This document is a working paper for the Transboundary Resource Assessment Committee and should not be cited or distributed without the permission of the author.

Stock Assessment of Atlantic Mackerel in the Northwest Atlantic – 2009

Jon Deroba, Gary Shepherd, Julie Nieland, Christopher Legault, Paul Rago, Jessica Blaylock, Jason Link, William Overholtz, Loretta O'Brien, Brian Smith and Sandra Sutherland and Michael Jones

February 2010
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole Laboratory
Woods Hole, MA 02543

Terms of Reference:

- Review the assessment model formulation issues and recommend an approach for stock status determination.
 - Exploration of VPA models, forward projection models (e.g., ASAP), and other relevant approaches.
 - Review the retrospective pattern and consider alternative model formulations to address its impact on uncertainty in status determination and harvest forecast.
- Apply the agreed assessment approach to update the status Northwest Atlantic mackerel stock through 2008 and characterize the uncertainty of estimates.
- Review the harvest strategy biological reference points to meet management requirements of both countries.
- Review approach for the provision of projections to meet the management requirements of both countries.
- Consider the stock implications of unattained short-term yields.
- Identify potential future work (International egg survey, tagging and genetic studies, and other collaboration between both countries) that would improve the determination of stock status.
- Consider role of mackerel as forage for predators and evaluate feasibility of incorporating predatory consumptive removals into assessment models.

Executive Summary

Atlantic mackerel *Scomber scombrus* were last assessed in 2005, and the conclusion of that assessment was that the stock was not overfished and overfishing was not occurring. The model configuration from the last assessment, which was an ASAP model that included a split in the NMFS spring survey index in 1985, was used as a starting point for this assessment using data updated through 2008. However, multiple configurations of ASAP models using the updated data sources, including models with predation removals, were not robust to various assumptions and exhibited worse retrospective patterns than comparable virtual population analysis (VPA) models. So, a VPA was considered the baseline model for this assessment.

The baseline VPA was fit to catch at age and mean weight at age data during 1962-2008, NMFS spring survey data during 1968-2008 with splits in 1985 and 1993, and commercial catch per effort data from bottom fished and mid-water otter trawls during 1978-2008. Spawning stock biomass estimates from the baseline VPA model peaked in 1972 at 1.98 million metric tons (mt) and generally declined for the remainder of the time series to an all-time low of 0.21 million mt in 2008. Average fishing mortality rate (ages 3-5) was relatively high during 1968-1975 peaking in that range of years at 0.36 in 1973. Average fishing mortality rate then declined to 0.02 in 1978, generally increased to an all-time high of 0.77 in 2006, and declined to 0.38 in 2008.

Updated reference points from this baseline VPA were $F_{0.1} = 0.26$ with a corresponding equilibrium spawning stock biomass of 549,000 metric tons. Based on the baseline VPA and these reference points, Atlantic mackerel would be considered overfished and overfishing would be occurring.

Catchability estimates for the NMFS spring survey from the baseline VPA model differed by an order of magnitude among the 3 time blocks (i.e., splits in 1985 and 1993 resulted in 3 time blocks), with higher catchabilities in more recent years, particularly for younger ages. The higher catchability estimates in the 1994-2008 index series may be effectively down scaling the relatively high mean number per tow observations that occurred in recent years The result is that the subsequent trend in abundance estimates would not match the relatively high survey observations that occurred prior to accounting for temporal changes in catchability. VPA models fit without the splits in the NMFS

spring survey index resulted in spawning stock biomass and average fishing mortality rate estimates trending in opposite directions and leading to very different conclusions about stock status than the baseline VPA. However, these VPA runs without also exhibited severe residual and retrospective patterns. So, although the baseline VPA that was suggested was chosen based on improved model diagnostics, such as residual and retrospective patterns, such improvements came at the cost of effectively devaluing the trend in the NMFS spring survey index to an inexplicable degree. However, alternatives to the baseline VPA do not perform well from a model diagnostics standpoint.

Introduction

Atlantic mackerel in the Northwest Atlantic are a migratory species moving seasonally between U.S. and Canadian waters. Sette (1950) identified two distinct groups consisting of a northern contingent and a southern contingent. The two contingents overwinter primarily along the continental shelf between the Middle Atlantic and Nova Scotia (although it has been suggested that overwintering occurs as far north as Newfoundland). With the advent of warming shelf water, the two contingents begin migration, with the northern contingent moving along the coast of Newfoundland and historically into the Gulf of St. Lawrence for spawning from the end of May to Mid-August (Berrien 1982). The southern contingent spawns in the Mid-Atlantic and Gulf of Maine from mid-April to June (Berrien 1982) then moves north to the Gulf of Maine and Nova Scotia. In late fall migration turns south and fish return to the over-wintering grounds.

Atlantic mackerel were last assessed in the United States in 2005 (SAW 42, 2005). The conclusion of that assessment was that mackerel were not overfished and overfishing was not occurring. Since that assessment, there were updates to the Age Structured Assessment Program (ASAP) software used in the assessment. Differences in the results from SAW 42 and results using the new software were minimal (Figures 1 and 2). However, the new software provides an option to use a likelihood constant that was not available in the previous version. Use of the constant influenced the terminal estimates of fishing mortality (Figures 3 and 4) although the absolute values of the values were relatively similar. All subsequent runs were made using the likelihood constant.

Data available for this new assessment was reviewed and adopted at the TRAC data meeting in October 2009 (TRAC 2009). Since the conclusion of the data meeting, adjustments have been made to catch data. Foreign landings in Canada from 1968 to 1977 previously not included were added and the Canadian 1985 to 1989 catch at age data were updated to include all available length and age data from that period (Table 1). In addition, US landings at age for 2006 to 2008 were re-calculated with the inclusion of length data collected by commercial industry funded sampling.

<u>Acknowledgements-</u> A special thanks to Francois Gregoire, Fisheries Oceans Canada, for providing the Canadian catch at age results.

Literature cited

Berrien, P. 1982. Atlantic mackerel, *Scomber scombrus*. *In* M.D. Grosslein and T.R. Azarovitz eds. Fish distribution. p. 99-102. MESA New York Bight Atlas Monograph 15. N.Y. Sea Grant Institute, Albany, NY.

Northeast Fisheries Science Center. 2006. 42nd Northeast Regional Stock Assessment Workshop (42nd SAW) stock assessment report, part A: silver hake, Atlantic mackerel, and northern shortfin squid (CRD 06-09a). U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-09a; 284 p.

Sette, O.E. 1943. Biology of Atlantic mackerel (*Scomber scombrus*) of North America. Part I: Early life history including growth, drift, and mortality of the egg and larval populations. U.S. Fish Wildl. Serv. Fish. Bull. 50: 149-237.

Sette, O.E. 1950. Biology of Atlantic mackerel (*Scomber scombrus*) of North America. Part II. Migrations and habits. U.S. Fish Wildl. Serv. Fish. Bull. 51: 251-358

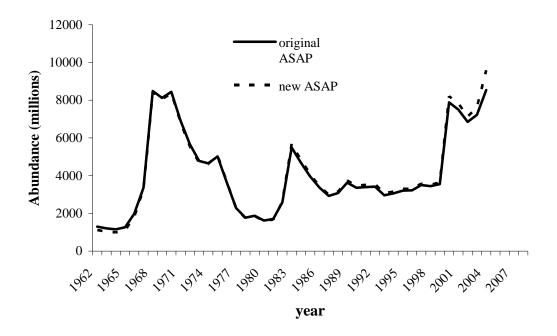


Figure 1. Comparison of abundance estimates between SAW 42 results with original and revised ASAP model.

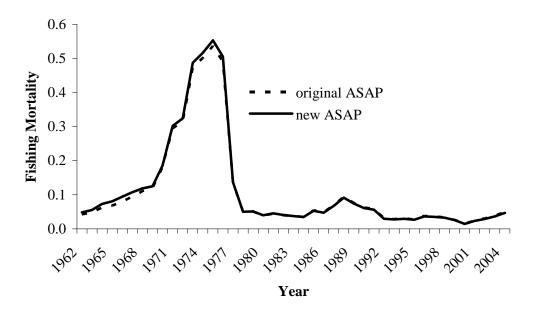


Figure 2. Comparison of F estimates between SAW 42 results with original and revised ASAP model.

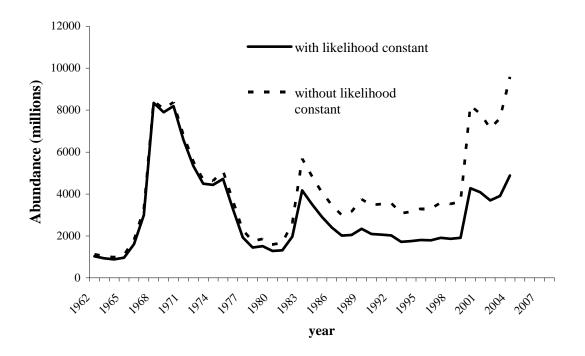


Figure 3. Comparison of abundance estimates between ASAP model with and without use of likelihood constant.

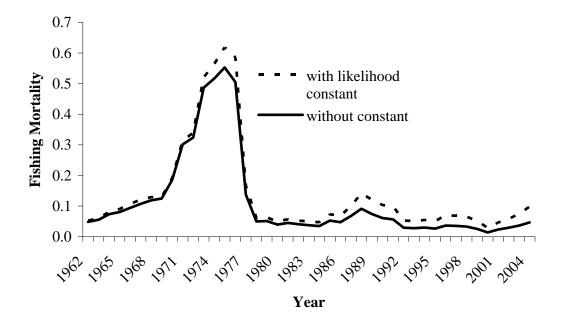


Figure 4. Comparison of F estimates between ASAP model with and without use of likelihood constant.

Table 1. Comparison between SAW 42 and TRAC catch and total catch at age. $\,$

SAW 42 TRAC 2010

CAA (millions) Catch (mt)			_	CAA (millions)	Catch (mt)
1962	43.7	8,078	1962	43.7	7,978
1963	40	9,081	1963	40.0	9,092
1964	57.1	13,405	1964	57.1	13,405
1965	53.1	20,825	1965	53.1	16,533
1966	78.5	23,496	1966	78.5	23,496
1967	97.9	34,181	1967	97.9	34,181
1968	329.1	90,530	1968	368.7	90,495
1969	520	137,189	1969	538.9	135,917
1970	999.4	251,958	1970	1,018.7	234,872
1971	1325.3	382,794	1971	1,353.6	382,794
1972	1070.1	415,831	1972	1,084.5	415,830
1973	1405	436,698	1973	1,448.4	436,609
1974	1073.8	367,534	1974	1,150.3	367,534
1975	1264.2	315,145	1975	1,320.1	309,951
1976	916.4	259,052	1976	961.3	259,052
1977	225.8	80,719	1977	232.4	80,209
1978	62.8	28,345	1978	62.8	28,345
1979	58.6	36,630	1979	58.6	33,042
1980	47.7	27,910	1980	56.4	25,545
1981	64.5	30,890	1981	64.5	30,806
1982	50.2	27,026	1982	50.2	27,548
1983	57	32,588	1983	57.0	32,559
1984	95.8	41,689	1984	95.8	40,638
1985	193.3	72,933	1985	184.0	71,609
1986	142.9	71,097	1986	159.3	70,692
1987	178	80,458	1987	177.5	80,394
1988	185.8	83,434	1988	185.1	82,492
1989	135.9	74,383	1989	145.7	73,961
1990	129.4	86,891	1990	160.0	82,996
1991	136	71,309	1991	140.2	70,155
1992	74	38,843	1992	76.8	36,366
1993	64.5	31,955	1993	66.0	31,424
1994	66.1	31,195	1994	121.2	31,187
1995	71	27,378	1995	77.6	27,424
1996	94.5	37,917	1996	109.6	37,547
1997	91.6	38,444	1997	91.7	38,449
1998	91	34,419	1998	91.2	34,548
1999	67.2	29,922	1999	68.2	29,927
2000	60.6	20,477	2000	61.2	20,480
2001	129.4	37,742	2001	132.8	37,826
2002	175.7	62,140	2002	175.7	62,133
2003	205.5	79,491	2003	206.8	79,543
2004	288.8	105,635	2004	297.1	108,886

Working Paper A

Development of ASAP model using a U.S.A. and Canadian catch at age matrix through 2008

This document is a working paper for the Transboundary Resource Assessment Committee and should not be cited or distributed without the permission of the author.

Catch at age data from 1962 through 2008 approved at the October TRAC meeting were added to the previous ASAP model input (Table A1). The previous assessment model configuration, following the addition of 2005-2008 catch and indices at age, served as the basis for model comparison. The updated SAW42 model included ages through 7+, a catch series beginning in 1962 and NEFSC spring bottom trawl survey indices at age beginning in 1968. The survey indices were split into two series between 1984 and 1985. Selectivity in the catch was fixed at 0.2, 0.6 and 1.0 for ages 1, 2 and 3-7+, respectively. A series of alternative ASAP models were examined which included various index series splits, addition of multiple fleets (US and Canada), starting years in the catch series, estimation of selectivity, periods of changes in selectivity and fixed steepness values in stock-recruitment. Results of various model runs are summarized in Table A2. The diagnostics examined included the fit to indices at age and total catch, residual patterns, retrospective patterns, selectivity patterns and the objective function.

Model results generally showed similar patterns with peak abundance in the late 1960s-early 1970s followed by a period of high F in the mid-1970s (Figure A1). Recent years were characterized by high F and decreasing N since 2000. The exception to this pattern occurred when the survey index was input as a single series. The consequence of using one index series was a significant increase in abundance in recent years and a correspondingly low F (values <0.05).

The preferred standard ASAP model incorporated 2 fleets (US and Canada) with the time series beginning in 1968 (to correspond to the index series). The survey indices were split at 1991-1992 to reduce patterns in the index residuals (although with little improvement from the 1984-1985 split). Selectivity was constant through time and fitted as a logistic model for each fleet. Total CV for the US fleet was 0.1 until 1982, 0.05 from 1982 to 1989 then 0.01. Since the Canadian catch is considered underestimated, the CV for the Canadian fleet was set at 0.1 to allow greater deviation from an exact fit.

Steepness in the stock recruitment was fixed at 0.6 in the model (corresponding to a SPR_{40%}(Brooks et al. 2009)). Results show fishing mortality peaked at 0.79 in 1974 then decreased to 0.08 by 1978. F remained less than 0.1 until 1996 when it began increasing, peaking at 0.67 in 2006. F in 2008 was 0.49 (0.195 in US and 0.29 in Canada). Total abundance decreased from 7.8 billion in 1968 to 1.116 billion in 1978, rose to 6.1 billion with the incoming 1982 year class and has generally declined thereafter. Abundance in 2008 was 733 million fish. SSB peaked in 1985 at 1.32 million mt and steadily declined thereafter, reaching a low in 2008 of 123,100 mt.

Although the basic fit with the ASAP model was reasonable, the results showed some patterned residuals, particularly in ages 1 and 2 of the early series and 10+ in the later series. In addition, retrospective patterns in fishing mortality persisted. The influence of the under-estimated Canadian catch on retrospective pattern was also explored. Doubling the Canadian catch since 1968 (overall average total increase of 46%) had little effect on the retrospective pattern or magnitude (Figure A19). The model fit was heavily influenced by the steepness parameter chosen. If the stock-recruitment relationship were fit, the results were unrealistic, with steepness values 0.2 to 0.3. Fixed steepness values were inversely proportional with F. The value chosen was based on a generalized relationship and was not specifically from Atlantic mackerel. The model estimates of F, abundance and SSB from the proposed configuration are very different than the SAW42 results. However, the 2004 retrospective estimate from the current model corresponds to the 2004 SAW 42 estimates. Finally, the results of the model are dependent on the existence of a split survey series and the associated q's which vary greatly between series (Table A3). Further discussion of this issue is presented in WP B.

Literature cited

Brooks, E. N., Powers, J. E., and Corte's, E. 2010. Analytical reference points for agestructured models: application to data-poor fisheries. ICES Journal of Marine Science, 67: 165–175.

Figure A1. Fully recruited fishing mortality of Atlantic mackerel for combined U.S.A and Canadian fleets from ASAP model.

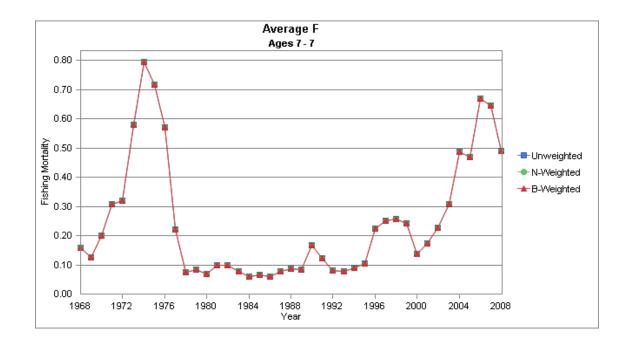


Figure A2. Selectivity at age from ASAP modeled as a logistic function for US and Canadian catch at age.

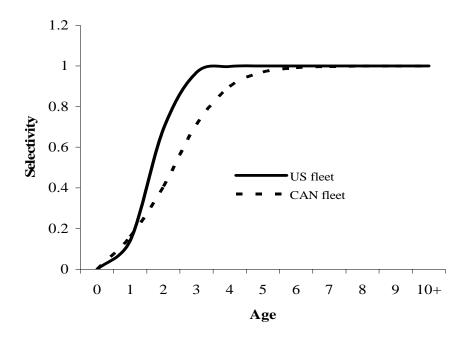


Figure A3. Total abundance (millions) of Atlantic mackerel for combined U.S.A and Canadian fleets from ASAP model.

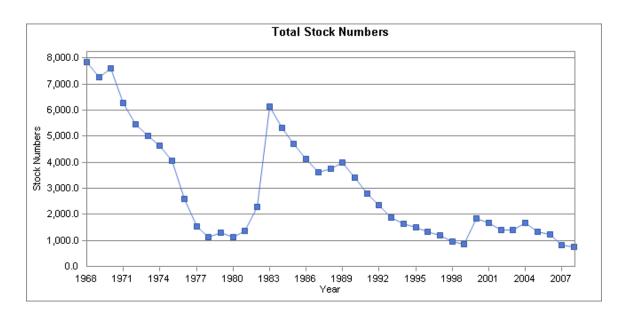


Figure A4. Spawning stock biomass (000s mt) of Atlantic mackerel for combined U.S.A and Canadian fleets from ASAP model.

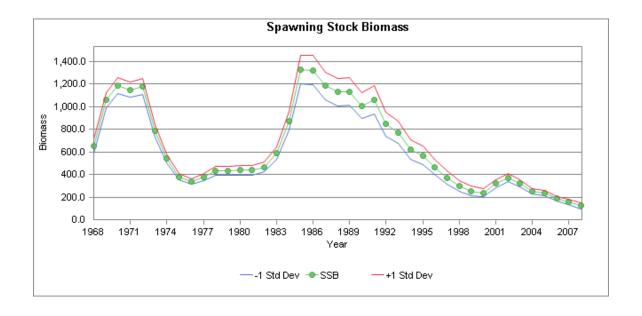


Figure A5. Estimated age 1 recruitment (millions) of Atlantic mackerel for combined USA and Canadian fleets from ASAP model.

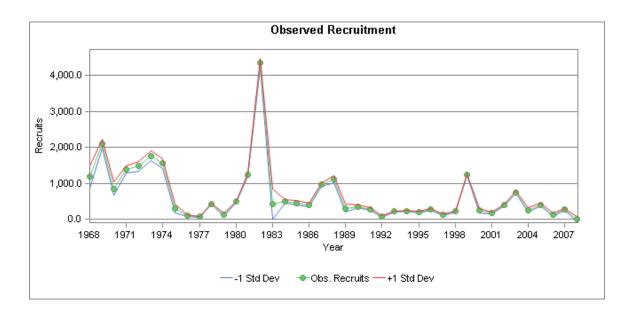


Figure A6. Comparison of ASAP model observed and predicted annual catch (000s mt) for USA fleet.

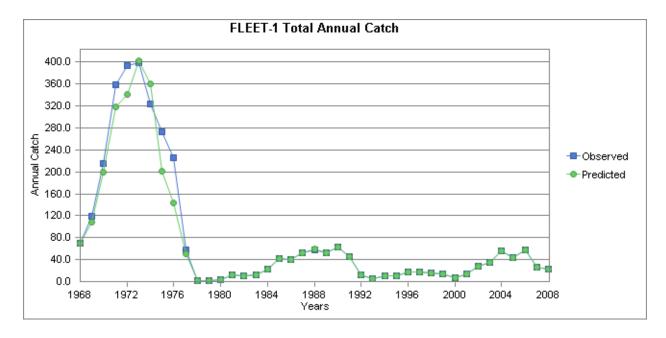
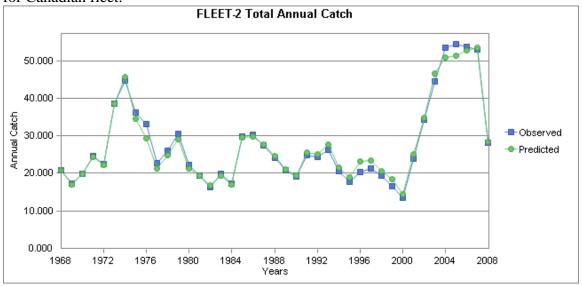
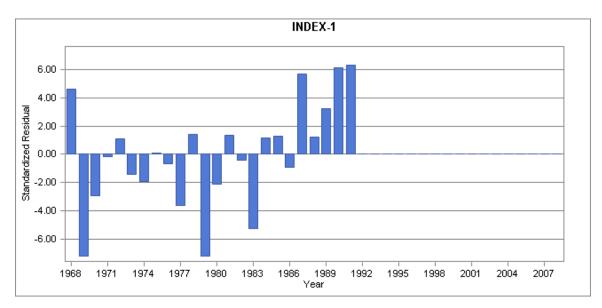
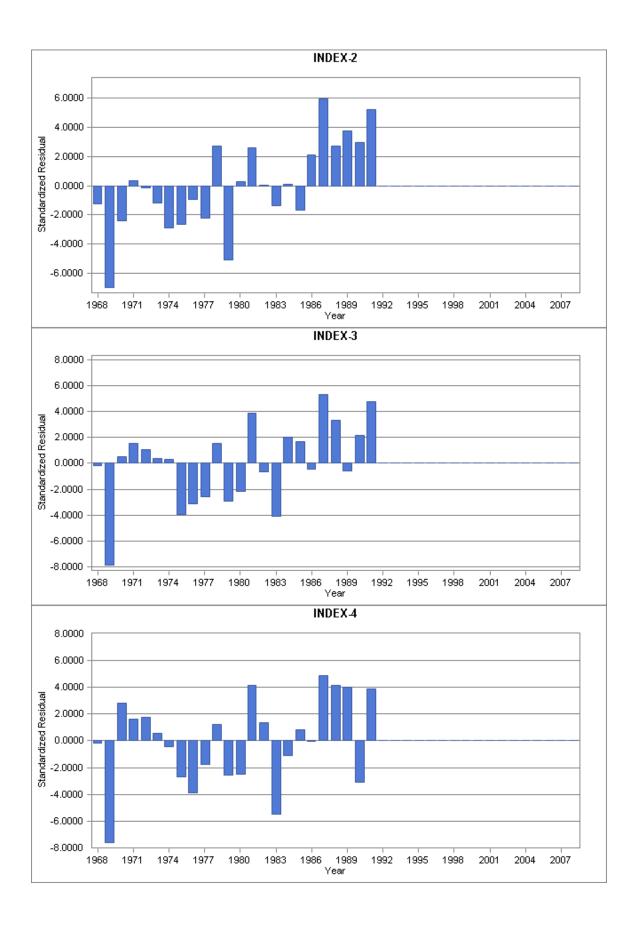
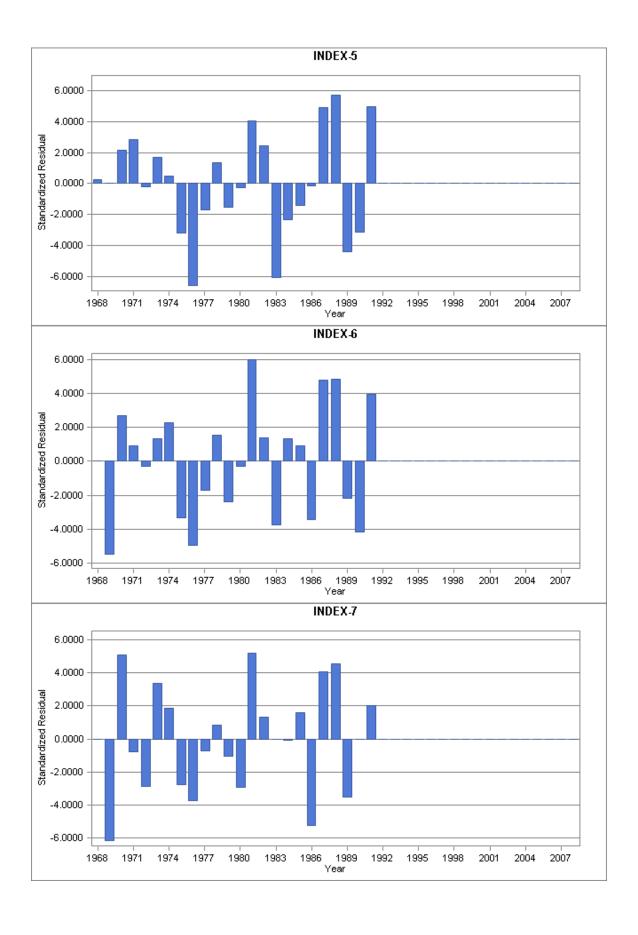
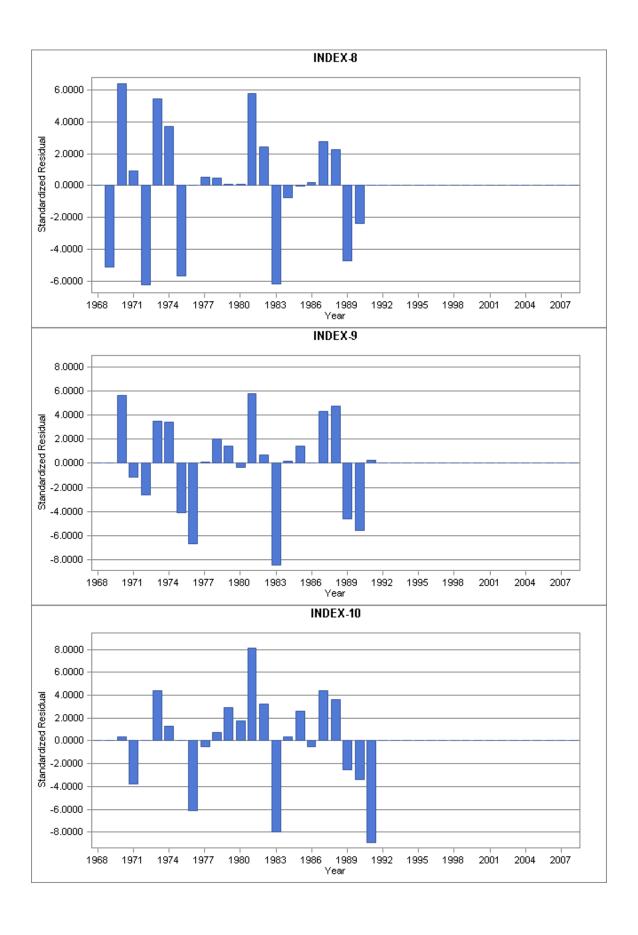
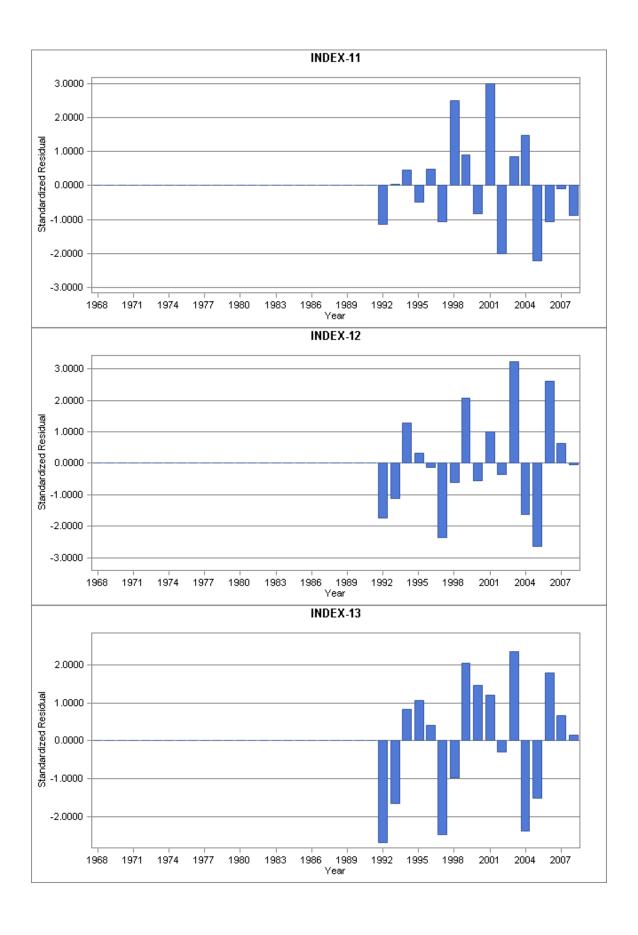
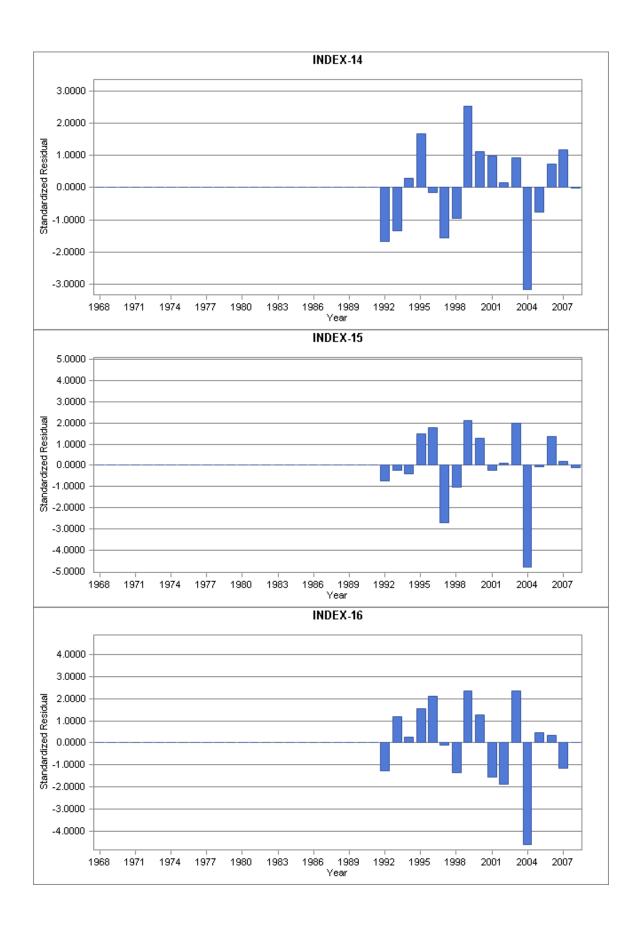
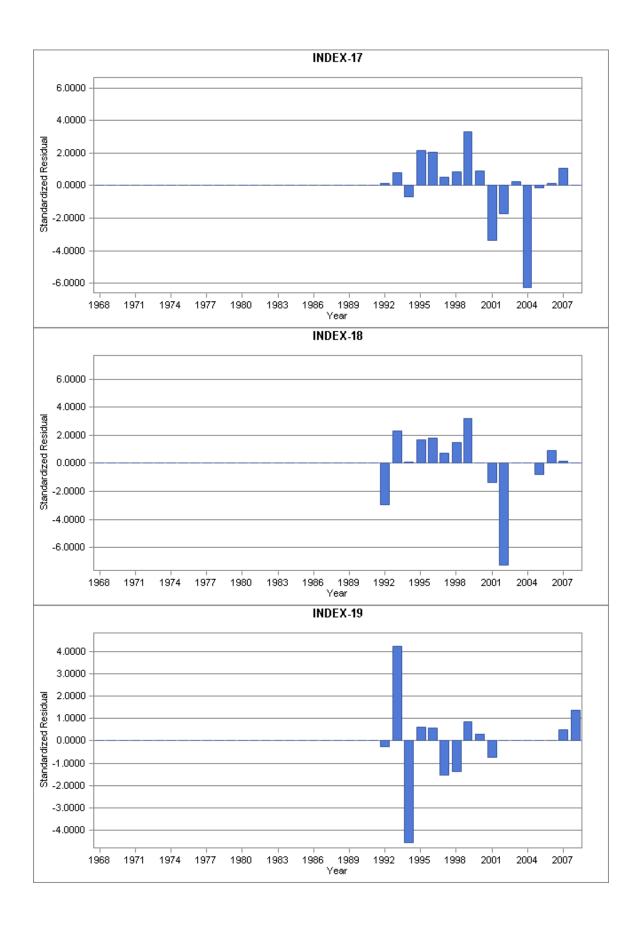


Figure A7. Comparison of ASAP model observed and predicted annual catch (000s mt) for Canadian fleet.


Figure A8. Standardized residuals for survey indices for 1968-1991, ages 1-10+ (indices 1-10), and 1992-2008, ages 1-10+ (indices 11-20).





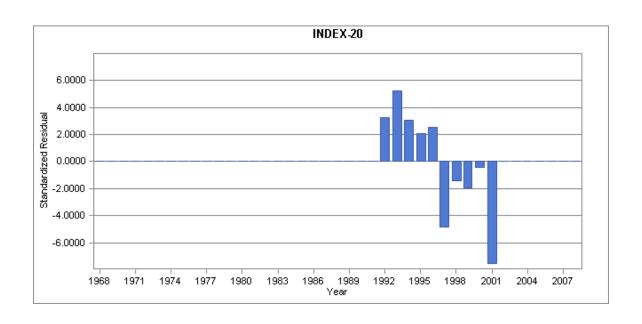


Figure A9.Effective sample size, input and estimated, for USA fleet.

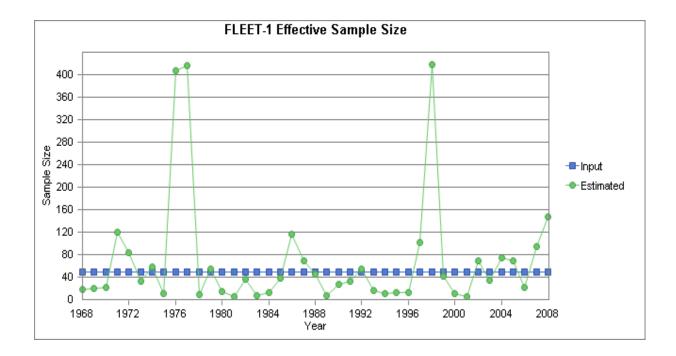


Figure A10.Effective sample size, input and estimated, for Canadian fleet.

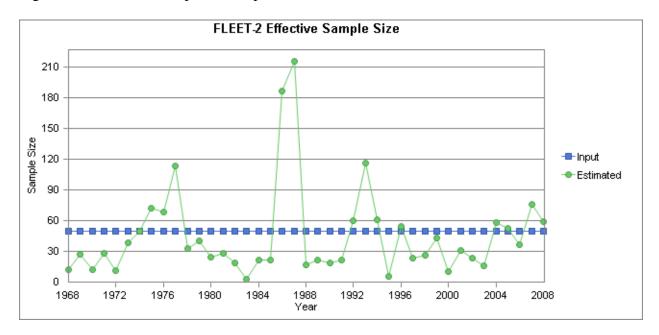
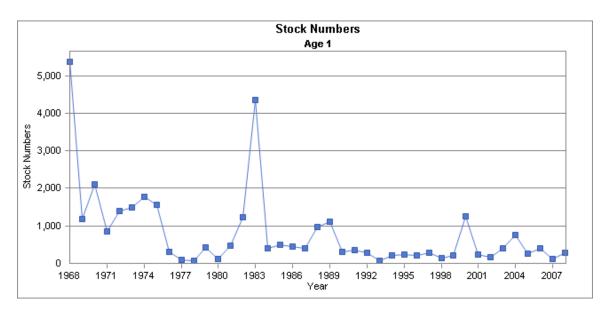
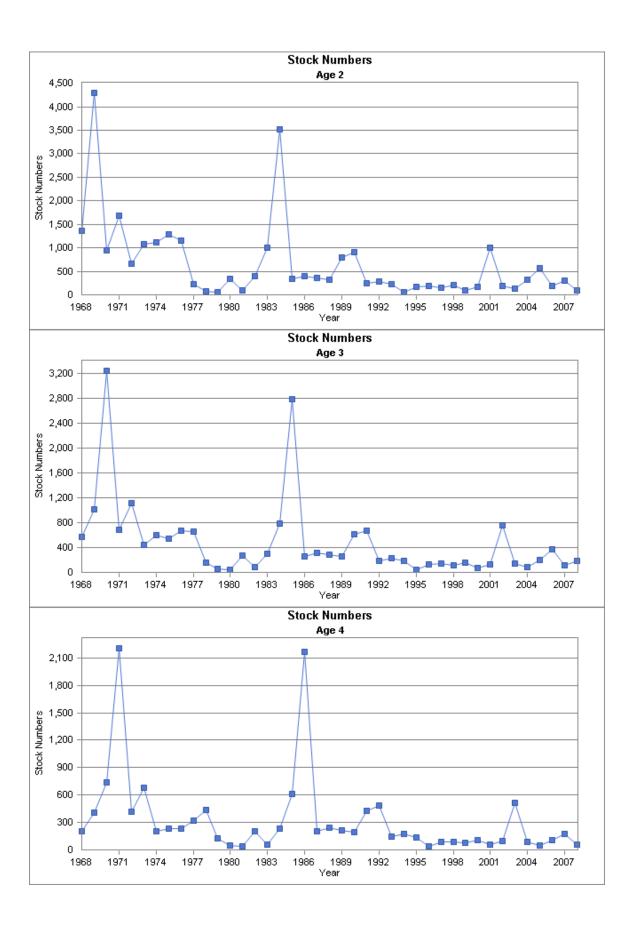
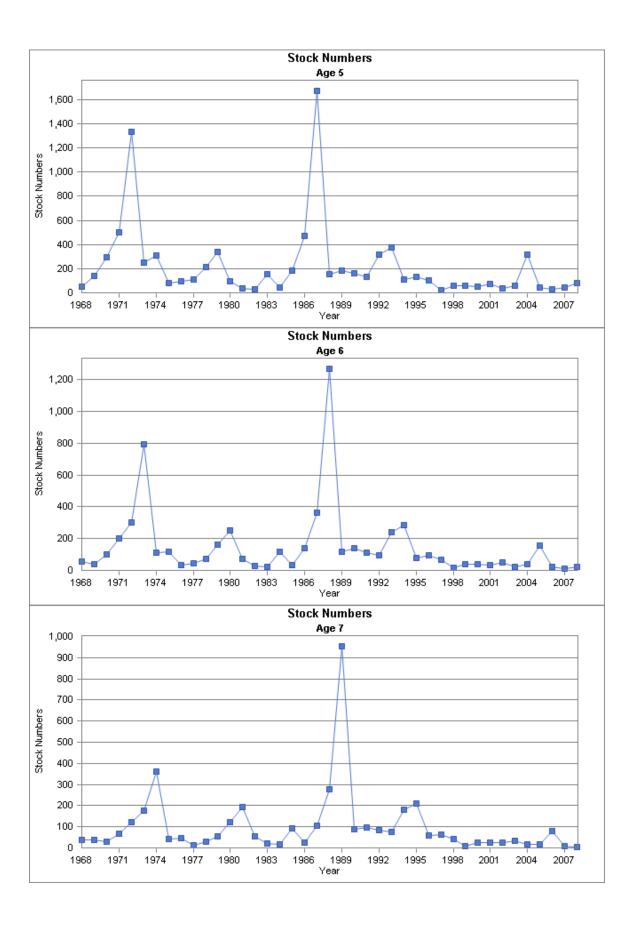





Figure A11. Estimated Atlantic mackerel stock size (millions), by age, from ASAP model.

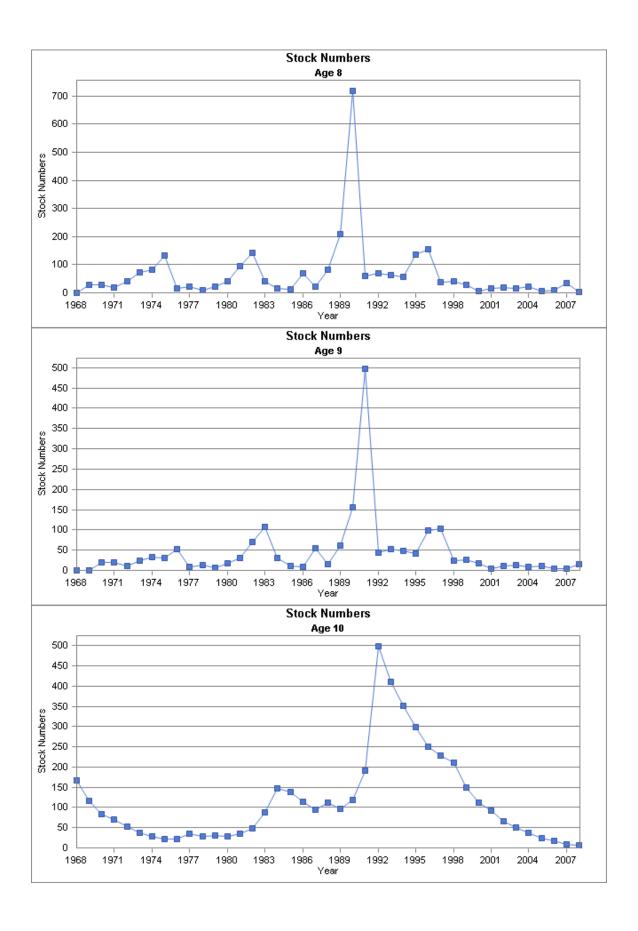


Figure A12. ASAP model objective function components.

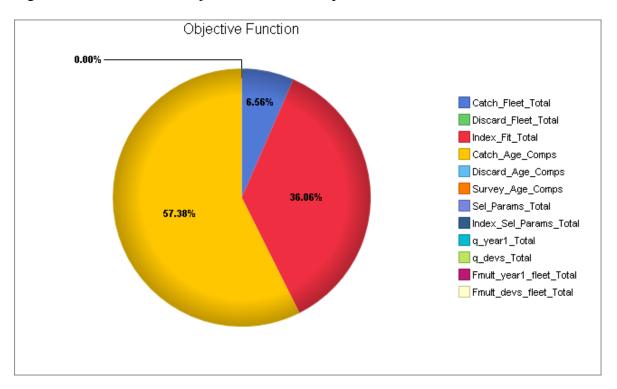
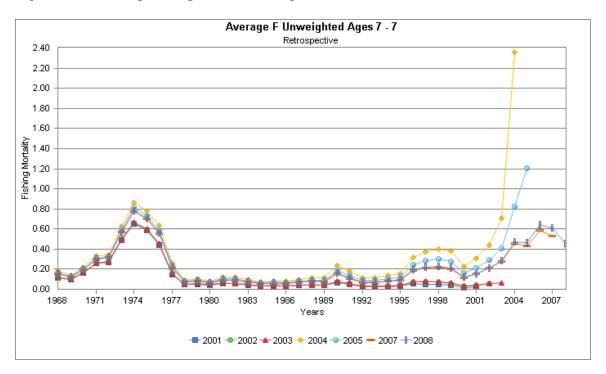
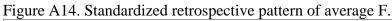
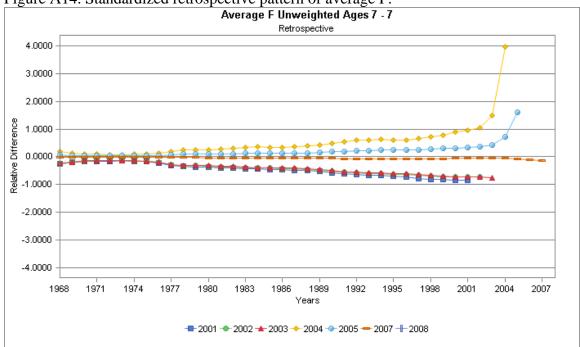
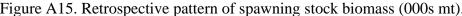






Figure A13. Retrospective pattern of average F.

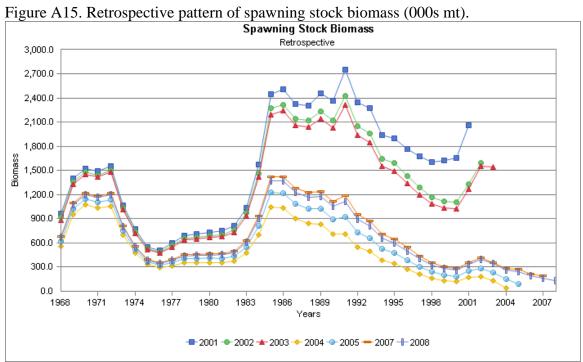


Figure A16. Standardized retrospective pattern of spawning stock biomass.

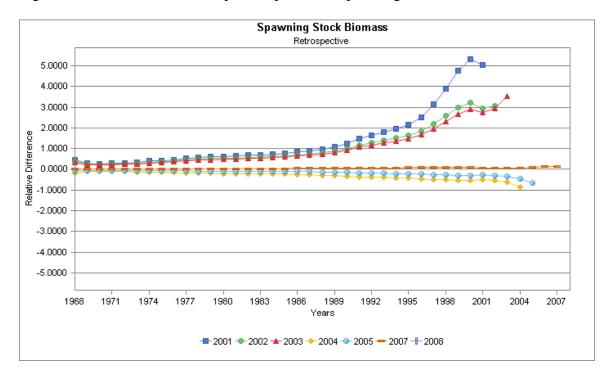


Figure A17. Retrospective pattern of total abundance (ages 1-10+, millions).

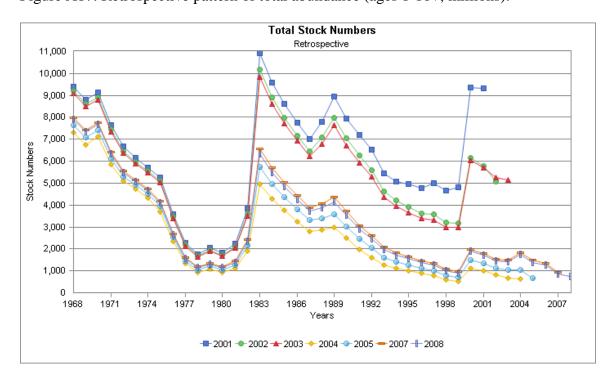


Figure A18. Standardized retrospective pattern of total abundance (ages 1-10+).

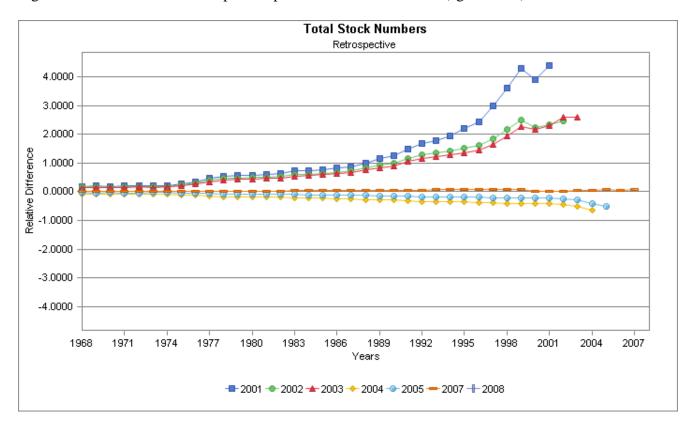


Figure A19. Effect of doubling Canadian mackerel catch on relative difference in retrospective pattern.

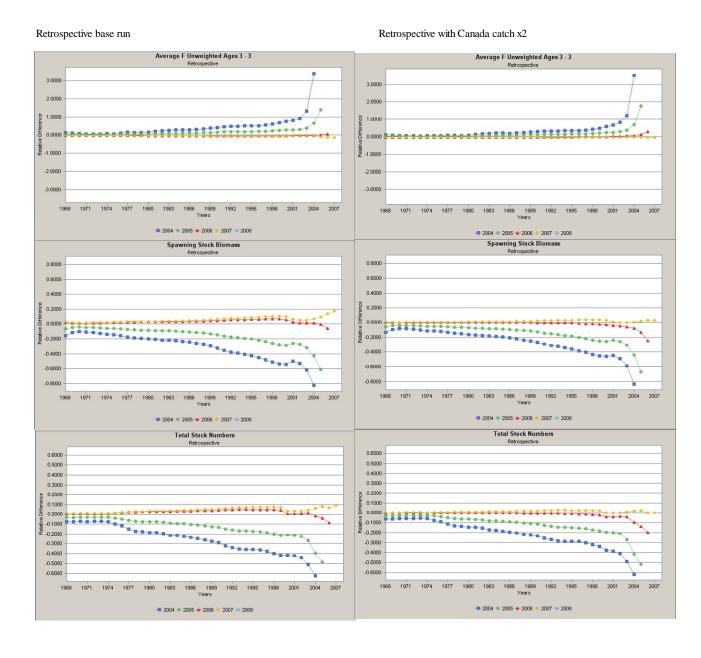


Table A1.Total catch at age (millions) of Atlantic mackerel (US and Canada combined) used in TRAC 2010.

	Total CAA (millions) age									
,	1	2	3	4	5	6	7	8	9	10+
1962	16.1	2.8	15.2	3.8	1.2	1.6	1.4	0.8	0.4	0.4
1963	1.1	4.2	1.3	26.3	6.0	0.3	0.2	0.2	0.2	0.2
1964	12.9	7.0	4.1	4.0	19.4	4.1	3.9	0.7	0.8	0.2
1965	9.0	3.6	2.9	4.0	5.2	19.5	4.2	4.0	0.7	0.0
1966	24.0	11.5	5.3	2.6	4.7	7.9	21.8	0.5	0.2	0.0
1967	0.8	26.7	19.8	3.5	3.3	5.1	6.1	32.3	0.3	0.0
1968	161.5	64.8	64.1	41.5	15.6	7.2	1.0	1.8	11.0	0.1
1969	8.7	269.7	165.9	66.4	6.0	3.2	2.3	3.2	2.3	11.1
1970	198.6	55.4	530.6	164.9	28.2	7.1	5.4	10.3	10.4	7.7
1971	77.4	297.1	128.1	572.9	206.5	35.3	9.8	4.2	5.0	17.5
1972	22.1	85.7	257.4	184.1	397.2	88.7	25.4	4.2	8.3	11.3
1973	165.8	292.3	289.3	237.7	198.5	207.0	34.9	12.2	4.5	6.1
1974	101.3	257.4	281.1	110.6	122.2	119.6	117.9	28.2	7.5	4.4
1975	382.6	447.0	121.9	108.1	63.0	72.5	55.3	53.0	13.0	3.7
1976	13.4	364.6	286.7	91.5	56.5	29.3	43.1	36.7	24.2	15.4
1977	2.1	27.9	103.8	55.4	12.5	10.2	5.7	6.5	3.9	4.4
1978	0.1	0.2	4.7	17.4	13.3	8.4	4.7	2.2	4.5	7.3
1979	0.4	0.6	1.3	7.1	18.6	13.1	6.2	2.6	2.2	6.5
1980	1.2	10.9	3.3	1.9	6.9	13.8	7.6	3.4	2.2	5.2
1981	16.1	7.1	9.2	1.4	2.0	6.1	11.7	4.9	2.5	3.5
1982	3.7	11.8	2.7	9.1	1.2	1.9	3.4	8.4	2.9	5.1
1983	2.2	15.3	6.5	1.9	7.0	0.7	1.2	5.5	10.2	6.5
1984	0.5	40.4	27.2	3.2	1.2	4.6	0.6	0.7	3.4	14.0
1985	3.1	1.6	123.0	32.5	2.9	1.0	4.0	0.4	0.7	14.9
1986	1.3	12.7	6.7	100.9	25.4	2.1	0.7	3.2	0.2	6.1
1987	4.2	14.6	14.6	7.7	110.1	17.8	2.5	0.4	2.1	3.5
1988	1.0	13.0	10.3	10.0	11.7	106.8	23.0	2.6	1.2	5.6
1989	3.9	17.2	11.0	7.3	7.1	2.4	88.6	5.0	0.9	2.3
1990	4.1	29.4	47.1	8.4	6.6	4.5	0.8	55.2	2.6	1.2
1991	1.4	14.6	56.4	24.6	6.5	3.9	3.3	1.0	27.3	1.2
1992	0.7	6.8	5.3	25.7	15.4	2.1	1.6	1.3	1.3	16.7
1993	1.5	9.2	11.3	6.2	16.5	8.9	1.9	0.8	1.1	8.4
1994	5.0	6.4	29.0	28.7	9.2	28.0	7.5	1.3	0.5	5.7
1995	18.5	20.7	2.7	9.5	8.2	3.2	10.3	3.2	0.3	0.9
1996	7.7	35.0	25.8	1.9	12.7	9.9	2.6	10.2	2.3	1.5
1997	6.9	22.0	23.4	11.1	1.1	8.5	6.8	2.8	7.2	1.9
1998		29.8	19.1	16.7	8.7	1.2	5.9	4.1	1.0	2.4
1999	1.7	6.7	23.9	14.2	9.2	4.8	1.5	2.9	2.0	1.3
2000		9.6	6.2	10.3	4.4	3.3	0.7	0.1	0.2	0.4
2001	9.1	76.9	23.8	7.5	9.9	2.4	2.1	0.7	0.2	0.3
2002		12.4	120.0	14.2	5.3	9.7	3.1	0.8	0.2	0.1
2003		23.9	26.5	121.9	14.0	5.0	4.9	0.3	0.0	0.0
2004		77.9	22.3	25.2	121.1	9.1	2.8	0.9	0.2	0.0
2005		101.0	63.2	12.9	9.4	70.2	2.2	3.2	0.1	0.0
2006		22.2	129.2	44.7	10.6	8.5	39.2	1.0	0.1	0.0
2007		52.8	39.4	64.2	13.9	2.2	1.7	6.5	0.2	0.0
2008	18.4	19.6	54.9	13.9	18.5	2.9	0.5	0.3	1.2	0.0

Table A2. Summary of ASAP model configurations examined.

		Likelihood		Selectivity	Selectivity	Selectivity			
	Years	Constant	Indices	estimated	Periods	Ages	S/R	steepness	Predation
1	1962-2008	no	spr,'84-85 split	no	1962-2008	1.0 at 3>	yes		no
2	1962-2008	yes	spr,'84-85 split	no	1962-2008	1.0 at 3>	yes		no
3	1962-2008	yes	spr,'84-85 split	no	1962-2009	1.0 at 3>	yes		no
4	1962-2008	yes	spr, '68-08 no split	no	1962-2008	1.0 at 3>	yes		no
5	1962-2008	yes	spr, '68-08 no split	no	1962-2008	1.0 at 3>	no	0.7	no
6	1962-2008	yes	spr,'84-85 split	yes	1962-2008	1.0-3,4,5,	no	1.0	no
7	1962-2008	yes	spr, '68-08 no split	no	1962-2008	1.0 at 3>	no	0.7	no
8	1962-2008	yes	spr,'84-85 split	no	1962-2008	1.0 at 3>	no	0.5	no
9	1962-2008	yes	spr,'84-85 split	no	1962-2008	1.0 at 3>	yes	0.287	no
10	1962-2008	yes	spr,'84-85 split	yes	1962-1981,1982-2008	1.0 at 3	yes	0.278	no
11	1962-2008	yes	spr,'84-85 split	yes	1962-2008	1.0 at 3	yes	0.360	no
12	1962-2008	yes	spr,'84-85 split	yes	1962-1981,1982-2008	1.0 at 3,4	yes	0.278	no
13	1962-2008	yes	spr,'84-85 split,CPUE 88-89 split	yes	1962-1981,1982-2009	1.0 at 3,5	yes	0.256	no
14	1962-2008	yes	spr,'84-85 split,CPUE 88-89 split	yes	1962-1981,1982-2009	1.0 at 3,5	no	0.500	no
15	1982-2008	yes	spr,'84-85 split	no	1962-2008	1.0 at 3>	yes	0.448	no
16	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.7	no
17	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.6	no
18	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.9	no
19	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.8	no
20	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.5	no
21	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.4	no
22	1968-2008	yes	spr 91-92	logistic	1962-2008, 2 fleets		no	0.3	no

Table A2 continued.

			Lambda 2			Lambda 3					
	Lambda 1		Recruitment		Index	Catchability	Catchability	Objective	terminal	terminal	
	CV	ESS	CV	Deviations	lambda	lambda	CV	Function	\mathbf{F}_1	\mathbf{F}_2	comments
1	0.01	50	0.5	1	0.912	0	0.9	4640.16	0.53		neg likelihood in catch_fleet total
2	0.01	50	0.5	1	0.912	0	0.9	1837.37	0.48		
3	0.01	40	0.5	1	0.912	0	0.9	1775.09	0.46		changed lambda for catchability to 0.1,
4	0.1	10	0.5	1	0.912	0	0.9	1874.22	0.01		
5	0.1	20	0.5	1	0.912	0	0.9	2066.34	0.004		
6	0.25	10	0.1	1	0.912	0	0.9	2086.82	0.04		
7	0.1	10	0.5	1	0.912	0	0.9	1915.01	0.005		
8	0.01	50	0.5	1	0.912	0	0.9	1839.31	0.47		
9	0.1	50	0.5	1	0.912	0	0.9	1885.18	0.50		
10	0.01	50	0.2	1	0.912	0	0.9	2138.65	0.35		
11	0.01	50	0.5	1	0.912	0	0.9	1831.72	0.49		
12	.1 62-(81) and 0.05 (82-88	50	0.5	1	0.912	0.1	0.9	1945.94	0.47		
13	.1 62-(81) and 0.05 (82-88	50	0.5	1	0.912	0.1	0.9	2560.36	0.32		Estimated covariance matrix may not b
14	.1 62-(81) and 0.05 (82-88	50	0.5	1	0.912	0.1	0.9	2556.99	0.09		Estimated covariance matrix may not b
15	0.01	15	0.5	1	0.912	0.1	0.9	1086.43	0.56		
16	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2430.49	0.19	0.28	
17	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2428.36	0.20	0.30	
18	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2434.33	0.17	0.25	
19	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2432.5	0.18	0.26	
20	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2426.42	0.21	0.31	
21	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2425.53	0.22	0.33	
22	0.1,0.05,0.01	50	0.5	1	0.912	0	0.9	2429.10	0.24	0.37	

Table A3. Model fit summary.

obj_fun	=	2428.36
		2120.50
Component	Lambda	obj_fun
Catch_Fleet_1	1	55.0889
Catch_Fleet_2	1	81.3547
Catch_Fleet_Total	2	136.444
Discard_Fleet_Total	0	0
Index_Fit_1	0.912	115.056
Index_Fit_2	0.912	72.6354
Index_Fit_3	0.912	58.6318
Index_Fit_4	0.912	55.2916
Index_Fit_5	0.912	50.1455
Index_Fit_6	0.912	32.4328
Index_Fit_7	0.912	32.4244
Index_Fit_8	0.912	52.2182
Index_Fit_9	0.912	70.5035
Index_Fit_10	0.912	101.454
Index_Fit_11	0.912	37.0999
Index_Fit_12	0.912	40.2973
Index_Fit_13	0.912	23.702
Index_Fit_14	0.912	3.52031
Index_Fit_15	0.912	-0.113499
Index_Fit_16	0.912	-9.09479
Index_Fit_17	0.912	-6.35201
Index_Fit_18	0.912	-0.653328
Index_Fit_19	0.912	-16.0625
Index_Fit_20	0.912	37.439
Index_Fit_Total	18.24	750.576
Catch_Age_Comps	see_below	1194.22
Discard_Age_Comps	see_below	0
Survey_Age_Comps	see_below	0
Sel_Param_1	0.1	0.0548012
Sel_Param_2	0.1	0.0338946
Sel_Param_3	0.1	0.0495444
Sel_Param_4	0.1	-0.0414241
Sel_Params_Total	0.4	0.096816
Index_Sel_Params_Total	0	0
q_year1_Total	0	0
q_devs_Total	200000	0
Fmult_year1_fleet_1	0	0
Fmult_year1_fleet_2	0	0
Fmult_year1_fleet_Total	0	0
Fmult_devs_fleet_Total	0	0
N_year_1	0	0
Recruit_devs	1	347.022
SRR_steepness	0	0
SRR_unexpl_stock	0	0
Fmult_Max_penalty	1000	0
F_penalty	0	0
1_pointy		U

Table A4. Survey index q's from ASAP model

	period	
age	1968-1991	1992-2008
1	0.00041	0.0164
2	0.00049	0.0181
3	0.00035	0.00853
4	0.00028	0.00451
5	0.00027	0.00307
6	0.00022	0.00193
7	0.00028	0.00148
8	0.00026	0.000883
9	0.00049	0.001233
10+	0.00049	0.000198

Working Paper B

Development of a Baseline Virtual Population Analysis, Consideration of a Statistical Catch at Age Model, and Reference Point and Stock Status Conclusions for Atlantic Mackerel

This document is a working paper for the Transboundary Resource Assessment Committee and should not be cited or distributed without the permission of the author.

Virtual Population Analysis Model Development

Data sources initially considered for calibrating a virtual population analysis (VPA) were Atlantic mackerel (*Scomber scombrus*) commercial catch at age (i.e., sum of US and Canadian) and mean weight at age during 1962-2008, National Marine Fisheries Service (NMFS) spring bottom trawl survey index at age data during 1968-2008 (geometric mean), NMFS winter bottom trawl survey index at age data during 1992-2007 (geometric mean), standardized bottom fished commercial otter trawl catch per effort (CPE; pounds landed/days absent) data during 1978-2008 (aggregate index), and standardized mid-water commercial otter trawl CPE data during 1994-2008 (aggregate index). A "baseline" model was developed by making iterative improvements to the VPA that addressed model diagnostic problems (e.g., residual patterns, parameter estimates at upper or lower bounds) that arose during the fitting process. Unless otherwise noted, all VPA models were fit using data on fish age-1 through an age-7 plus group.

An initial VPA model was fit using all of the above data (none of the index data split into multiple time blocks). Estimates of abundance at age in the terminal year+1 were all at the upper bound (1 billion) except for age-3. The residuals for the spring survey also exhibited a pattern with negative residuals before 1985 and positive residuals after 1985 (Figure B1). Furthermore, the bottom otter trawl fishery had a residual pattern with negative residuals before 1989, positive residuals during 1989-1999, and negative residuals after 1999 (Figure B1). To address these residual patterns, a VPA was fit with a split in the NMFS spring survey at 1985 (1968-1984; 1985-2008) and in the bottom fished otter trawl CPE data at 1989 (1978-1988; 1989-2008). The split in 1985 for the spring survey was the same as the split used in the last assessment to account for the

conversion to polyvalent trawl doors (SAW 42). These splits improved the residuals (Figure B2).

The NMFS winter bottom trawl survey index was not used in the last assessment partially because the spring index was considered superior and the winter indices were also relatively flat. The pattern was similar for this assessment with the exception of 2005, which was anomalously high due to a few large tows (Figure B3). Consequently, a VPA was fit without the winter survey index and with the spring index and bottom otter trawl index split as described above. Removing the NMFS winter index caused a modest increase in spawning stock biomass and decrease in average fishing mortality rate (ages 3-5) in recent years (Figure B4), but the coefficient of variation estimates for the abundances at age in the terminal year+1 were nearly zero and so may be invalid. However, the justifications for excluding the NMFS winter survey still hold for this assessment, and the VPA was generally robust to the exclusion of this data source, so the winter survey was not used in any additional VPA model fits.

The spring survey was the only index used in the prior assessment and indices based on commercial catch rate data may not provide an accurate index of abundance. So, a VPA was fit with only the spring index, split as described above. Spawning stock biomass and average fishing mortality rate estimates were similar between VPA models with and without the commercial CPE indices (Figure B20). Furthermore, the trends in the commercial CPE data used here were generally similar to the NMFS spring survey index for some ranges of years (Figure B5). So, the commercial CPE indices were retained in all additional VPA model fits.

Suggested Baseline VPA and Results

Based on the above VPA model fits, the conclusion was that the baseline VPA model should include the NMFS spring index and commercial CPE indices, each split as described above. The model using these data sources, however, had a retrospective pattern suggesting the consistent overestimation of spawning stock biomass and underestimation of fishing mortality (Figure B6). To explore the possibility of reducing this retrospective pattern, a series of VPA runs were conducted with two splits, resulting in three time blocks, in the NMFS spring survey. In all of these runs, the 1985 split

described above was retained. The year for the second split that minimized the retrospective pattern was found by fitting a VPA using each year from 1986-2004 as the second split point. That is, a separate VPA was fit while splitting the NMFS spring index in 1985 and 1986, 1985 and 1987, 1985 and 1988, and so on, until the retrospective pattern was minimized. The year of the second split that minimized the retrospective pattern was 1993 (i.e., 1968-1984; 1985-1992; 1993-2008; Figure B7). This model was considered the baseline VPA because it had the best diagnostics (i.e., limited residual patterns, reduced retrospective patterns) of those models considered (Figure B7; Figure B8).

Spawning stock biomass (SSB) estimates from the baseline VPA model peaked in 1972 at 1.98 million metric tons (mt) and generally declined for the remainder of the time series to an all-time low of 0.21 million mt in 2008 (Figure B9). Total abundance generally followed the same trend among years as SSB. Furthermore, total abundance estimates from the baseline VPA were greater than the swept area population estimates from the NMFS spring bottom trawl survey (Table B3), which suggested that the efficiency of the spring survey was not inflated due to factors such as herding. Average fishing mortality rate (ages 3-5) was relatively high during 1968-1975 peaking in that range of years at 0.36 in 1973 (Figure B9). Average fishing mortality rate then declined to 0.02 in 1978, generally increased to an all-time high of 0.77 in 2006, and declined to 0.38 in 2008 (Figure B9). Recruitment at age-1 varied during 1962-2008 with generally higher average recruitment during 1962-1984 than 1985-2008 (Figure B10). During 1985-2008, only the 1999 year class estimate was above the average recruitment during 1962-1984 or the average during the entire time series (Figure B10).

Abundance estimates at age in the terminal year+1 were relatively imprecise. Coefficients of variation for all ages were greater than 1.0, except for age-4 (Table B1). Catchability at age estimates for the NMFS spring bottom trawl survey generally declined with age during all 3 time blocks used in the baseline VPA model (Figure B11; Table B2). Catchability estimates also differed by an order of magnitude among the 3 time blocks, with higher catchabilities in more recent years (Figure B11; Table B2). The higher catchability estimates in recent years may be effectively down scaling the relatively high mean number per tow observations in recent years (Figure B5), such that

the subsequent trend in abundance estimates during recent years would not match the relatively high survey observations that occurred prior to accounting for temporal changes in catchability. This effective down scaling of the relatively high NMFS spring survey observations from recent years may be why SSB estimates declined and average fishing mortality rate estimates increased with each additional split in the NFMS spring survey (Figure B15 no splits; Figure B6 & Figure B20 split in 1985; Figure B7 & Figure B9 split in 1985 and 1993). So, although improvements in model diagnostics, such as residual and retrospective patterns, drove the development of the baseline VPA model, these improvements came at the cost of effectively devaluing the NMFS spring survey trend, particularly the relatively high index values in recent years.

Discussion of Baseline VPA Results

The declining trends in SSB and total abundance suggested by the baseline VPA may be justified by the absence of older aged fish in both the US and Canadian catch and NMFS spring survey (Table B4; Table B5; Table B6). The lack of older aged fish in the spring survey may be related to the ability of these larger faster swimming fish to avoid the trawl. The lack of older aged fish in the US commercial catch may be partially driven by a general warming trend in sea temperature that has allowed mackerel, which generally prefer water temperatures greater than 5°C, to disperse offshore to the north and east (Figure B12) where they are unavailable to the fishery that mostly operates in near shore areas off of Rhode Island and New Jersey. Alternatively, few mackerel may be surviving to older ages from the relatively poor recruitments that have occurred in recent years (Figure B10; Figure B13).

The magnitude of the changes in catchability among the three time blocks of the NMFS spring survey suggest that additional factors other than a switch to polyvalent trawl doors in 1985 may be affecting the availability of mackerel to the trawl gear. For example, a shift in the distribution of mackerel to the north and east (Figure B12) that may have occurred more consistently in recent years would result in mackerel inhabiting generally shallower water. When mackerel are in relatively shallow water and move deeper as an avoidance response to the approaching survey boat they would be moving to near the ocean floor where they would be more easily caught by the trawl. This increase

in availability would not occur in deeper water because the trawl may still pass under the school. In support of this hypothesis, mackerel catch weighted mean depth of the NMFS spring survey has generally declined among years, and averaged 101.6m during 1968-1984 and 63.2m during 1985-2008 (Figure B14). Another hypothesis is that mackerel have increasingly occupied benthic habitats in response to the general absence of groundfish predators (e.g., Atlantic cod *Gadus morhua*), which would make them more susceptible to the bottom trawl. McQuinn (2009) provides support for this hypothesis for Atlantic herring *Clupea harengus*, but no study has been directed at mackerel.

Sensitivity Analysis

Given the magnitude of the changes in catchability between the time blocks of the NMFS spring survey used in the baseline VPA, and the uncertainty in the explanation for those changes, a more detailed examination of the results of a VPA without those splits was warranted. Spawning stock biomass from a VPA with no splits in the spring survey generally declined during 1972-2000, but increased during 2001-2008 to an all-time high of 2.1 million metric tons, which was in contrast to the results from the baseline VPA (Figure B15). Average fishing mortality rate from this VPA was generally stable during 1980-2008 and varied around a value of approximately 0.08, which was also in contrast the baseline model (Figure B15). However, this VPA also exhibited residual and retrospective patterns (patterns similar to Figure B1 and Figure B6), and abundance estimates in the terminal year+1 were all at the upper bound. So, although this VPA may serve to bound the model estimates, from a diagnostics standpoint it should likely not be considered a viable alternative.

In all of the VPA models described above, natural mortality (M) was equal to 0.2 and was age and time invariant. The sensitivity of the baseline VPA to this assumption was evaluated by fitting two variants of the baseline VPA with M=0.3 and M=0.1. The general trends in SSB and average fishing mortality with M=0.3 were generally similar to the baseline VPA, but SSB was higher and average fishing mortality was lower in all years (Figure B16). The retrospective patterns with M=0.3 were also slightly improved relative to the baseline VPA (Figure B17). The general trends in SSB and average fishing mortality with M=0.1 were generally similar to the baseline VPA, but SSB was

lower and average fishing mortality was higher in all years (Figure B18). The retrospective patterns with M=0.1 were also slightly worse relative to the baseline VPA (Figure B19).

Preliminary Statistical Catch at Age Model

A statistical catch at age (SCA) model that had been previously used for striped bass Morone saxatilis was also considered for mackerel. Data sources considered were total annual commercial mackerel catch (i.e., sum of US and Canadian) during 1962-2008, age composition of the commercial catch (age-1 to an age-7 plus group), mean weight at age during 1962-2008, annual NMFS spring bottom trawl survey index data during 1968-2008 (geometric mean; split in 1985) and the age composition for this survey, standardized bottom fished commercial otter trawl CPE data during 1978-2008 (aggregate index), and standardized mid-water commercial otter trawl CPE data during 1994-2008 (aggregate index). Unlike the model for striped bass, fishery and survey selectivity at age were input as constants (time invariant; Table B7). Other biological parameters (e.g., natural mortality) were also constant at values equal to that used in the baseline VPA described above. This SCA model was fit using auto-differentiation model builder software by minimizing the total negative log likelihood, which was summed over the individual negative log likelihood components of each data source. Preliminary SCA model fits suggested that this model had problems with scale, was unstable, exhibited residual patterns, and was sensitive to the relative weight placed on each negative log likelihood component. Consequently, additional details for this model are not provided and this model should likely not be considered as a viable option. However, some preliminary results are provided to illustrate that the trends from the baseline VPA are not unique and can be reproduced by alternative assessment model types.

Trends in SSB and fully selected fishing mortality were similar to that of the baseline VPA (Figure B21). Spawning stock biomass peaked in 1970 at 0.90 million metric tons and has generally declined to an all-time low of 0.05 million metric tons in 2008 (Figure B21). Fully selected fishing mortality was variable during 1962 to 2000, but increased to an all-time high of 1.1 in 2007 and declined to 0.9 in 2008 (Figure B21).

Reference Points - Yield per Recruit and Equilibrium Projections

Yield per recruit (YPR) analyses and deterministic projections were conducted using the YPR and AgePro software (versions 2.7.2 and 3.3.8 respectively) from the NMFS National Fisheries Toolbox (NFT). Biological parameters required in each case were based on estimates or calculations from the baseline VPA, or were set equal to values also used in the baseline VPA (Table B7). Preliminary results of deterministic projections seemed to be at equilibrium after 30 years, and so all simulations used a 30 year planning horizon. Recruitment in each year of the projections was randomly drawn from the age-1 recruitment estimates during 1962-2008 from the baseline VPA model.

The dome of the YPR versus fishing mortality relationship was relatively flat, and so F_{max} may not be well-defined. Therefore, $F_{0.1}$ was used as the proxy for F_{MSY} in deterministic projections (Table B8). Equilibrium average SSB at a fishing mortality rate equal to $F_{0.1}$ (0.26) equaled 549,000 metric tons (Figure B23).

Stock Status Conclusions

Based on results of the baseline VPA, SSB in 2008 was 210,000 metric tons. Half of the B_{MSY} proxy (549,000mt) equals 274,500mt, and so the stock would be categorized as overfished. $F_{0.1}$ equaled 0.26, which is less than the baseline VPA 2008 average fishing mortality rate of 0.38 (ages 3-5), and so overfishing is occurring.

Assuming that the average age-1 recruitment estimated by the baseline VPA model during 1962-2008 represents expected future recruitment, deterministic projections at the current fishing mortality rate estimated by the baseline VPA (i.e., 2008 fishing mortality rate = 0.38) suggested that average SSB may decline to approximately 177,000mt in 2010 and 160,000mt in 2011, with increasing SSB thereafter (Figure B23).

Table B1. Abundance estimates at age in the terminal year+1, their standard errors (SE), and coefficients of variation (CV) from the baseline VPA model.

Age	N Estimate in Terminal yr+1	SE	CV
2	153051	175497	1.15
3	57154	57999	1.01
4	113964	107421	0.94
5	37123	38740	1.04
6	26275	40301	1.53

Table B2. Catchability estimates, their standard errors (SE), and coefficients of variation (CV) from the baseline VPA model

Survey	Year Block	Age	Survey Number	Catchability	SE	CV
Spring	1968-1984		1	2.31E-07	8.45E-08	0.37
Spring	1968-1984	2	2	2.69E-07	7.77E-08	0.29
Spring	1968-1984	3	3	1.98E-07	5.88E-08	0.30
Spring	1968-1984	4	4	1.45E-07	4.49E-08	0.31
Spring	1968-1984	5	5	1.28E-07	4.48E-08	0.35
Spring	1968-1984	6	6	9.53E-08	3.38E-08	0.35
Spring	1968-1984	7	7	5.64E-08	2.52E-08	0.45
Spring	1985-1992	1	8	3.41E-06	1.34E-06	0.39
Spring	1985-1992	2	9	3.95E-06	1.45E-06	0.37
Spring	1985-1992	3	10	2.04E-06	6.59E-07	0.32
Spring	1985-1992	4	11	1.46E-06	6.00E-07	0.41
Spring	1985-1992	5	12	1.10E-06	5.99E-07	0.55
Spring	1985-1992	6	13	8.30E-07	4.11E-07	0.50
Spring	1985-1992	7	14	3.34E-07	1.30E-07	0.39
Spring	1993-2008	1	15	1.80E-05	2.85E-06	0.16
Spring	1993-2008	2	16	1.98E-05	3.52E-06	0.18
Spring	1993-2008	3	17	9.82E-06	1.54E-06	0.16
Spring	1993-2008	4	18	5.49E-06	7.68E-07	0.14
Spring	1993-2008	5	19	3.81E-06	7.72E-07	0.20
Spring	1993-2008	6	20	2.32E-06	5.27E-07	0.23
Spring	1993-2008	7	21	3.57E-07	1.24E-07	0.35
OTF	1978-1988	1-7	29	6.87E-03	7.75E-04	0.11
OTF	1989-2008	1-7	30	1.83E-02	1.61E-03	0.09
ОТМ	1994-2008	1-7	31	7.31E-03	9.19E-04	0.13

Table B3. Swept area abundance estimates from the NMFS spring survey (arithmetic mean #/tow) (SurveyPopEstimate), the baseline VPA estimates of total abundance, and the ratio of the two.

Year	SurveyPopEstimate	VPA(000's)	Survey/VPA
1968	305836000	9800178	0.0312
1969	2088090	10292353	0.0002
1970	40608200	10782378	0.0038
1971	54473800	9365243	0.0058
1972	36640800	8085417	0.0045
1973	293858000	7782619	0.0378
1974	31393500	7754532	0.0040
1975	28135900	7859494	0.0036
1976	25225500	5806313	0.0043
1977	4020820	4007538	0.0010
1978	13587800	3144079	0.0043
1979	2416680	3154305	0.0008
1980	7837460	2596178	0.0030
1981	81948100	2222144	0.0369
1982	22385800	2507199	0.0089
1983	3866420	5339870	0.0007
1984	70033300	4482400	0.0156
1985	35568100	3852569	0.0092
1986	18029500	3149861	0.0057
1987	152038000	2592623	0.0586
1988	72290400	2505348	0.0289
1989	52964200	2638376	0.0201
1990	46197000	2170484	0.0213
1991	100398000	1896417	0.0529
1992	104186000	1670440	0.0624
1993	111972000	1336589	0.0838
1994	166062000	1257505	0.1321
1995	105244000	1257768	0.0837
1996	176447000	1155999	0.1526
1997	94552300	1202367	0.0786
1998	108213000	1024660	0.1056
1999	218439000	964352	0.2265
2000	303624000	2346968	0.1294
2001	502557000	2074228	0.2423
2002	151912000	1729615	0.0878
2003	261037000	1628489	0.1603
2004	477652000	1778710	0.2685
2005	139487000	1414483	0.0986
2006	299558000	1301302	0.2302
2007	130056000	928281	0.1401
2008	312040000	803102	0.3885

Table B4. US mackerel catch at age (000s).

year	1	2	3	4	5	6	7	8	9	10+
1968	118,409	57,679	53,778	34,153	12,795	5,880	315	115	534	48
1969	3,051	243,349	147,855	64,358	5,039	2,392	1,218	2,787	1,871	1,431
1970	178,335	51,767	496,983	156,882	25,733	6,663	4,982	8,720	8,770	3,358
1971	70,235	289,693	126,362	536,983	198,852	33,531	7,556	2,669	3,154	11,935
1972	22,100	85,601	253,001	178,572	372,354	83,684	20,185	4,144	7,803	4,433
1973	156,661	271,650	279,696	228,373	184,575	184,715	26,542	9,448	3,631	4,502
1974	92,677	233,097	254,413	96,039	109,590	107,156	102,549	24,184	5,759	2,646
1975	368,394	422,098	108,826	96,454	55,966	64,989	49,862	49,037	12,192	3,083
1976	11,697	343,418	259,590	80,470	48,714	25,458	38,156	32,706	21,113	14,245
1977	1,353	20,757	81,258	44,098	8,778	7,652	4,892	5,038	3,015	2,694
1978	98	18	869	2,667	1,725	2,042	1,543	551	3,098	4,803
1979	196	120	111	485	1,398	779	610	318	498	4,043
1980	1,194	9,445	1,156	463	1,813	3,967	1,448	692	604	3,202
1981	9,955	4,264	4,057	217	344	1,431	3,957	1,591	905	1,608
1982	1,555	5,901	1,091	4,096	485	291	777	3,572	1,351	2,596
1983	1,956	13,678	4,041	985	2,988	222	254	2,381	2,430	2,899
1984	440	20,626	13,140	1,787	419	3,049	261	221	1,378	8,360
1985	2,748	1,047	99,205	19,695	1,648	299	1,755	131	186	7,266
1986	926	8,433	3,449	60,057	13,872	1,171	211	2,549	98	4,173
1987	2,877	11,470	11,264	5,417	82,985	12,102	2,279	180	2,024	2,815
1988	888	12,306	9,246	8,023	9,199	82,006	18,546	2,401	1,058	4,980
1989	1,533	8,301	9,757	6,384	5,536	1,777	67,672	2,284	556	1,471
1990	3,731	23,183	37,408	6,945	5,730	3,506	161	38,427	1,711	923
1991	767	8,504	38,582	15,066	5,248	3,138	2,248	151	16,336	643
1992	105	4,124	2,278	11,546	6,750	659	821	221	455	5,606
1993	1,402	4,305	2,818	1,674	3,524	1,263	258	163	417	1,560
1994	4,315	6,126	25,083	22,836	6,333	14,288	1,480	359	214	2,820
1995	7,913	6,447	2,034	4,870	4,110	1,463	4,504	945	104	331
1996	5,180	26,922	18,745	932	7,365	3,347	931	3,125	503	591
1997	1,819	10,164	12,478	6,511	438	4,814	3,720	2,236	3,015	1,087
1998	381	11,324	9,130	7,131	4,428	650	3,449	2,117	573	933
1999	390	2,252	9,252	6,682	4,507	2,756	972	2,227	1,360	920
2000	2,418	7,354	4,680	5,754	1,985	855	321		67	67
2001	1,000	17,752	12,735	5,070	5,741	1,556	1,212	574	136	237
2002	3,934	8,571	50,604	8,277	3,012	7,606	2,575	406	140	6
2003	6,470	19,591	20,744	48,522	5,555	3,901	3,670	229		
2004	10,238	53,518	16,369	20,485	65,505	6,620	1,516	280	216	
2005	1,370	58,347	39,017	8,877	5,627	30,018	494	2,502		
2006	1,001	10,957	97,248	29,916	8,276	7,092	26,658	672	113	43
2007	2,090	29,248	20,234	28,740	5,862	925	705	2,535	129	
2008	8,644	15,723	33,744	9,253	9,904	1,927	188	248	617	23

Table B5. Canadian mackerel catch at age (000s).

	1	2	3	4	5	6	7	8	9	10+
1968	43,062	7,157	10,343	7,393	2,819	1,349	721	1,658	10,425	97
1969	5,692	26,359	18,057	2,027	929	855	1,099	440	462	9,656
1970	20,277	3,654	33,584	8,047	2,496	451	425	1,578	1,645	4,335
1971	7,156	7,389	1,702	35,931	7,620	1,753	2,203	1,526	1,879	5,517
1972	-	136	4,401	5,541	24,826	4,975	5,248	77	546	6,833
1973	9,176	20,624	9,649	9,333	13,972	22,293	8,317	2,771	837	1,603
1974	8,618	24,340	26,703	14,602	12,594	12,417	15,377	4,053	1,714	1,749
1975	14,206	24,905	13,049	11,636	7,052	7,526	5,456	3,917	825	581
1976	1,686	21,171	27,110	10,982	7,740	3,868	4,922	3,977	3,123	1,165
1977	740	7,136	22,566	11,319	3,683	2,570	809	1,443	897	1,721
1978	2	182	3,831	14,733	11,575	6,358	3,157	1,649	1,402	2,497
1979	204	480	1,189	6,615	17,202	12,321	5,590	2,282	1,702	2,457
1980	6	1,455	2,156	1,463	5,087	9,833	6,148	2,692	1,604	1,998
1981	6,145	2,836	5,143	1,183	1,656	4,669	7,743	3,309	1,595	1,892
1982	2,145	5,899	1,609	5,004	715	1,609	2,623	4,828	1,549	2,504
1983	244	1,622	2,459	915	4,012	478	946	3,119	7,770	3,601
1984	60	19,774	14,060	1,413	781	1,551	339	479	2,022	5,640
1985	357	511	23,790	12,844	1,252	656	2,197	289	551	7,605
1986	363	4,282	3,259	40,844	11,522	933	485	635	117	1,915
1987	1,291	3,118	3,358	2,288	27,133	5,692	232	183	83	716
1988	117	703	1,028	1,932	2,481	24,769	4,493	227	131	572
1989	2,399	8,862	1,276	937	1,541	575	20,957	2,693	369	781
1990	390	6,222	9,737	1,457	888	966	639	16,765	923	277
1991	646	6,106	17,808	9,560	1,212	762	1,052	849	10,964	557
1992	628	2,627	3,014	14,148	8,630	1,411	733	1,048	884	11,142
1993	117	4,900	8,493	4,497	13,011	7,686	1,660	651	699	6,882
1994	672	231	3,896	5,905	2,856	13,672	5,977	929	244	2,925
1995	10,603	14,206	698	4,674	4,093	1,768	5,757	2,281	203	590
1996	2,505	8,050	7,052	1,013	5,380	6,519	1,622	7,094	1,806	893
1997	5,083	11,823	10,923	4,604	638	3,709	3,081	545	4,212	785
1998	1,927	18,525	9,977	9,560	4,291	505	2,432	2,024	412	1,472
1999	1,348	4,463	14,625	7,509	4,698	2,049	478	681	663	354
2000	23,686	2,238	1,498	4,548	2,388	2,448	381	54	162	309
2001	8,085	59,159	11,056	2,443	4,118	828	856	142	33	94
2002	6,010	3,783	69,432	5,969	2,246	2,108	531	402	47	72
2003	3,741	4,355	5,798	73,409	8,430	1,117	1,192	32	5	
2004	27,313	24,386	5,971	4,717	55,581	2,438	1,312	601	9	
2005	17,282	42,703	24,228	3,982	3,783	40,138	1,670	741	80	45
2006	23,720	11,255	31,940	14,790	2,356	1,407	12,547	335	29	
2007	418	23,556	19,167	35,464	8,085	1,242	963	3,996	22	6
2008	9,788	3,888	21,129	4,630	8,626	947	334	86	628	4

Table B6. Mean number of mackerel per tow at age from the NMFS spring survey.

Year	1	2	3	4	5	6	7	8	9	10+
1968	12.9400	0.4150	0.1890	0.0520	0.0160	0.0000	0.0000	0.0000	0.0000	0.0000
1969	0.0300	0.1420	0.0170	0.0060	0.0000	0.0010	0.0010	0.0010	0.0000	0.0000
1970	0.2800	0.1850	1.3910	0.6120	0.1810	0.0620	0.0550	0.0880	0.0830	0.0470
1971	0.3280	0.9410	0.4380	1.1250	0.3930	0.0620	0.0140	0.0070	0.0060	0.0080
1972	0.8720	0.3080	0.5930	0.2260	0.3250	0.0580	0.0110	0.0010	0.0020	0.0000
1973	0.3510	0.3400	0.1760	0.2340	0.1260	0.2850	0.1820	0.1520	0.0460	0.1020
1974	0.3480	0.1800	0.2360	0.0480	0.0990	0.0600	0.2080	0.0910	0.0590	0.0230
1975	0.6540	0.2300	0.0410	0.0230	0.0060	0.0070	0.0040	0.0040	0.0030	0.0000
1976	0.0960	0.3870	0.0710	0.0140	0.0020	0.0010	0.0030	0.0000	0.0020	0.0010
1977	0.0100	0.0470	0.0850	0.0450	0.0150	0.0050	0.0030	0.0070	0.0040	0.0140
1978	0.0500	0.1100	0.1030	0.1940	0.0960	0.0280	0.0110	0.0030	0.0150	0.0180
1979	0.0110	0.0040	0.0070	0.0130	0.0500	0.0140	0.0100	0.0060	0.0060	0.0480
1980	0.0230	0.1880	0.0070	0.0050	0.0230	0.0490	0.0110	0.0110	0.0070	0.0280
1981	0.3360	0.1370	0.4290	0.0480	0.0460	0.1610	0.4040	0.2300	0.1390	0.4020
1982	0.4320	0.1950	0.0220	0.0980	0.0180	0.0100	0.0250	0.0970	0.0440	0.0840
1983	0.2360	0.2870	0.0220	0.0020	0.0040	0.0010	0.0000	0.0010	0.0020	0.0020
1984	0.2600	1.8010	0.6060	0.0420	0.0050	0.0430	0.0040	0.0030	0.0160	0.0840
1985	0.3380	0.0850	1.8510	0.2350	0.0280	0.0110	0.0470	0.0030	0.0100	0.1860
1986	0.1300	0.4500	0.0780	0.5910	0.1180	0.0080	0.0010	0.0200	0.0000	0.0470
1987	1.4840	1.7950	0.8740	0.3720	2.9450	0.4970	0.1430	0.0160	0.1380	0.2560
1988	0.6340	0.4580	0.3670	0.3360	0.3750	1.7690	0.4430	0.0510	0.0480	0.2230
1989	1.5830	1.6410	0.0710	0.2840	0.0090	0.0110	0.0670	0.0090	0.0050	0.0180
1990	1.3000	1.3850	0.5010	0.0160	0.0130	0.0060	0.0000	0.0760	0.0090	0.0160
1991	1.6700	0.8890	1.4840	0.5370	0.2400	0.1140	0.0580	0.0000	0.2690	0.0030
1992	2.9790	2.6422	0.5558	1.1593	0.7247	0.1156	0.1304	0.0199	0.0488	0.3450
1993	1.2070	2.6595	1.0091	0.3813	1.0544	0.7203	0.1492	0.1330	0.3325	0.6099
1994	4.1386	1.7436	2.1139	0.8699	0.2815	0.6019	0.2070	0.0512	0.0105	0.2251
1995	3.1701	3.4871	0.5893	1.1824	0.7122	0.2848	0.7191	0.2258	0.0655	0.1310
1996	4.0058	3.2257	1.3258	0.1481	0.6175	0.4196	0.1927	0.2800	0.1539	0.1317
1997	2.9998	1.1619	0.4485	0.2247	0.0254	0.1244	0.1149	0.0452	0.0702	0.0066
1998	5.6474	3.1195	0.6787	0.2863	0.1211	0.0171	0.0867	0.0634	0.0179	0.0240
1999	4.9932	4.1347	2.9206	0.9221	0.4061	0.1784	0.0498	0.0819	0.0436	0.0145
2000	14.7693	2.4561	1.1156	0.7272	0.2514	0.1189	0.0500	0.0000	0.0236	0.0194
2001	12.4608	26.5956	1.7582	0.3622	0.2115	0.0375	0.0114	0.0093	0.0042	0.0012
2002	1.2662	2.9770	5.7418	0.4438	0.1229	0.0494	0.0192	0.0014	0.0000	0.0000
2003	9.1159	8.3906	2.9148	3.2997	0.4028	0.1207	0.0555	0.0000	0.0000	0.0000
2004	21.9188	3.0060	0.3165	0.1166	0.1516	0.0121	0.0020	0.0000	0.0000	0.0000
2005	1.7745	3.7293	0.9319	0.1697	0.1354	0.3667	0.0258	0.0050	0.0000	0.0000
2006	4.4389	9.5737	6.2724	0.6548	0.1372	0.0521	0.1267	0.0120	0.0000	0.0000
2007	1.9963	6.9564	1.2098	1.2239	0.1565	0.0135	0.0224	0.0320	0.0062	0.0000
2008	3.2617	1.6649	1.6213	0.2450	0.2289	0.0000	0.0000	0.0000	0.0305	0.0000

Table B7. Input biological data used for yield per recruit and deterministic projections. Some inputs were also used for a statistical catch at age model (see text).

Age	Selectivity	Natural Mortality	Stock Weights	Catch Weights	Spawning Weights	Proportion Mature
1	0.15	0.2	0.15	0.15	0.15	0.1
2	0.53	0.2	0.24	0.24	0.24	0.6
3	0.91	0.2	0.34	0.34	0.34	1
4	1	0.2	0.4	0.4	0.4	1
5	1	0.2	0.47	0.47	0.47	1
6	1	0.2	0.51	0.51	0.51	1
7	1	0.2	0.61	0.61	0.61	1

Table B8. Results of yield per recruit calculations.

	F	YPR	SSBR	Total Biomass/R	Mean Age	Mean Generation Time	Expected Spawnings
F zero	0.000	0.000	1.796	2.198	5.442	7.746	2.398
F 0.1	0.257	0.163	0.648	1.013	2.977	4.650	1.310
Fmax	0.776	0.187	0.244	0.572	2.027	3.161	0.565
F 40%	0.221	0.156	0.718	1.088	3.136	4.878	1.412

Figure B1. Residuals for the NMFS spring survey at age (top panel) and bottom fished mackerel otter trawl fishery (bottom panel) for a VPA fit with no splits (time blocks) in any index data source.

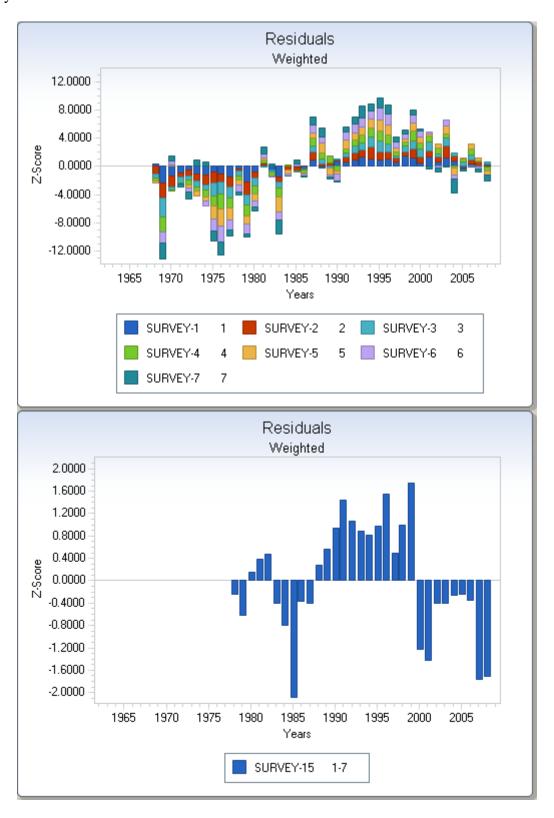
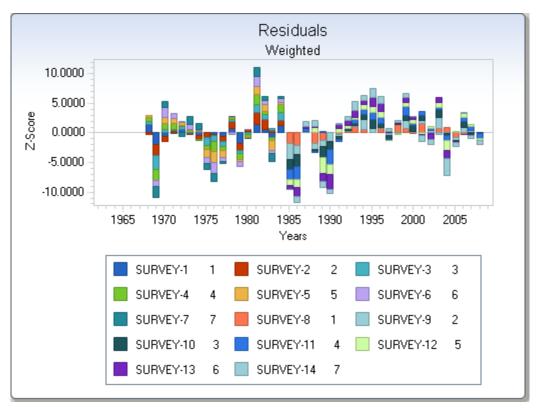



Figure B2. Residuals from a VPA for the NMFS spring survey at age index split in 1985 and for the bottom fished otter trawl fishery index split in 1989.

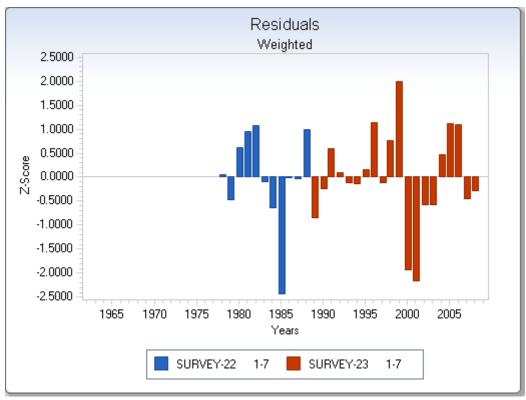


Figure B3. NMFS winter bottom trawl mackerel survey index (stratified ln retransformed mean number per tow with 95% confidence interval).

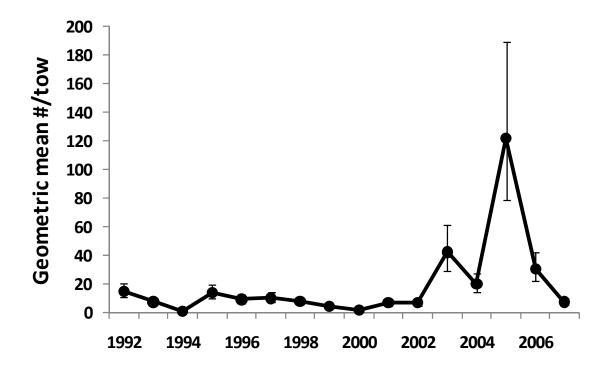


Figure B4. Spawning stock biomass and fishing mortality (averaged for ages 3 to 5) for VPA models with and without the NMFS winter survey (see text for details).

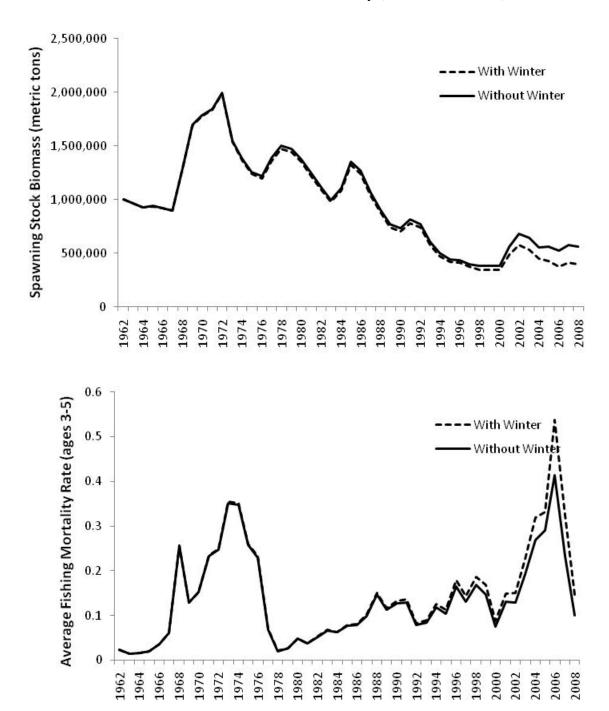


Figure B5. Standardized commercial mackerel catch per effort (CPE) data from bottom fished otter trawls (top panel), mid-water otter trawls (bottom panel), and the NMFS spring bottom trawl survey (both panels).

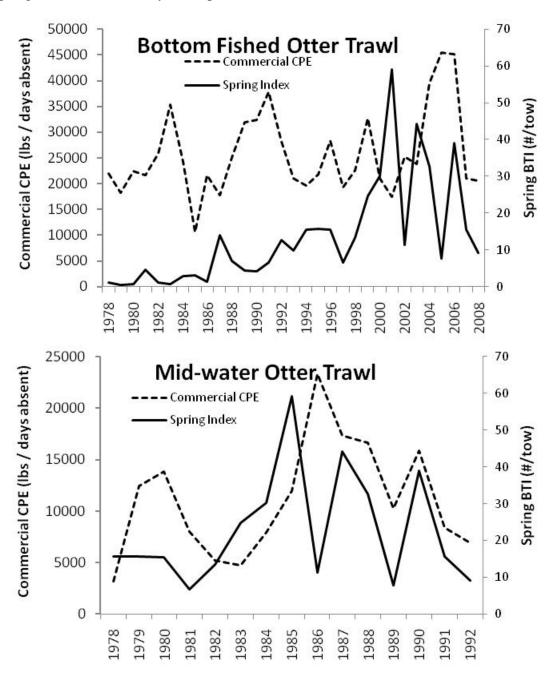


Figure B6. Retrospective pattern in spawning stock biomass (mt) and average fishing mortality rate from a VPA fit using the NMFS spring survey, bottom fished otter trawls, and mid-water otter trawls.

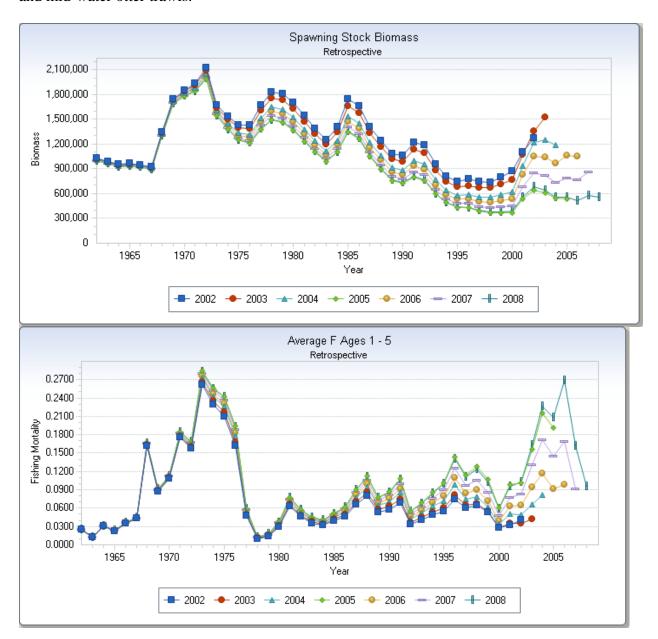
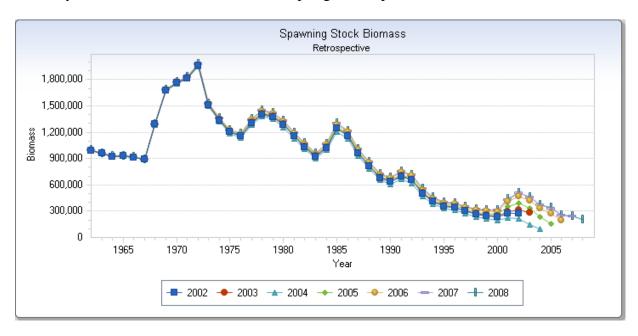



Figure B7. Retrospective pattern in spawning stock biomass (mt) and average fishing mortality rate from a VPA with the NMFS spring index split in 1985 and 1993.

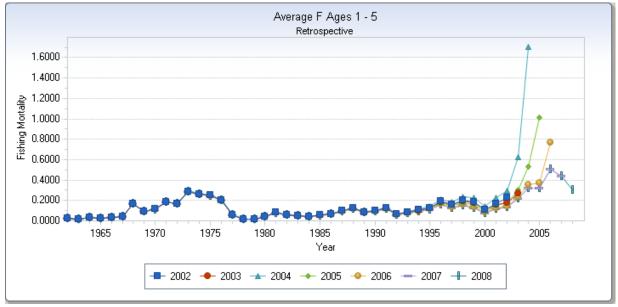
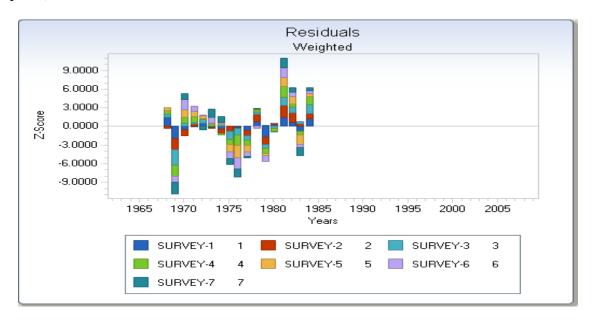



Figure B8. Residuals for the NMFS spring survey index at age (top 3 panels), bottom fished otter trawl CPE index (4th panel), and mid-water otter trawl CPE index (bottom panel) for the baseline VPA model.

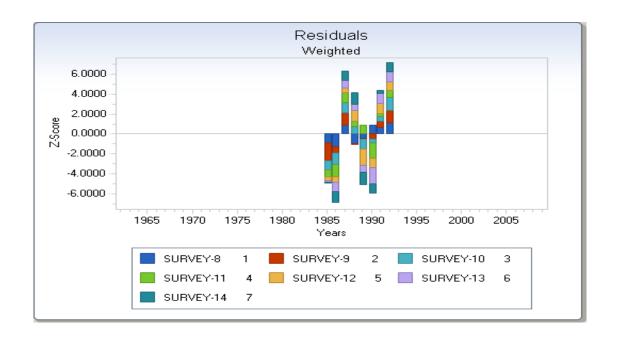
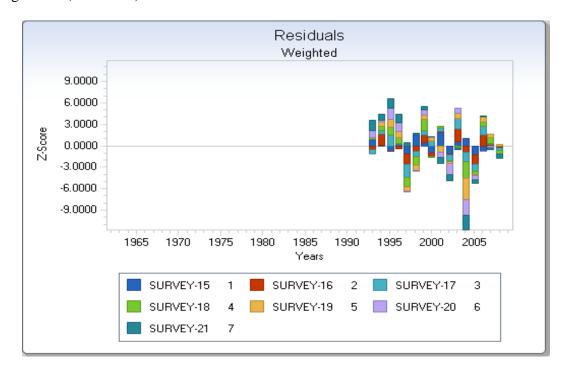



Figure B8 (continued)

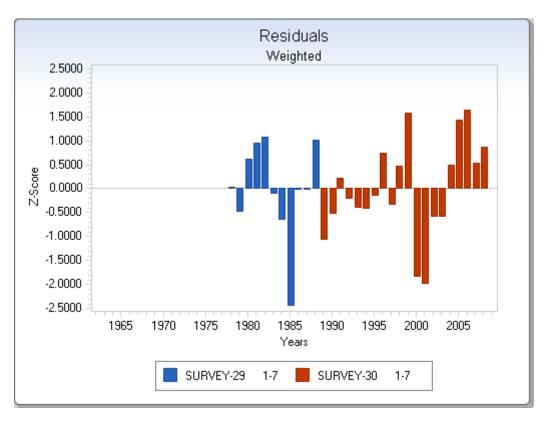


Figure B8 (continued)

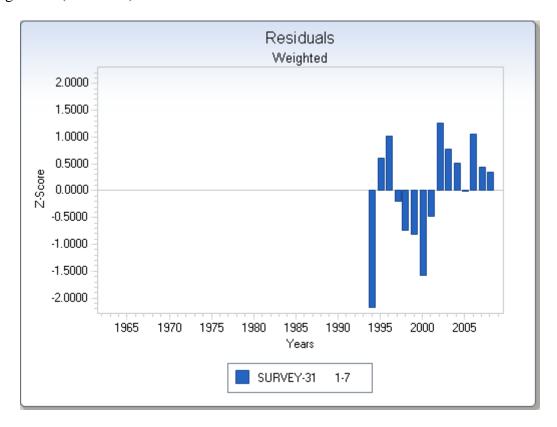


Figure B9. Spawning stock biomass and average fishing mortality rate estimates during 1962-2008 from the baseline VPA model.

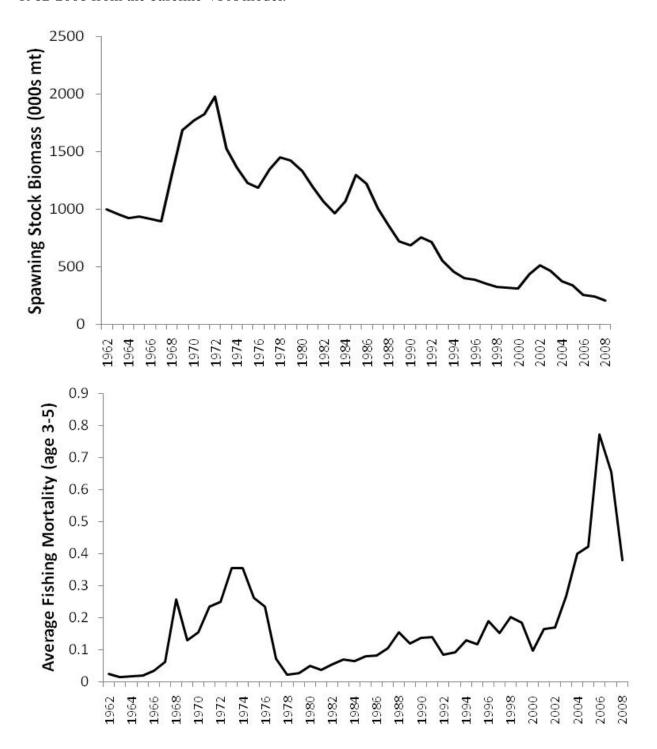


Figure B10. Age-1 recruit estimates during 1962-2008 from the baseline VPA model. The top horizontal long dashed line is the average age-1 recruitment during 1962-1984; the middle horizontal dotted line is the average age-1 recruitment over the entire time series, and the bottom horizontal short dashed line is the average age-1 recruitment during 1985-2008.

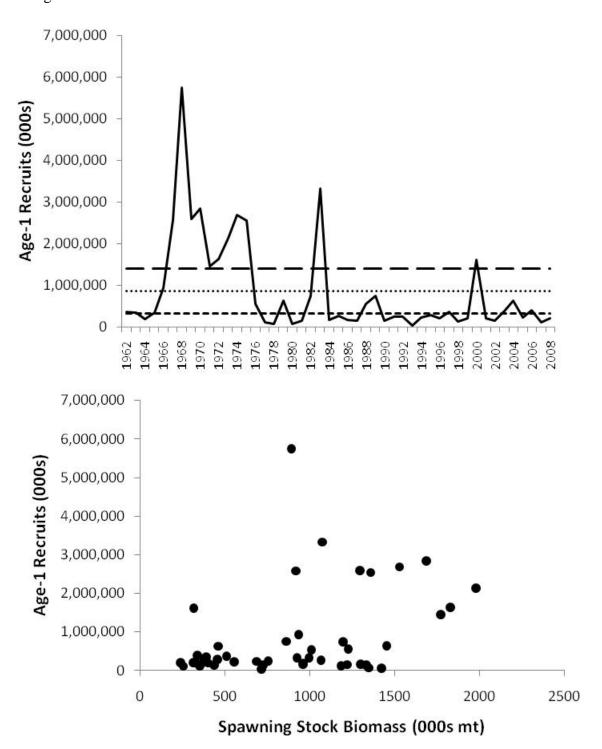


Figure B11. Catchability at age estimates for the NMFS spring bottom trawl survey for the 3 time blocks used in the baseline VPA model.

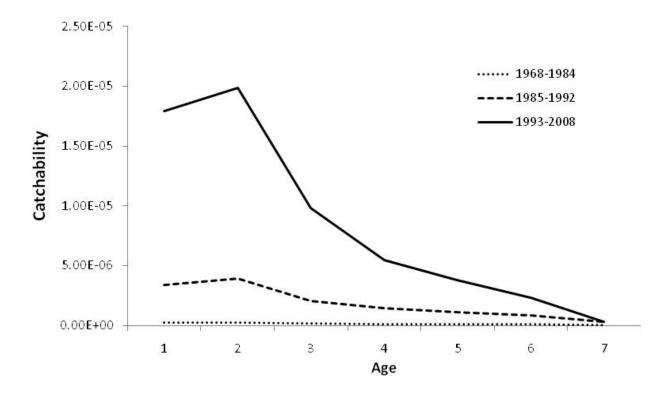
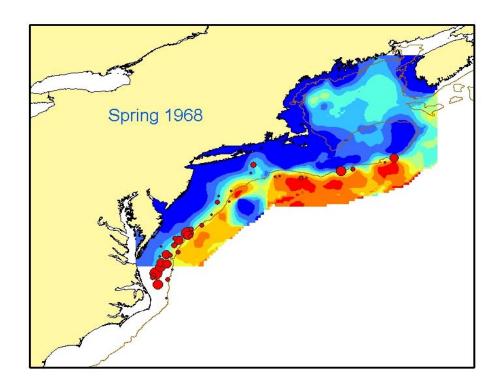



Figure B12.Distribution of Atlantic mackerel and bottom temperature isotherms from NEFSC spring surveys during 1968 (A) and 2001 (B). Figures from Overholtz et al. ("Impacts of inter-annual environmental forcing and long-term climate change on the distribution of Atlantic mackerel on the U.S. Northeast continental shelf").

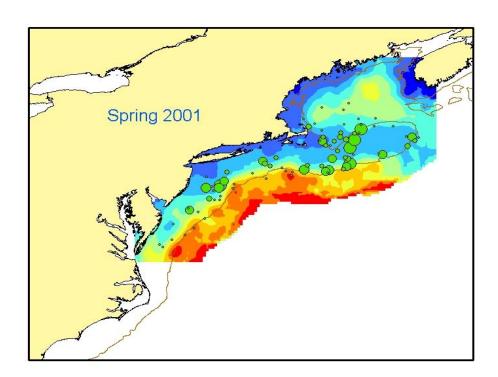


Figure B13. Time series of the larval index. Filled dots correspond to years during which sampling occurred near to the peak of the spawning season. White dots are years when sampling occurred well before or after the spawning season. During these years a larval index can be calculated, though with low reliability. The analyses presented here are preliminary – a routine has been developed to estimate the uncertainty in the larval index, but this routine has not yet been applied to Atlantic mackerel. Figure from Richardson and Hare ("Time series of larval Atlantic mackerel on the northeast United States continental shelf").

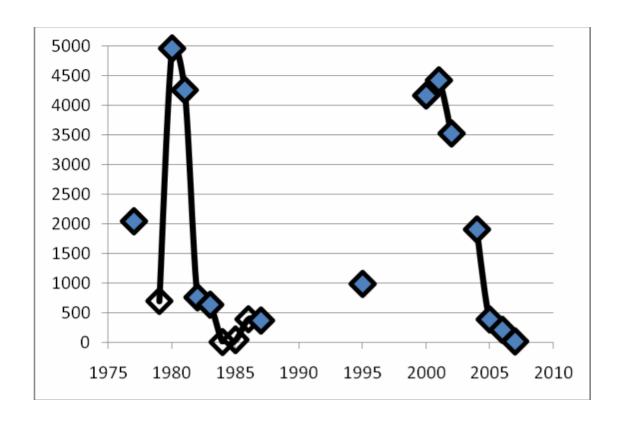


Figure B14. Mackerel catch weighted mean depth (meters) of the NMFS spring survey during 1968-2008.

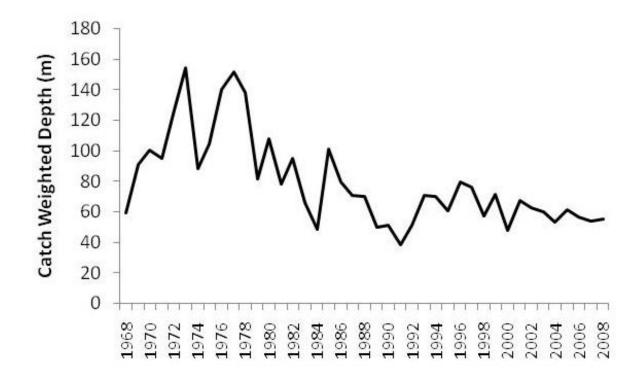


Figure B15. Spawning stock biomass (metric tons) and average fishing mortality rate estimates during 1962-2008 from a VPA with no splits in the NMFS spring survey.

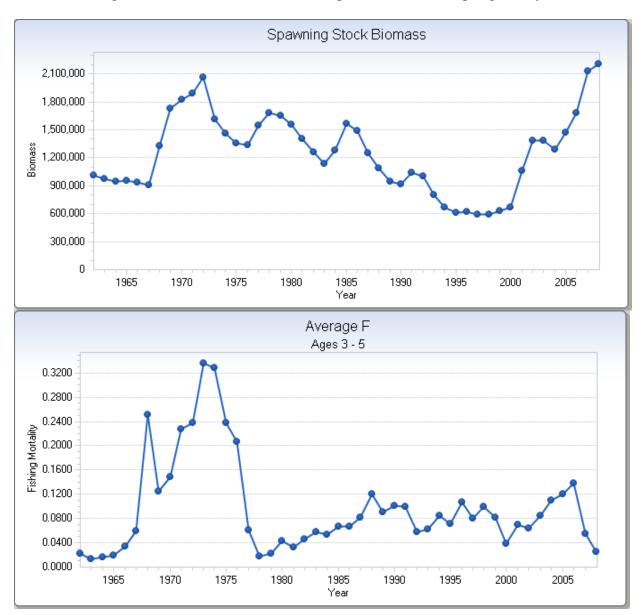
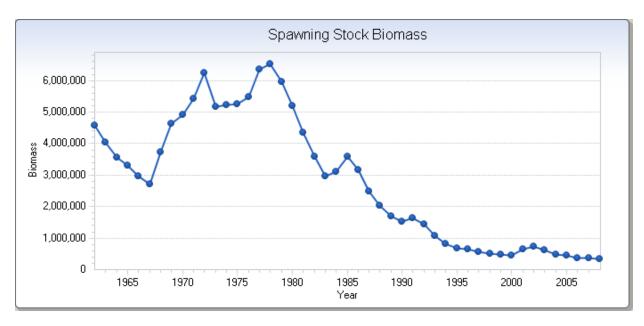



Figure B16. Spawning stock biomass (metric tons) and average fishing mortality rate estimates during 1962-2008 from the baseline VPA, except with natural mortality equal to 0.3.

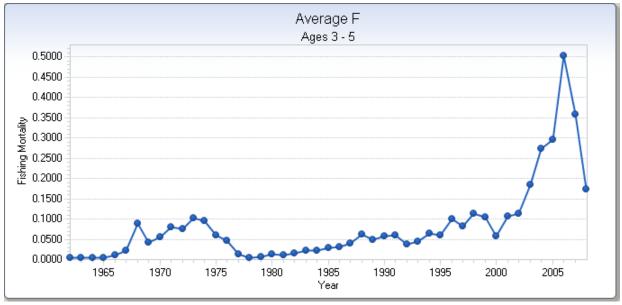


Figure B17. Retrospective pattern in spawning stock biomass and average fishing mortality rate from the baseline VPA, except with M=0.3.

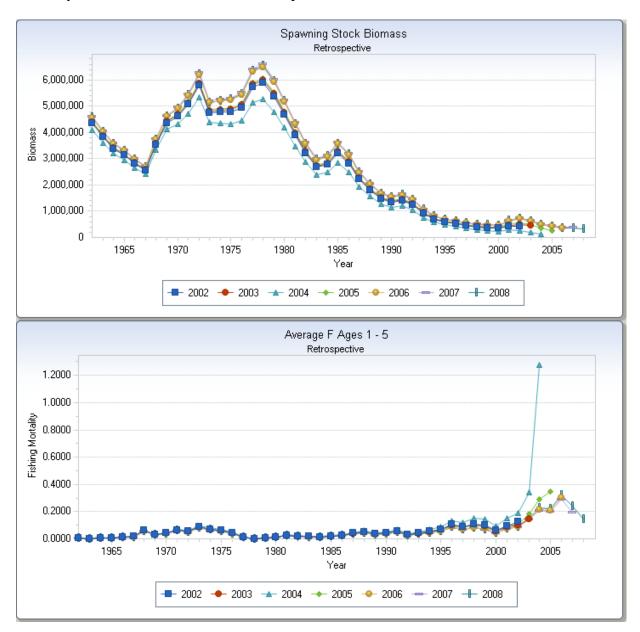
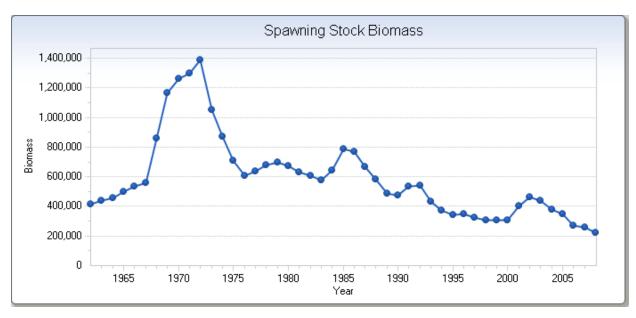



Figure B18. Spawning stock biomass (metric tons) and average fishing mortality rate estimates during 1962-2008 from the baseline VPA, except with natural mortality equal to 0.1.

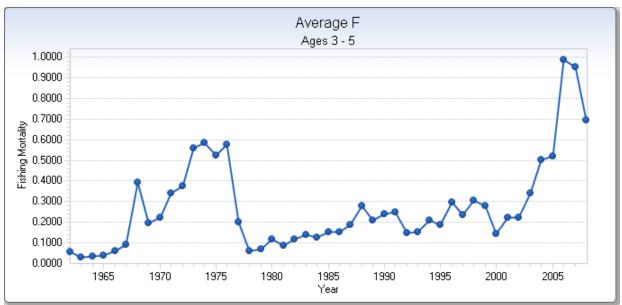
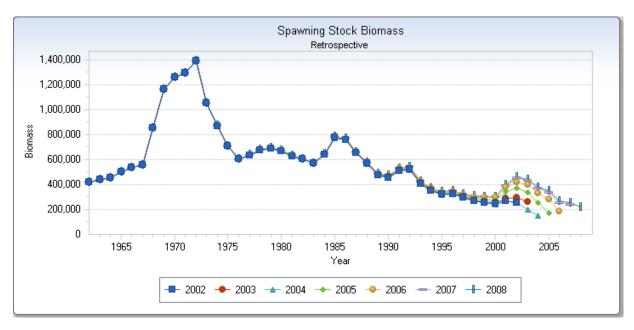



Figure B19. Retrospective pattern in spawning stock biomass and average fishing mortality rate from the baseline VPA, except with M=0.1.

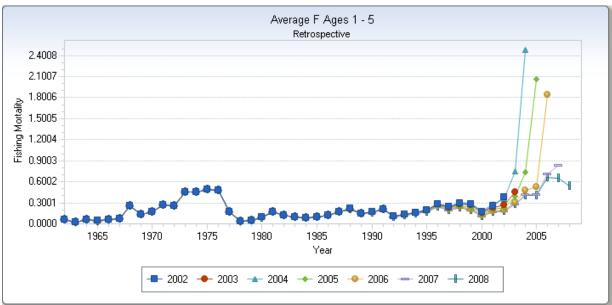
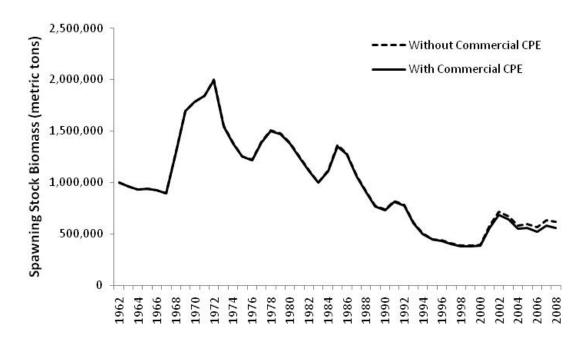



Figure B20. Spawning stock biomass and fishing mortality (averaged for ages 3 to 5) for VPA models with and without commercial mackerel CPE indices from bottom fished and mid-water otter trawls (see text for details). In each of these VPA model, the spring index was split in 1985 (1968-1984; 1985-2008).

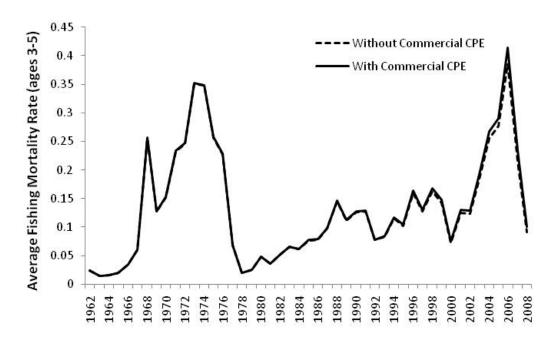
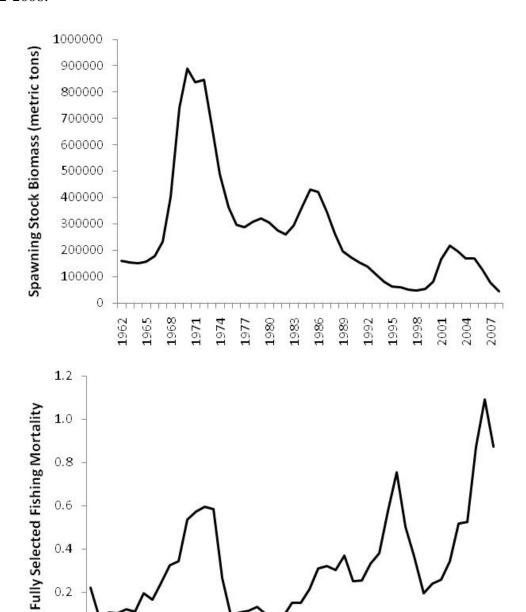



Figure B21. Preliminary spawning stock biomass (mt) and fully selected fishing mortality rate estimates from a statistical catch at age model for Atlantic mackerel during 1962-2008.

0.0

Figure B22. Yield per recruit and spawning stock biomass per recruit versus fishing mortality (see text for details).

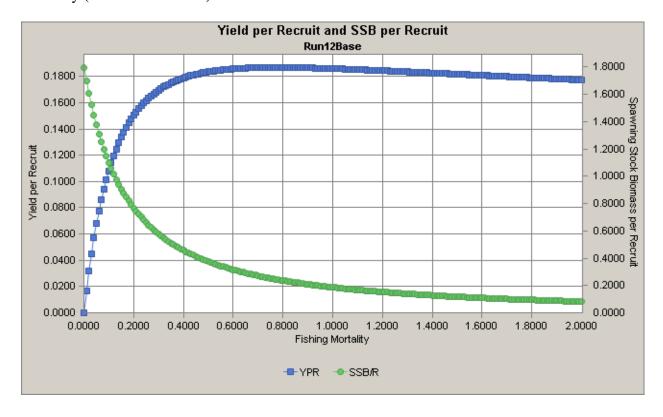
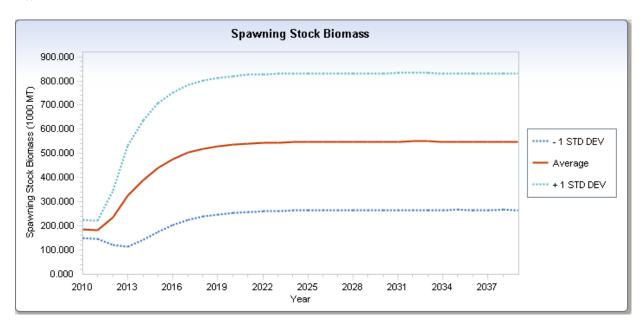
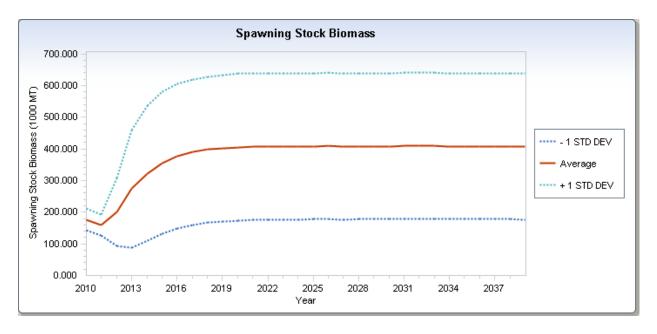




Figure B23. Spawning stock biomass (000s metric tons) from deterministic projections using a fully selected fishing mortality rate equal to $F_{0.1}$ (0.26; top panel) and the 2008 estimate (0.38; bottom panel) from the baseline VPA.

 $F_{0.1} = 0.26$

 $F_{2008} = 0.38$

Working Paper C

Incorporation of mackerel predation removals into assessment models

This document is a working paper for the Transboundary Resource Assessment Committee and should not be cited or distributed without the permission of the author.

The inclusion of mackerel removals from predation was modeled as a separate fleet within the ASAP model. Consumption estimates were made for the eleven primary mackerel predators described in the TRAC data meeting. Predator abundance estimates were available for all predators beginning in 1982. Consumption between 1968 and 1981 was assumed equal to the time series average. Predator estimates based on survey swept area abundance were smoothed using a 3 year moving average and estimates based on assessment model results were unadjusted. Total consumption equaled the sum of annual consumption from all predators (Table C1). Total mackerel removals from predation averaged 29,800 mt with a high value of 139,616 mt in 1984. Estimated predation removals averaged 30% of total removals (catch plus predation).

Predation in ASAP was modeled as total removals paired with an assumed selectivity. Selectivity was fixed at 1.0 for ages 1 and 2, 0.75 at age 3 and 0.2 at age 4 based on size of mackerel measured from stomach samples. A higher proportion at age 4 resulted in a situation where a model solution was not found. The model which provided appropriate diagnostics included three fleets (US, Canada and predators), with similar settings as the non-predation model. Natural mortality (M1) was fixed as 0.1 although the final M at age is the sum of M1 and predator F (fleet 3). Survey series was split at 1984-1985.

Results from the predation model followed the same pattern as the non-predation model, with a peak fishery F in 1975 at 0.63 and 2006 at 0.47, declining in 2008 to 0.26. SSB peaked in 1972 at 1,304,000 mt but since declined to 202,250 mt. The natural mortality (M1 plus M2) at ages 1 and 2 was time variant and averaged 0.45, peaking in 1987 at 0.87. Natural mortality dropped below average in 2000 but has since risen to 0.64 in 2008. F0.1, with average M of 0.45 varying by age (Table C2 and C3) was equal to 0.21 with the associated SSB/R of 0.508. Assuming average recruitment from the time

series (average 1968-2008 age 1 recruits equal 688.5 million), SSB at F0.1 would equal 350,000 mt. Consequently, the stock would be not be considered overfished (<1/2 SSBmsy) but overfishing is occurring.

The addition of removals by predators had the most influence on the estimates of abundance and spawning biomass in the mid-1980s. Fishing mortality was less influenced since predation in the model was primarily on ages 1 and 2 whereas full recruitment to the fishery of both fleets did not occur until age five. The addition of predation data is limited by the availability of annual consumption estimates from only the NEFSC bottom trawl survey. Predation by larger predators not captured in the survey trawl, as well as consumption in Canadian waters, limits the model to a minimal estimate of the predatory removals. Nevertheless, it does provide some additional information not considered with a time and age invariant application of natural mortality rate.

Table C1. Estimates of total mackerel consumption by predator based on NEFSC spring and autumn stomach samples.

mackerel consumption - MT							consumption					
	str bass	bluefish	red hake	white hake	silver hake	winter skate	sp dogfish	goosefish	pollock	cod	fluke	total (mt)
1982	0.0	0.0	0.0	0.0	188.8	0.0	1,640.7	7,187.0	0.0	0.0	0.0	9016.5
1983	0.0	0.0	107.9	0.0	0.0	0.0	10,540.4	0.0	899.0	8,366.4	0.0	19913.7
1984	0.0	0.0	0.0	8,056.6	0.0	2,476.9	46,168.8	45,312.3	0.0	37,601.0	0.0	139615.7
1985	0.0	0.0	0.0	0.0	0.0	0.0	9,642.6	8,839.6	0.0	0.0	0.0	18482.2
1986	0.0	0.0	0.0	13,342.4	47.7	0.0	41,341.9	2,624.9	0.0	6,791.8	0.0	64148.7
1987	0.0	0.0	0.0	0.0	513.9	0.0	44,602.0	0.0	0.0	4,907.9	0.0	50023.8
1988	0.0	2,881.4	0.0	144.0	269.1	0.0	10,667.3	1,584.3	0.0	75.4	0.0	15621.5
1989	0.0	27.0	0.0	0.0	82.6	0.0	13,536.5	0.0	0.0	0.0	0.0	13646.0
1990	0.0	0.0	1,012.9	1,186.5	483.2	1,031.2	25,944.8	0.0	0.0	0.0	0.0	29658.6
1991	0.0	4,179.9	56.8	338.2	234.9	402.9	27,334.6	0.0	0.0	354.7	0.0	32901.9
1992	0.0	0.0	0.0	0.0	28.0	1,151.8	6,086.4	0.0	0.0	0.0	0.0	7266.2
1993	0.0	0.0	572.9	0.0	221.3	0.0	9,518.4	0.0	0.0	0.0	3,790.8	14103.4
1994	0.0	0.0	0.0	0.0	86.4	0.0	4,386.9	0.0	0.0	0.0	617.0	5090.2
1995	0.0	0.0	0.0	0.0	79.2	0.0	8,739.4	0.0	0.0	0.0	0.0	8818.6
1996	0.0	2,411.3	0.0	0.0	63.0	0.0	9,700.7	944.2	0.0	733.2	0.0	13852.4
1997	0.0	2,359.9	0.0	1,696.7	372.4	0.0	7,158.0	0.0	0.0	273.0	0.0	11860.0
1998	0.0	3,584.8	0.0	3,100.4	347.6	766.9	5,703.4	2,740.1	8,233.7	3,019.1	1,514.4	29010.5
1999	0.0	0.0	34.2	0.0	254.4	1,138.6	8,386.4	2,937.6	0.0	0.0	0.0	12751.3
2000	4,089.1	0.0	0.0	1,442.3	3,668.6	1,028.3	9,999.8	8,615.0	0.0	3,014.4	1,789.1	33646.6
2001	46.5	8,151.8	0.0	0.0	371.3	1,177.8	10,772.0	9,407.4	0.0	2,046.3	0.0	31973.2
2002	1,412.7	0.0	0.0	0.0	0.0	0.0	15,375.8	7,996.6	20,169.3	1,964.5	1,065.1	47983.9
2003	103.0	9,792.2	0.0	0.0	122.8	0.0	5,527.1	0.0	0.0	3,709.5	4,116.5	23371.1
2004	0.0	5,118.0	0.0	0.0	14.4	0.0	8,163.7	0.0	0.0	2,782.3	2,572.1	18650.5
2005	168.4	0.0	0.0	3,604.7	0.0	0.0	17,070.2	0.0	0.0	0.0	497.7	21341.0
2006	0.0	0.0	0.0	0.0	54.0	2,266.2	7,513.3	0.0	0.0	0.0	1,809.4	11642.9
2007	182.3	0.0	0.0	0.0	0.0	1,723.1	29,247.9	0.0	0.0	0.0	3,944.7	35098.0
2008	0.0	0.0	0.0	0.0	0.0	0.0	6,036.3	0.0	0.0	0.0	0.0	6036.3

Table C2. Input for yield per recruit analysis using variable M from ASAP predation model.

	Selectivity	Selectivity	Stock	Catch	Spawning fraction		
age	on F	on M =0.45	weights	weights	stock wts	mature	
1	0.13	1.00	0.14	0.14	0.14	0.10	
2	0.48	1.00	0.24	0.24	0.24	0.60	
3	0.81	0.81	0.35	0.34	0.34	1.00	
4	0.95	0.38	0.43	0.42	0.42	1.00	
5	0.99	0.22	0.50	0.49	0.49	1.00	
6	1.00	0.22	0.55	0.54	0.54	1.00	
7	1.00	0.22	0.60	0.59	0.59	1.00	
8	1.00	0.22	0.64	0.63	0.63	1.00	
9	1.00	0.22	0.67	0.66	0.66	1.00	
10+	1.00	0.22	0.70	0.69	0.69	1.00	

Table C3. Results of yield per recruit analysis using variable M from ASAP predation model.

						mean	expected
	F	YPR	SSB/R	B/R	mean age	gen. time	spawnings
F zero	0	0	1.302	1.621	4.935	7.712	1.852
F0.1	0.210	0.101	0.508	0.819	2.961	5.266	0.968
Fmax	N/A						
F40%	0.203	0.100	0.521	0.833	3.001	5.330	0.986

Figure C1. Estimates of fishing mortality for U.S. and Canadian fleets from ASAP model with predation.

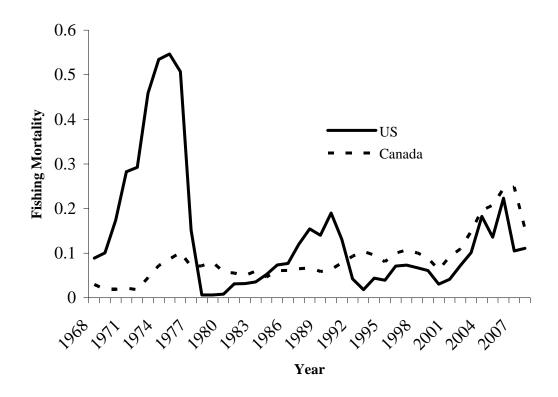


Figure C2. Estimates of total abundance (millions) from ASAP model with predation.

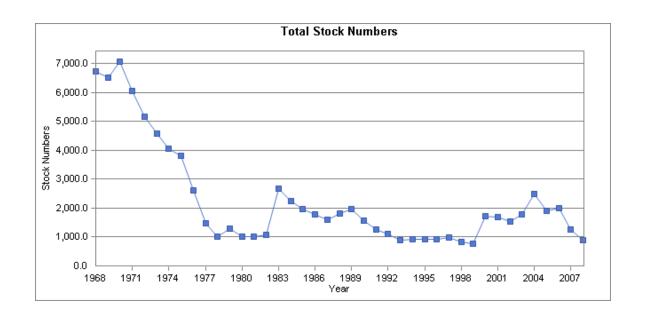


Figure C3. Estimates of spawning stock biomass (000s mt) from ASAP model with predation.

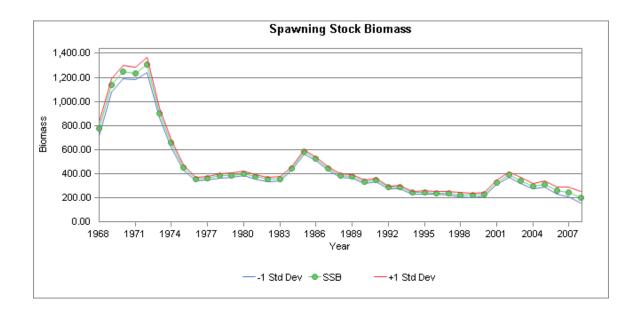
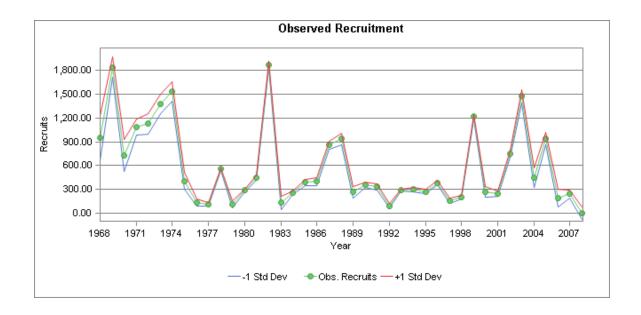
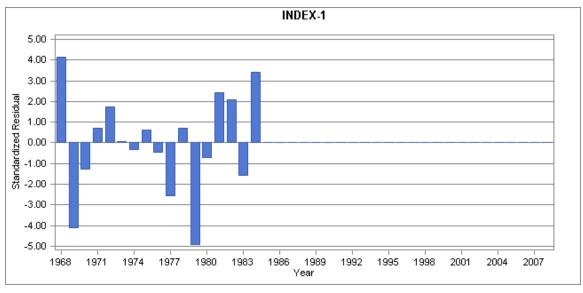
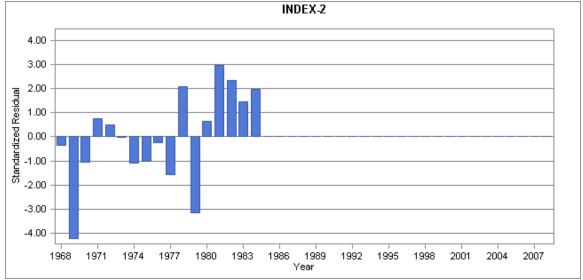
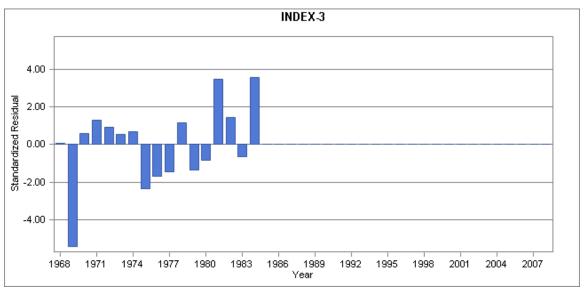
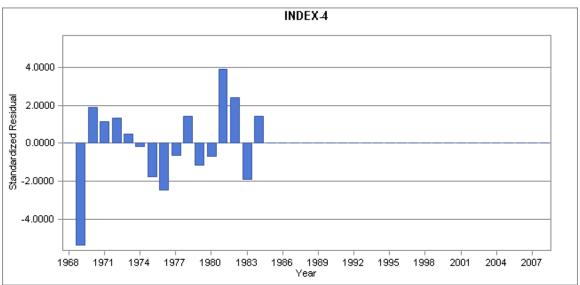
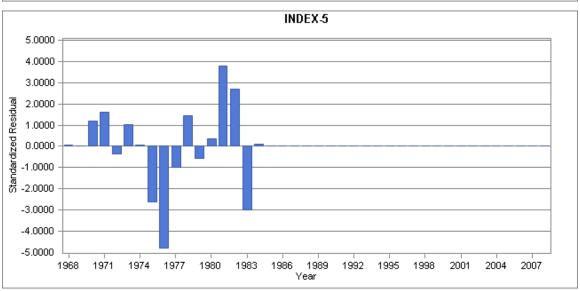
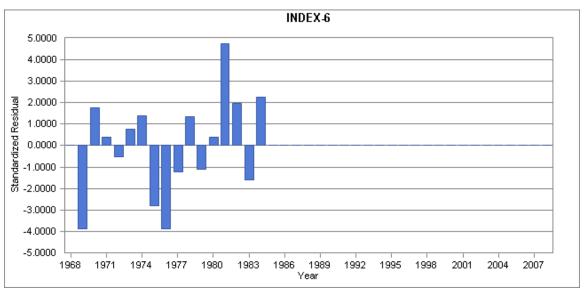
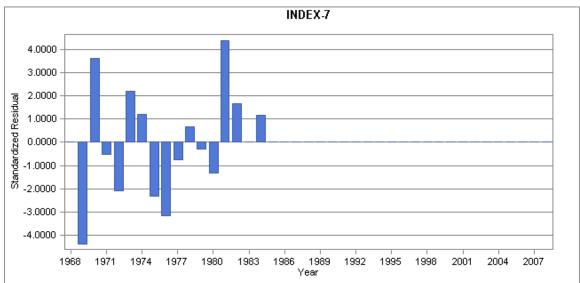


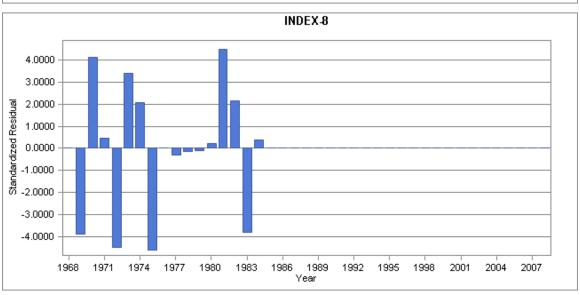
Figure C4. Estimates of age 1 recruitment (millions) from ASAP model with predation.

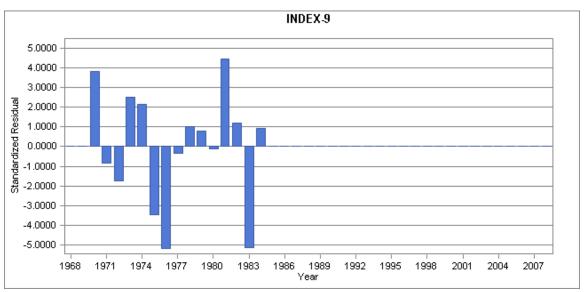






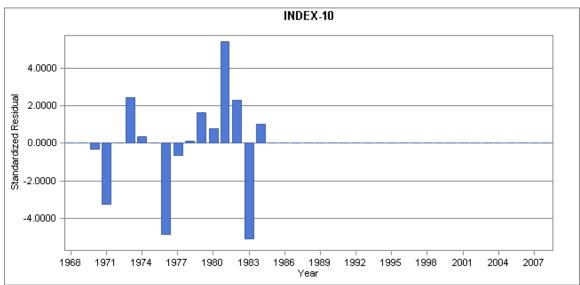

Figure C5. Standardized residuals for survey indices for 1968-1984, ages 1-10+ (indices 1-10), and 1985-2008, ages 1-10+ (indices 11-20).

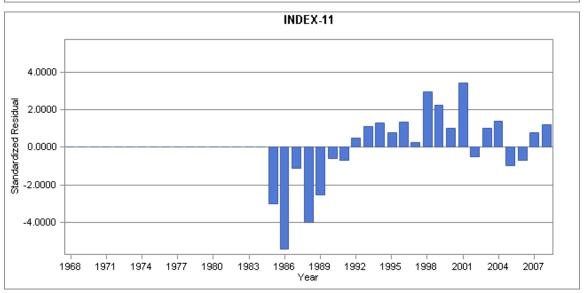


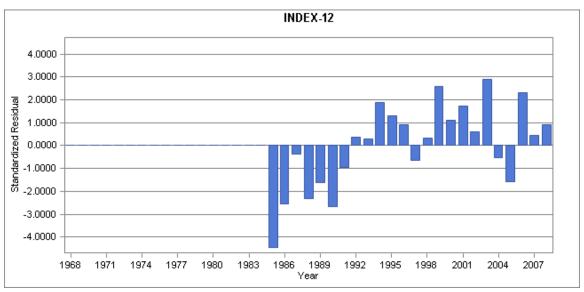


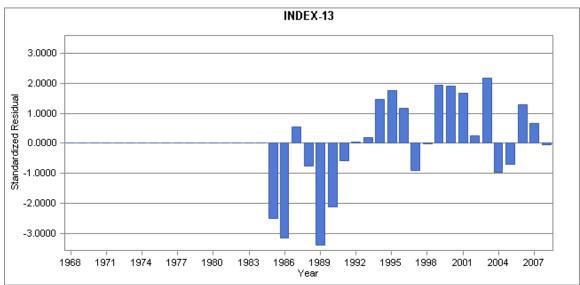


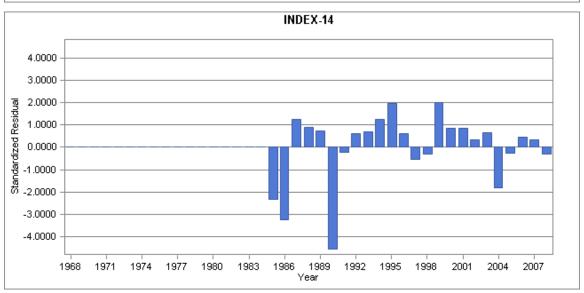


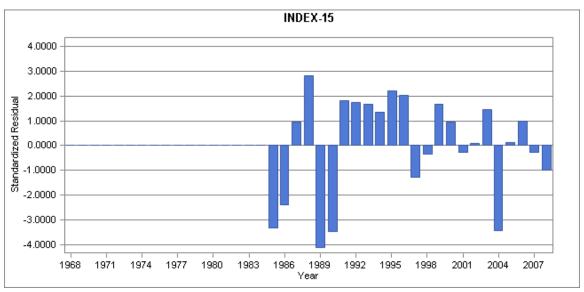


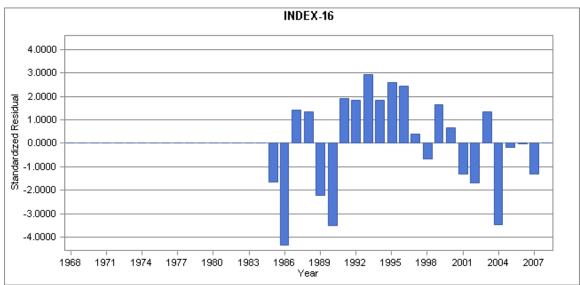


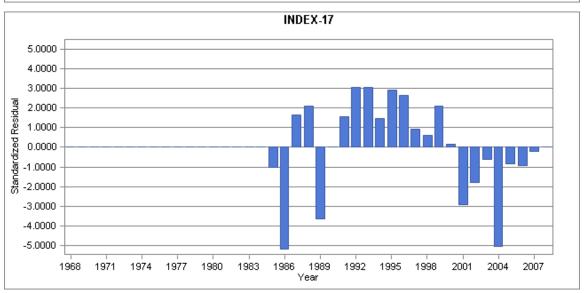


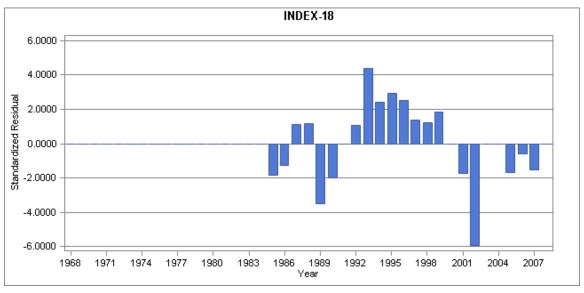


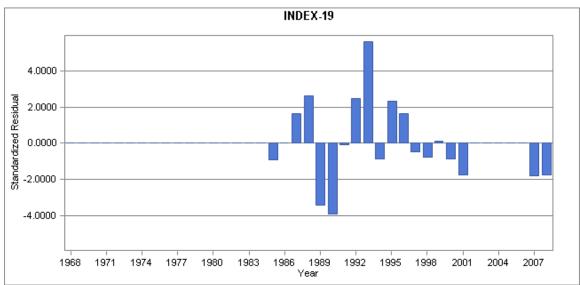












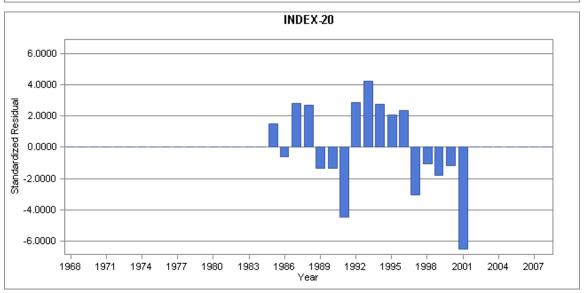
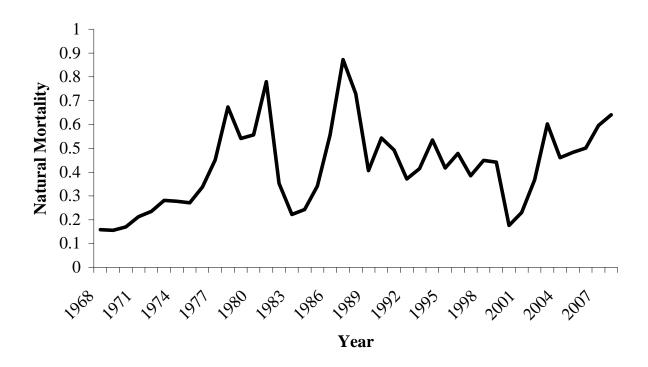
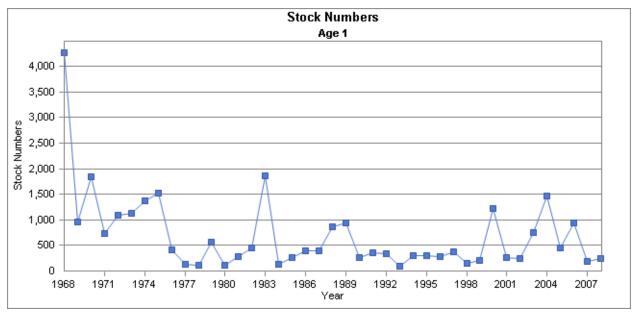
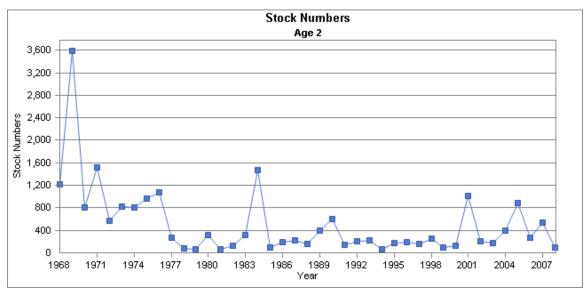
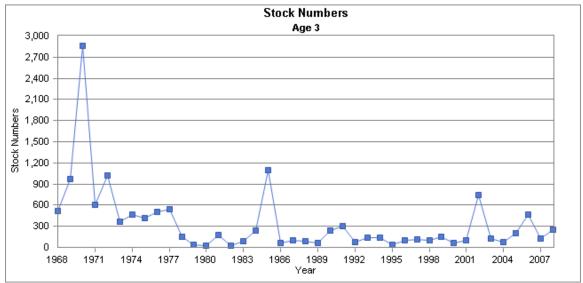
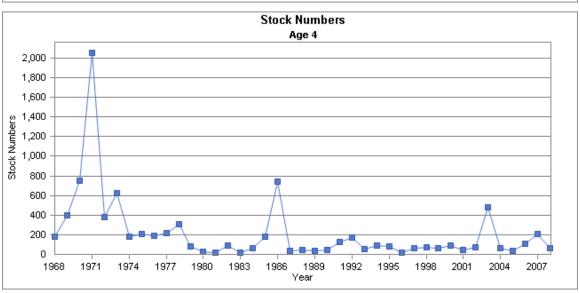
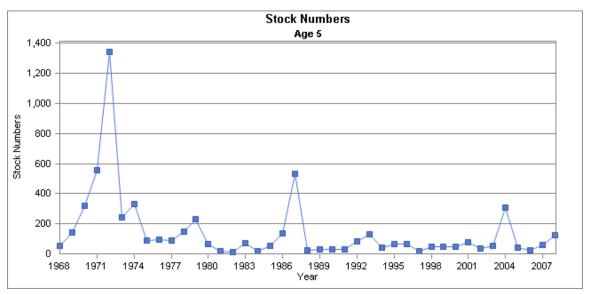
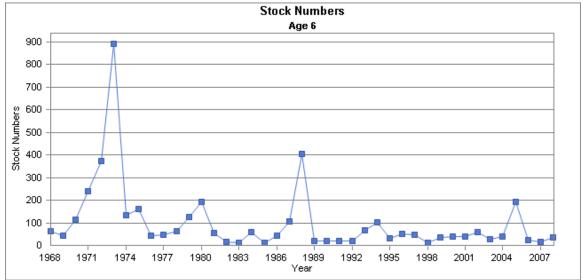
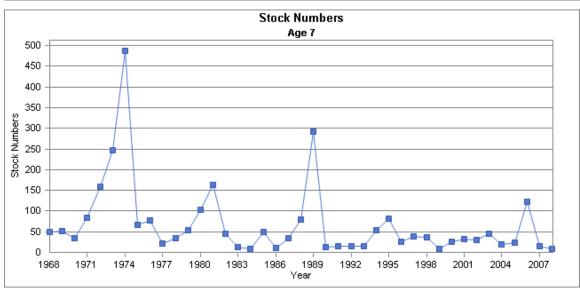


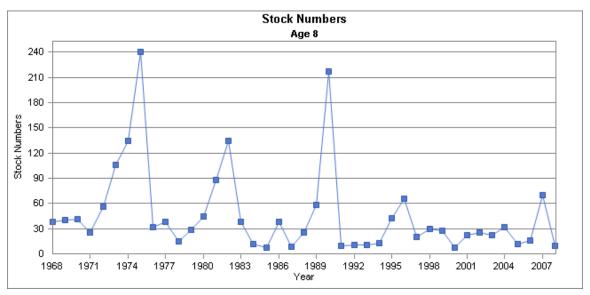
Figure C6. Natural mortality of Atlantic mackerel estimated from ASAP model with predation (age 1, M1 + predation fleet F).

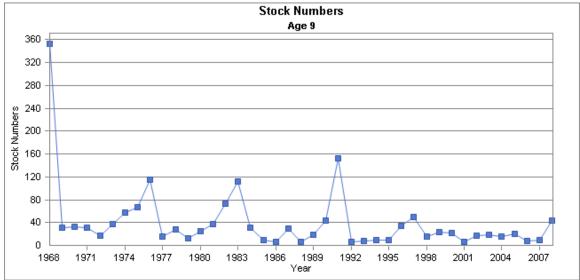







Figure C7. Estimates of mackerel abundance at age (millions) from ASAP model with predation .









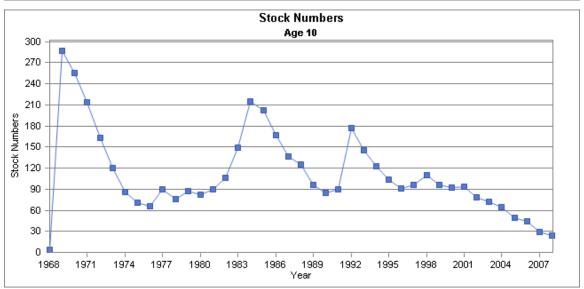


Figure C8. Comparison of mackerel abundance from models with and without predation.

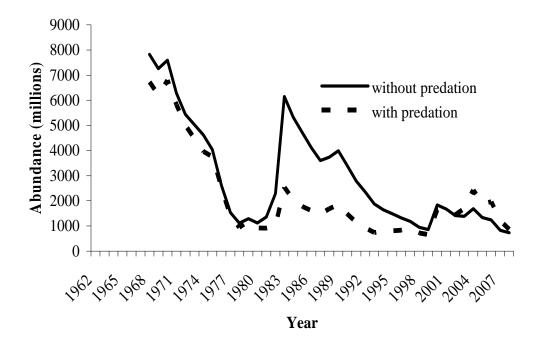


Figure C9. Comparison of mackerel fishing mortality from models with and without predation.

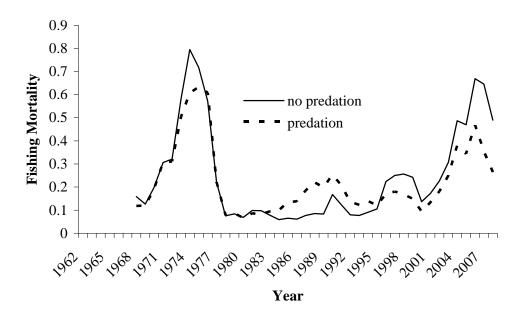


Figure C10. Comparison of mackerel spawning stock biomass (000s mt) from models with and without predation.

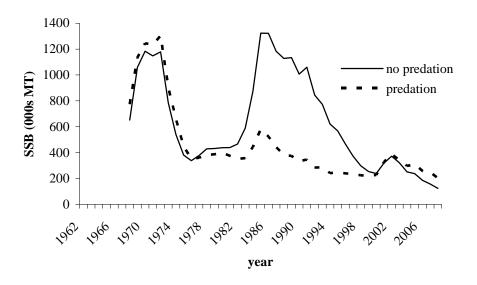
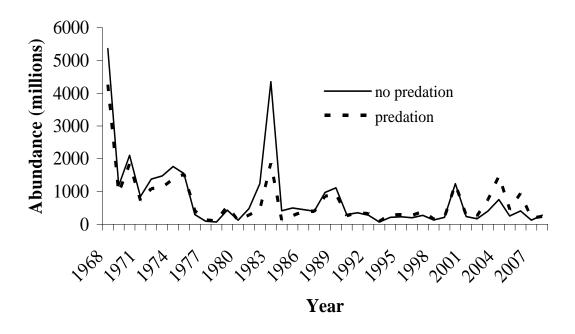



Figure C11. Comparison of mackerel age 1 recruitment (millions) from models with and without predation.

Age 1 recruitment

