. Because ectotherms constitute
the vast majority of organism biomass and about 99% of species worldwide, it is particularly
important to understand how ectotherms respond to a warming climate.

3. This review discusses the underlying physiological mechanisms of changes in ectotherm
body size and addresses observed responses within a broad ecological context at different levels
of organization, from individuals to communities, particularly in aquatic systems.

4. Warming-induced responses in average body size are not only determined by changes in
rates of individual growth and development, but also mediated through size-dependent feed-
backs at the population level, as well as competitive and predatory interactions within the
community. Emergent properties at higher organizational levels have already been observed in
both experimental and natural systems.

5. Various approaches will be required for enhancing our knowledge about the importance of
such processes in natural systems. These include controlled semi-natural experiments and phy-
logenetic comparisons as well as statistical models of time-series data and theoretical models
linking climate effects at the individual, population and community levels.

6. Understanding causes of observed changes in organism body sizes and how these depend on
the ecological context is essential for improving our predictions and the management of

ecosystems in the face of a warming climate.
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Introduction

Climate warming affects virtually all ecosystems world-
wide. Global mean temperatures and the frequency of
extreme temperature events are predicted to increase
within the twenty-first century (Meehl & Tebaldi 2004;
IPCC 2007). Although climate change occurs naturally
over time, contemporary rates of warming are unprece-
dented and believed to have severe impacts on many biota
(Parmesan 2006; IPCC 2007). The best-known and most
studied ecological responses to climate warming are shifts
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in species’ distribution ranges (Parmesan & Yohe 2003;
Root er al. 2003; Perry er al. 2005) and changes in phenol-
ogy (Stenseth er al. 2002; Walther er a/. 2002; Durant
et al. 2007). Recently, warming-induced declines in mean
body size have been reported in a number of organisms
(Gardner et al. 2011; Sheridan & Bickford 2011) and have
been suggested to represent a third universal response to
global warming (Gardner er al. 2011). However, we do not
have a thorough understanding of why this trend prevails.
Thus far, research within the field has remained largely
descriptive without considering the interplay between phys-
iological mechanisms and the broader ecological context.
A better understanding of the causes of observed changes
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in mean body sizes in response to climate warming is
required to enable predictions about the future and
improve our management of natural systems in the face of
rapid climate change. This review highlights that observed
changes in mean body size emerge at different levels of bio-
logical organization and that warming may cause such
responses through different mechanisms.

Smaller mean body sizes in response to contemporary
climate warming have been reported for a number of
organisms in both aquatic and terrestrial environments
(Gardner ef al. 2011; Sheridan & Bickford 2011), including
crustaceans (Moore & Folt 1993), fishes (Todd et al. 2008;
Genner e al. 2010; Cheung et al. 2013), amphibians
(Reading 2007), birds and mammals (Yom-Tov & Geffen
2011). These size shifts have been observed at different lev-
els of biological organization, from individuals to commu-
nities (Millien er al. 2006; Daufresne, Lengfellner &
Sommer 2009; O’Gorman et al. 2012). Besides studies link-
ing observed declines in body size to current climate
trends, circumstantial evidence inferred from paleontologi-
cal studies, geographic comparisons, or experiments sug-
gests that warmer temperatures are associated with smaller
body sizes. For instance, paleontological records and trace
fossils of invertebrates indicate reductions in body sizes
during past periods of warming (Hunt & Roy 2006) and
larger sizes during periods of climate cooling (Smith er al.
2009). Second, organisms in colder climates tend to be lar-
ger than their counterparts at lower latitudes, both across
species and across populations of the same species (Berg-
mann 1847; James 1970). However, the opposite trend of
increasing body size associated with climate warming has
also been reported, for instance in marine fishes (Thresher
et al. 2007), and in lizards (Chamaille-Jammes ez al. 2006),
and even phylogenetically similar species within the same
habitat may show opposite trends in response to warming
(O’'Gorman ef al. 2012).

Negative effects of increased temperature on organism
body size have been observed in ecotherms as well as endo-
therms, but the mechanisms through which temperature
affects individual physiology and body size differ funda-
mentally between the two groups. The body temperature
of ectotherms closely tracks that of their immediate sur-
rounding whereas endotherms maintain a constantly high
core temperature. Because ectotherms constitute the vast
majority of organism biomass and about 99% of all spe-
cies worldwide (Wilson 1992; Atkinson & Sibly 1997), it is
of particular importance to understand how ectotherms
respond to a warming climate. This review discusses tem-
perature effects on individual growth and development of
ectothermic metazoans, with a focus on aquatic systems
and particularly fish, and it highlights how these effects are
modified by population feedbacks, community interactions
and the potential for evolutionary change. The goal of the
study 1s to provide a better understanding of the mecha-
nisms underlying observed changes in mean organism
body sizes across ecosystems, and to stimulate further
research.

From individual physiology to community
ecology

INDIVIDUAL GROWTH AND DEVELOPMENT

Climate warming affects an organism’s growth and devel-
opment, and ultimately body size, through direct effects of
temperature on biochemical reactions, which are integral
to energetic processes such as metabolism and resource
acquisition. Biochemical reaction rates increase steadily
with temperature up to an optimum and rapidly decrease
thereafter, resulting in an asymmetric thermal sensitivity
curve (Hochachka & Somero 2002; Angilletta 2009). The
thermal sensitivity of biochemical reaction rates implies
that trade-offs exist between performance at high and low
temperatures, and that thermal specialization comes at
the cost of reduced performance at other temperatures
(Angilletta 2009). These thermal constrains lead to similar
asymmetric temperature sensitivity curves at higher organi-
zational levels, from cellular functions to whole-organism
performances such as growth (Angilletta 2009; Kingsolver
2009).

Thermal performance curves, which describe the varia-
tion in fitness-related traits across a range of temperatures,
can theoretically be used to assess an organisms’ sensitivity
to rising temperatures (Fig. 1). The direction and magni-
tude of an organisms’ response to climate warming, for
instance in growth rate, is determined by the thermal opti-
mum relative to the actually experienced environmental
temperature. Currently lower than optimal temperatures
thus imply positive effects of warming, while currently
optimal or higher than optimal temperatures imply nega-
tive effects of increasing temperatures on individual growth
performance. Hence, higher temperatures can lead to faster
or slower growth, depending on the optimal temperature
range relative to current conditions (Fig, la), and the mag-
nitude of climate warming (Fig. 1b). Importantly, the ther-
mal sensitivity is further modified by acclimatory processes
in response to changing environmental conditions, that is,
phenotypic plasticity. Ectotherms acclimate by adjusting
their biochemical composition and physiological rates,
thereby favouring the maintenance of function and capac-
ity at the acclimation temperature, but not necessarily at
other temperatures (Guderley 2004). Short-term exposure
to very high or low temperatures (heat or cold shock) usu-
ally causes increased tolerance to acute thermal extremes,
whereas long-term exposure to moderate temperatures can
induce sustained changes in thermal sensitivity (Huey e al.
1999; Angilletta 2009). For instance, seasonal changes in
environmental temperature may lead to acclimatory
responses that enhance performance under seasonal condi-
tions (Packard, Packard & McDaniel 2001; Guderley
2004). The potential for acclimation thus influences an
organisms’ response to climate warming.

Within the range of non-extreme temperatures that
allow an organism to develop and reach maturity but do
not lead to a decline in growth rate, the thermal reaction

© 2013 The Author. Functional Ecology © 2013 British Ecological Society, Functional Ecology



(a)

L J

Performance

Temperature

Fig. 1. The concept of thermal performance curves illustrates the
impact of climate warming on the growth capacity of ectotherms:
(a) climate warming is expected to increase growth capacity for
organisms currently experiencing lower than optimal tempera-
tures, but decrease growth capacity for those experiencing close to
optimal temperatures; (b) while moderate warming may increase
growth performance, severe temperature increases lead to a reduc-
tion in growth in the absence of adaptation; (c) because optimal
temperatures are lower when food is limiting, positive effects on
growth may be compromised by reduced food availability; (d)
thermal optima often differ between life stages, resulting in differ-
ent responses in growth performance to rising temperatures,

norm of most ectotherms is well described by the tempera-
ture-size rule (TSR) (Atkinson 1994). The TSR describes
an organisms’ phenotypic response to the thermal environ-
ment during ontogeny: higher temperatures increase
growth rate (increase in somatic mass) and development
rate (differentiation from egg to adult), but decrease adult
body size. The consequence of temperature change is
therefore a shift in size-at-age, not ‘body size’ per se, and
the observed response depends on when during ontogeny
body size is measured (Berrigan & Charnov 1994) (Fig. 2).
Size-at-stage (e.g. size-at-maturity) may thus be the most

Climate warming and ectotherm body size 3

useful measure when determining an organisms’ response
to changing thermal conditions. Although the opposite
trend of larger adult size at higher temperatures seems to
be the exception, it has been described for some organisms,
particularly species in seasonal environments that experi-
ence strong constraints on their life cycles (Chown & Klok
2003). Furthermore, at extreme temperatures, growth is
usually impaired by insufficient energy or oxygen supply,
which decreases growth and body size at any developmen-
tal stage and may thus lead to a reverse temperature-size
relationship (Portner 2002).

The proximate reason for smaller adult body size at
warm temperature is a decrease in cell size, a decrease in
cell number, or a combination thereof (Partridge et al.
1994; James, Azevedo & Partridge 1995). It has been
suggested that the TSR is caused by different tempera-
ture sensitivities for cell growth and cell division (van der
Have & de Jong 1996). Observed responses to tempera-
ture, including both the TSR and the reverse trend,
could in fact be mediated by any combination of varia-
tion in cell size and/or cell number (Zuo er . 2012). In
line with theory, empirical work suggests that ectotherms
show different thermal dependences of growth and devel-
opment [e.g. crustaceans (Forster, Hirst & Woodward
2011), insects (Davidowitz & Nijhout 2004)] and that
temperature can affect the age at maturation (develop-
ment time) independently of growth [e.g. fishes: Kupari-
nen et al. (2011)]. Although the ultimate causation might
be an adaptive advantage of smaller body size at higher
temperatures (Kozowski, Czarnoleski & Danko 2004),
differences in body size are realized through cell growth
and division, and these two processes do not necessarily
show the same temperature dependence. It is thus crucial
to determine how rates of growth and development con-
tribute to changes in size-at-age across thermal gradients
(Fig. 2).

Size
T

Age

Fig. 2. Conceptual illustration of the impact of climate warming
on individual body size via differential effects of temperature on
rates of growth and development. Size at a given life-history tran-
sition such as maturation, increases due to faster growth (orange/
grey open circle), decreases due to faster development (brown/
black open circle), and is ultimately determined by the relative
importance of the two processes (orange/grey filled circle).
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POPULATION FEEDBACKS AND COMMUNITY
INTERACTIONS

The impact of climate warming on individual development
and growth may translate into changes in mean body size
al the population level either as a direct consequence of
decreased size-at-age of the individuals (‘size-at-age shift’)
or through changes in the relative abundances of different
age-classes or life-stages within the population (‘structure
shift™). Such changes also lead to a shift in the mean size of
the community if they occur consistently across popula-
tions, for instance through indirect effects on interacting
species. In addition, climate warming may alter the mean
body size within the community through a shift in the rela-
tive abundances of differently sized species (‘compesition
shift’), including extinction and migration (Fig. 3) (Dau-
fresne, Lengfellner & Sommer 2009). These shifts can be
mediated by various mechanisms, including density-depen-
dent growth, size-dependent survival, asymmetric competi-
tion between size-classes and size-selective predation
(Fig. 4).

Field studies have shown that the interplay between tem-
perature and population density can alter the impact of cli-
mate warming on ectotherm growth and body size. The
body size response to temperature depends on population
density, because higher individual growth capacity only
translates into increased growth rate when sufficient
resources are available to fuel increasing metabolic
demands, which increase roughly exponentially with tem-
perature (Gillooly et al. 2001). Accordingly, experimental
studies have demonstrated that the optimum temperature
for growth is lower when food is scarce compared to
unlimited food supply (Fig. lc) (Elliott & Hurley 2000).
Increased temperature may therefore affect individual bio-
mass in opposite ways, resulting in lower body weight in

Size-at-age | Structure
shift shift

Composition
shift

Community
level

Population
level

Individual
level

Fig. 3. Changes in average body size occur at different levels of
organization (individuals, populations and communities). Declin-
ing body sizes may result from a decreased size-at-age of individu-
als (“size-at-age shift’), an increased proportion of smaller/younger
individuals (structure shift’), and/or a higher abundance of small-
bodied species (*composition shift”).

the absence and higher body weight in the presence of
food (Brodersen er af. 2011). In fact, the growth rate of
multiple populations of Chinook salmon (Oncorhynchus
tshawytscha) was found to increase with temperature at
low population densities, but decrease at high densities
(Crozier er al. 2010). Similarly, reductions in body size at
high population densities have been reported for Atlantic
cod (Gadus morhua) (Rogers et al. 2011). Climate effects
on early life stages, including temperature-induced increases
in growth rate, may further be attenuated through density
dependence later in life (Stige er @/, 2010). These ‘contem-
porary’ observations are supported by long-term catch
records of Atlantic salmon (Sa/mo salar) showing that
warm temperature regimes in the past were associated with
larger size and low abundance, whereas cold climates
were characterized by the opposite pattern (Huusko &
Hyvirinen 2012).

Temperature further influences the outcome of intraspe-
cific competition between size-classes that differ in thermal
sensitivities. The relative competitive abilities of differently
sized individuals largely depend on the size scaling of phys-
iological rates, specifically metabolism and consumption,
and size scaling relationships themselves may depend on
temperature (Strong & Daborn 1980; Persson er al. 1998;
Ohlberger er al. 2012). Increasing temperatures may there-
fore shift the population size distribution towards smaller
individuals if these have higher thermal optima and are
better competitors for shared resources (Fig. 1d) (Ohlber-
ger ef al. 2011), as suggested by higher optimum tempera-
tures for growth in juveniles compared to adults (Panov &
McQueen 1998; Bjornsson & Steinarsson 2002).

Climate warming may affect the population size structure
through life-stage-specific responses in survival probability,
because thermal limits typically differ between life stages of
an organism [e.g. insects: (Kingsolver et al. 2011); fishes:
(Peck er al. 2009)]. For instance, thermal tolerance win-
dows of fish tend to be narrow in early life stages due to
developmental constraints, widen out for juveniles and
young adults as performance capacity increases, and nar-
row down again in larger and particularly in reproducing
individuals due to the rapidly increasing energy demand for
reproductive tissue (Portner & Farrell 2008; Peck er al.
2009; Righton et al. 2010). Accordingly, heat stress due to
extreme summer temperatures in a population of eelpout
(Zoarces viviparous) in the southern North Sea caused a
selective loss of large individuals and limited the remaining
individuals to a location-specific maximum body size
(Portner & Knust 2007). Similarly, an analysis of 14 marine
invertebrate species revealed that smaller individuals sur-
vived at higher temperatures than larger conspecifics in
acute temperature treatments, suggesting that juveniles
cope better with warming than larger, older individuals
(Peck et al. 2009). Organisms may also experience different
degrees of warming if they display ontogenetic shifts in
habitat use associated with changes in nutritional and/or
thermal conditions (Schreiber & Rudolf 2008; Kingsolver
et al. 2011). Importantly, the combined effects of
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Direct
effects

Fig. 4. Mechanisms through which climate
warming may affect mean organism body
size. Warming directly affects rates of indi-
vidual growth and development and thus
body size (brown/black pathway). Individ-

uals also compete for resources, experience '";if&
effects

size-dependent survival and dispersal, and
interact with other species in the commu-
nity through competition and predation, all
of which may depend on temperature as
well (orange/grey pathway).

temperature on rates of growth, fecundity and/or survival
may alter population size structure in complex ways. For
instance, while higher growth rates may translate into lar-
ger body sizes at maturation and thus higher fecundity,
negative effects of warming on juvenile survival may out-
weigh these positive effects on individual growth and repro-
ductive output, as suggested for Atlantic salmon (Friedland
& Todd 2012). Furthermore, changes in population age- or
size structure can be mediated through shifts in the timing
of seasonal events (Sebastian et al. 2012). Finally, size-spe-
cific dispersal can lead to changes in size structure, because
the ability of individuals to disperse often depends on the
phenotype, and particularly body size (McCauley & Mabry
2011). The importance of life-stage-specific responses to cli-
mate warming is now increasingly recognized (Zeigler
2013). In conclusion, warming may strongly affect certain
life stages but not necessarily others, and small changes in
life-stage-specific survival (or dispersal) can severely aflect
population abundance and mean body size.

Changes in the size structure of populations, especially
top predators, may lead to cascading effects that drive the
response of entire food webs (Estes ef al. 2011). Popula-
tion size-structure determines how species are embedded in
their food web (Brose er al. 2012). Due to species-specific
thermal tolerance windows, warming differentially affects
the physiology of interacting species and thus their
responses at different trophic levels (Voigt er al. 2003;
Yvon-Durocher ef /. 2011). Warming therefore changes
the strength and dynamics of trophic interactions such as
predation and competition (Vasseur & McCann 2005;
Finstad et al. 2011; Lang, Rall & Brose 2012), as well as
trophic cascades (Kratina er af. 2012), and the timing of
these interactions via phenological shifts (Freitas er al.
2007). Rates of foraging, prey ingestion and handling,
which depend on environmental temperature, determine
the strength of competitive and predatory interactions
(Emmerson ef al. 2005; Englund er al. 2011: Rall et al.
2012), which are commonly size-based in many food webs
(Persson & de Roos 2007; Thierry et al. 2011). For exam-
ple, a warming-induced decline in the mean body size of
zooplankton populations reduced vulnerability to visually

Availability
of resourees
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feeding fish, but increased vulnerability to invertebrate pre-
dators, thereby affecting higher trophic levels in opposite
ways (Moore & Folt 1993), In summary, warming affects
the type and strength of species interactions in both aqua-
tic and terrestrial ecosystems, and has the potential to
modify trophic cascades, which in turn may cause
consistent changes in the size structure of communities.
Changes in community size structure due to shifts in rel-
ative species composition or species losses have also been
reported in a number of experimental studies (Petchey
et al. 1999; Dossena ef al. 2012), as well as natural eco-
systems (Strecker, Cobb & Vinebrooke 2004: Li er al.
2009: Woodward et al. 2010a). Especially for plankton
communities, warming 1s associated with increasing abun-
dances of smaller sized species or taxa in both freshwater
and marine ecosystems (Li ef al. 2009; Yvon-Durocher
et al. 2011; Taylor er al. 2012). Climate warming was fur-
ther shown to alter the community composition in geother-
mal streams, where brown trout (Salmo trutta) replaced
invertebrates as the top predators in warmer streams
(Woodward et al. 2010a). Smaller, faster growing organ-
isms also became dominant in warm compared to cold
experimental alpine ponds (Strecker, Cobb & Vinebrooke
2004). Furthermore, invasions of non-native species,
migrations of resident populations, and the spread of dis-
eases may change the size composition of communities
(Walther er al. 2002; Thomas et al. 2004; Ellis er al. 2011).
If community size spectra are largely determined by phylo-
genetic constraints and colonization history that are linked
to the species’ life histories, warming may induce regime
shifts that result in the reorganization of species assem-
blages once a thermal threshold is reached. Consequently,
size distributions of entire communities may show non-
linear responses to climate warming (Allen et al. 2006).

EVOLUTIONARY RESPONSES

An important question in the context of changes in mean
body size due to warming is whether these changes repre-
sent phenotypically plastic or genetic responses. Evolution-
ary responses could either alleviate or reinforce ecological
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changes in body size due to climate warming. It has been
suggested that differences in growth and adult size repre-
sent adaptive responses (o temperature with a fitness
advantage of being smaller in warmer environments
(Atkinson 1994: Kozowski, Czarnoleski & Danko 2004),
One explanation for the adaptiveness of changes in body
size with temperature is the optimal allocation of resources
to somatic vs. reproductive growth, assuming that organ-
isms are selected for maximum lifetime reproductive suc-
cess (Kozowski, Czarnoleski & Danko 2004). Optimal
rates of individual growth and development in a given
environment are determined by energetics in terms of
resource acquisition and metabolic demands as well as
size-dependent mortality. Thus, evolutionary responses in
growth and body size may result from temperature-depen-
dent mortality rates and/or changes in the thermal sensitiv-
ities of energy acquisition and metabolism (Kozowski,
Czarnoleski & Danko 2004). There is in fact evidence for
both mechanisms operating in nature (Strong & Daborn
1980; Belk & Houston 2002; Munch & Salinas 2009:
Ohlberger et al. 2012).

Evolution in growth and development rates in response
to contemporary climate warming is likely considering that
(1) thermal adaptation via changes in thermal performance
functions has been described for several organisms
(Portner 2002; Angilletta 2009), (ii) closely related species
commonly display variation in temperature-related physio-
logical traits as a result of past adaptation (Davis, Shaw &
Etterson 2005; Ohlberger er al. 2008), (iii) warming differ-
entially affects the survival of small versus large individuals
(Portner & Knust 2007; Peck et al. 2009), (iv) laboratory
experiments have demonstrated the evolution of growth
and development in response to selection on body size
(Partridge ef al. 1994; Teuschl, Reim & Blanckenhorn
2007) and (v) evolutionary responses can occur on time-
scales over which climate is expected to change (Yoshida
et al. 2003; Hairston ef al. 2005). Nevertheless, conclusive
evidence of genetic change in response to increasing tem-
perature 18 still rare for natural populations (Bradshaw &
Holzapfel 2006; Gienapp ef al. 2008), probably due to the
limited amount of data suitable for tests of changes in
allele frequencies in genes functionally linked to traits
under selection (Hoffmann & Sgro 2011).

GEOGRAPHY, SEASONALITY AND HABITATS

The effects of climate warming on the growth capacity
and body size of an organism also critically depend on its
geographic location. Within species that are distributed
over a wide latitudinal range, individuals at higher lati-
tudes commonly experience lower than optimal tempera-
tures, whereas those at lower latitudes experience average
temperatures closer to the upper thermal limit (Portner
2002; Righton et al. 2010). Accordingly, growth capacity
is expected to increase at high but decrease at low lati-
tudes relative to the species distribution range. However,
local adaptation of populations of the same species may

alleviate adverse effects on growth. For instance, different
stocks of cod are known to exhibit polymorphisms in
haemoglobin type (Righton er al. 2010) with different
thermal optima. Therefore, studies of single populations
within a limited geographic area may reflect location-
specific responses to climate warming.

Geographic ranges are further important in the context
of Bergmann’s rule, which originally described a positive
relationship between endotherm body size and latitude
(Bergmann 1847). The cause of this common relationship
was attributed to thermoregulation and optimization of
endotherm body size, stating that cold environments
favour larger size due to reduced mass-specific heat loss at
larger body volume-to-surface ratios. Only later was the
concept extended to intraspecific size clines (James 1970)
and to ectotherms (Atkinson 1994). The TSR, which
describes the phenotypic response of an organism during
ontogeny, has been associated with observed patterns of
latitudinal clines in ectotherm body sizes (Kingsolver &
Huey 2008). However, the mechanisms causing size clines
in endotherms cannot apply to ectotherms that are unable
to produce considerable metabolic heat. Furthermore, the
generality and adaptive significance of Bergmann’s rule
remain highly debated (Angilletta & Dunham 2003; King-
solver & Huey 2008; Stillwell 2010), and patterns of latitu-
dinal size clines cannot be used to ‘explain’ changes in
ectotherm body size in response to climate warming.

Across species, body size responses to temperature
changes also strongly depend on species-specific thermal
requirements (Pértner 2002). Especially cold-adapted polar
stenotherms that are restricled to narrow temperature
ranges appear most vulnerable to climate warming and will
likely experience reductions in growth performance
(Somero 2010). In contrast, eurythermal species, including
many temperate ectotherms, are capable of surviving over
wide ranges of temperature. Even though temperatures are
projected to rise faster in temperate compared to tropical
ecosystems (IPCC 2007), warming may have the most
severe effects on ectotherms in the tropics. The relative
increase in metabolic costs with temperature is greater in
warmer climates due to the exponential increase in meta-
bolic rate, and thermal windows tend to be narrower in
tropical compared to temperate environments due to lower
temperature variability (Deutsch ez al. 2008; Tewksbury,
Huey & Deutsch 2008). Tropical species typically have an
upper thermal limit for survival closer to the optimum
temperature than their temperate counterparts. Temperate
species have broader thermal tolerances and generally
experience climates with average temperatures below their
thermal optima [e.g. insects: Deutsch e al. (2008); lizards:
Huey et al. (2009)]. One possible explanation is that opti-
mal temperatures higher than those actually experienced
function as a safety margin in more variable climates
(Kingsolver 2009).

Because stronger temperature variation is associated
with wider thermal tolerances (Deutsch er al. 2008), and
because organisms in temperate regions commonly show
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seasonal shifts in thermal windows (Portner 2002), environ-
mental variability plays an important role in determining
the impact of warming on organism body size. Seasonality
also implies that the observed effects of climate warming
may depend on the season for which the growth response is
measured. Accordingly, contrasting effects of seasonal tem-
peratures on ectotherm body size have been reported in a
number of studies (Kari & Huey 2000; Rogers er al. 2011;
Sebastian e al. 2012). For instance, warm summer temper-
atures off the southern coast of Norway during the last cen-
tury have limited growth of juvenile Atlantic cod while
warmer springs have resulted in larger individuals (Rogers
et al. 2011). Furthermore, organism responses to climate
warming may dependent on regional patterns in climate
warming, and the increasing frequency of extreme events
(Helmuth er al. 2002; Hoffmann, Sorensen & Loeschcke
2003). Such extreme temperature events can increase mor-
tality rates and reduce growth capacity in specific years
(Mallet ez al. 1999) and may have the strongest impact on
terrestrial, coastal and shallow freshwater ecosystems.

In general, the mechanisms through which warming
affects ectotherm body size differ between aquatic and ter-
restrial environments. Oxygen limitation as determinant of
thermal tolerances is more important in water breathing
animals that experience lower levels of oxygen, slower oxy-
gen diffusion, as well as higher energetic costs of ventila-
tion and circulation. Accordingly, evidence that thermal
tolerance limits are set by limited oxygen supply to tissues
is strong for aquatic, but less conclusive for terrestrial
ectotherms (Portner 2002; Stevens ef al. 2010). The com-
bined effects of oxygen limitation and increasing tempera-
tures may thus lead to reductions in average body size
particularly in water-breathing ectotherms (Cheung et al.
2013). In fact, a recent meta-analysis found that reductions
in body size in response to warming are greater in aquatic
(freshwater and marine) than terrestrial species (Forster,
Hirst & Atkinson 2012). Because most terrestrial ecto-
therms experience stronger short-term variability in tem-
perature than aquatic/marine species due to the lower
thermal buffering, they use thermoregulation to maintain
body temperature within their tolerance range. In contrast,
aquatic ectotherms commonly show stronger thermal accli-
mation (Angilletta 2009), or migrate between shallow and
deep waters and thereby choose preferred thermal habitat
(Dulvy er al. 2008). Consequently, growth rates of aquatic
species in deeper habitats may be less affected by warming
than those in coastal or littoral habitats (Thresher er al.
2007), and changes in body size may depend on local
adaptation associated with fine-scale differences in habitat
use (Mehner, Emmrich & Kasprzak 2011).

CONSEQUENCES AND FUTURE ROADMAP

Shifts in organism body sizes or population size spectra can
have important consequences for ecosystem functioning
and thus the services ecosystems provide for humans
(Woodward er al. 2005; Petchey & Belgrano 2010). Body
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size is one of the most important traits determining individ-
ual performance and life history and is linked to population
stability, extinction risk and distribution patterns (Peters
1983; Calder 1984). Due to species-specific thermal require-
ments, interacting species respond differently to climate
warming, with direct implications for size-based competi-
tion and predation, especially between species with different
life-histories (Tylianakis ef al. 2008; Traill et al. 2010).
Shifts in size structure may further change the type and
strength of top-down or bottom-up control of ecosystems
(Brose er al. 2012; O’Gorman et al. 2012). Because food
web stability is tightly linked to the strength of species
interactions, such warming-induced imbalances may desta-
bilize the dynamics of food webs and affect ecosystem func-
tioning (Strecker, Cobb & Vinebrooke 2004; Emmerson
et al. 2005; Woodward er al. 2010a). Besides more general
changes in ecosystem status, declining body sizes may
decrease food supply or economic profits. For instance, in
fisheries the mean sizes of many fish species seem to be
declining in response to climate warming (Todd et al. 2008;
Daufresne, Lengfellner & Sommer 2009; Genner ef al.
2010; Cheung er al. 2013). However, the impact of a decline
in fish body size would depend on the population dynami-
cal consequences of warming, as an increase in abundance
could offset adverse effects of smaller sizes, This further
emphasizes the need to understand causes of past and con-
temporary changes in body size in order to assess the con-
sequences of potential future declines. Further, warming
will interact with the other ecological and evolutionary
impacts imposed on natural populations by humans, for
instance through harvesting or habitat alteration.

A better understanding of how evolutionary responses
and ecological interactions modify the effects climate
warming on individual physiology is required for making
useful predictions about expected changes in mean organ-
ism body sizes. Predictions of the impact of continuously
increasing temperatures on the body size of a single indi-
vidual under otherwise constant environmental conditions
are rather simple given that sufficient experimental data
exist. However, as elaborated in this review, predictions
about changes in the mean body size of populations and
communities are challenging due to the complexity of bio-
logical systems, specifically the potential for emergent
properties at higher organizational levels (Woodward, Per-
kins & Brown 2010b; Woodward er al. 2010a), relatively
rapid evolutionary change (Hairston er al. 2005), and non-
linear ecological dynamics in response to abiotic changes
(Smol et al. 2005). Nevertheless, considering such emer-
genl properties may improve predictions of warming-
induced changes in body size, as intra- and interspecific
interactions are part of the biology of most organisms
(Zarnetske, Skelly & Urban 2012).

To improve our understanding of the underlying causes
and to facilitate the management of ecosystems in the face
of climate change, hypotheses about warming-induced
changes in body size need lo be developed and tested
empirically. Based on the arguments developed in this
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study, changes in the average body size of populations and
entire communities are likely and may be mediated via dif-
ferent mechanisms. Some expectations emerge based on
recent empirical evidence and general considerations as
presented in this review. Adult body sizes of the majority
of ecotherms are expected to decline as temperature
increases due to the underlying thermal reaction norms
(‘size-at-age shift’). Warming is expected to most severely
decrease the survival of adults due to lower stage-specific
thermal tolerances, and to strengthen competitive asymme-
try in favour of smaller-sized individuals (‘strucrure shift’).
Within communities, smaller species are expected to
replace larger competitors, which themselves may migrate
polewards to avoid above-optimal temperatures (‘composi-
tion shift'). However, these expectations about organism
responses to warming may depend on geographic location,
life history and phylogenetic constraints, as outlined
above. For instance, climate warming is expected to most
severely affect body sizes of cold-adapted stenotherms and
tropical species that are specialized on narrow temperature
ranges and live close to optimal temperatures, reduce indi-
vidual growth rates at lower latitudes while promoting
growth at higher latitudes within eurythermal species that
spread over a range of climatic conditions and have
weaker impacts on deep-water species compared to aquatic
species inhabiting shallow and surface waters.

Improving our understanding of the causes of observed
size shifts will require diverse expertise and targeted
research efforts. Theoretical models, although necessarily
simplistic, are a basic tool for linking thermal dependence
of individual growth and development to population
dynamics and ultimately community interactions (Clark
et al. 2003). Simulation models such as size-structured
population models that are based on individual physiology
and calibrated to empirical data are a useful tool for
studying population-level effects of rising temperatures,
but require well-studied model organisms (Ohlberger et al.
2011). Integral projection models provide a great opportu-
nity to study the temperature dependence of vital rates,
and how these interact to determine population growth
and size structure (Rees & Ellner 2009). Although paleocli-
mate studies can detect effects of long-term climate fluctua-
tions on average population body sizes (Hunt & Roy 2006;
Smith er al. 2009), their value may be limited if current
rates of warming outpace historic climate trends. Experi-
mental studies that control temperature regimes in meso-
cosms are important for characterizing changes in size
structure at the population and community levels under
semi-natural conditions (Petchey er al. 1999; Dossena
et al. 2012). Statistical analyses of long-term data series
are further needed as they can provide the most direct evi-
dence for changes in size-at-age, size structure or size com-
position caused by climate warming while accounting for
the complexity of natural systems (Daufresne, Lengfellner
& Sommer 2009). In this context, hierarchical models that
simultaneously test for temperature effects at different
levels of organization may be particularly promising.

Conclusions

This review suggests that widely observed declines in the
mean body size of organisms result as a direct consequence
of changes in physiological rates, from size- and density-
dependent population feedbacks, and changes in trophic
interactions. While the thermal dependence of growth and
development leads to shifts in individual size-at-age, emer-
gent effects through ecological interactions lead to shifts in
size distributions of populations and changes in commu-
nity composition of differently sized species. Consequently,
considering the broader ecological context of observed
changes in body sizes based on empirical data is critically
important when trying to draw conclusions about the
underlying causes. Doing so will improve our understand-
ing of the importance of the various processes and our
ability to predict responses in body size to future climate
warming.
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