The NEFSC's Recreation Demand Model and Development of a Decision Support Tool

Andrew (Lou) Carr-Harris, Kim Bastille, \& Scott Steinback

December 2023 MAFMC Meeting

Outline of presentation

- Overview of the recreation demand model (RDM)
- Discrete choice model of anglers' fishing decisions
- Fishery simulation
- Developing the decision support tool
- Using the online interface and example results
- Collaborating with stakeholders

Components of the RDM

(1) Discrete choice model of fishing decisions

- Use angler survey data to estimate structural behavioral parameters representing the importance of trip attributes (e.g., harvest, trip cost) on anglers' decisions to fish
- Allows us to compute the expected "utility" an angler would get from a fishing trip with specified attributes, as well as several other important trip-level outcomes
(2) Fishery simulation
- Use structural parameters + available fishery data to simulate trips under current conditions and alternative conditions in which some aspects are manipulated (e.g., regulations, length dist'n of the stock)
- Compute trip-level outcomes under both scenarios and aggregate over all trips

What is a discrete choice?

- Any situation in which a decision-maker must choose between a discrete number of options, e.g.:
- Which mode of travel a commuter takes to get to work
- Which car to buy
- Which job to take
- Whether to recreational fish or not
- Discrete choice methods are designed to model these types of choices and help to understand why choices were made
- Results can be used to evaluate or predict market behavior

Random utility theory (RUT)

Under RUT ${ }^{1}$, discrete choices are modeled under the assumption of utility-maximizing behavior

- A decision-maker receives some "utility" from each of the options
- The amount of utility can depend of characteristics of the options, characteristics of the decision-maker, and unobserved characteristics
- The decision-maker chooses the option that provides the greatest overall utility
${ }^{1}$ More details on random utility theory and modeling can be found in Train (2003) Discrete Choice Methods with Simulation. Available free at https://eml.berkeley.edu/books/choice2.html

Discrete choice model specification

With data on:

- Anglers' choices among a set of options
- Did they choose to fish when presented with the opportunity?
- Some characteristics about the options
- e.g., how much fish was caught, how expensive was the trip?
- Some characteristics about the anglers themselves
- e.g., how avid of angler are they?
...we can estimate the relative importance of each characteristic on angler choice and satisfaction

Angler survey and discrete choice experiment (DCE)

Section B: Saltwater Fishing Trips

Example choice question

Summary of discrete choice model results

- Of the three species, harvesting fluke contributes most to angler satisfaction:

$$
\begin{aligned}
\text { Value of one harvested fluke } & \approx 12.7 \text { released fluke } \\
& \approx 2.3 \text { harvested black sea bass } \\
& \approx 11.2 \text { released black sea bass } \\
& \approx 45.9 \text { caught scup }
\end{aligned}
$$

- Fluke and black sea bass are substitutes species
- Increase in harvest of one species reduces the value of harvest of the other species, holding all else constant
- Increases in trip costs reduces angler satisfaction
- Angler satisfaction from not fishing increases with age, decreases with angler avidity

Economic values

- What can we do with discrete choice model estimates?
- For one, we can compute the monetary value anglers place on keeping/releasing fish

Median willingness-to-pay for increases in harvest of fluke only (left) and black sea bass only (right)

Choice probabilities

- We can also estimate the probability an angler would take a trip, and the expected harvest of that trip, based on different trip outcomes

Simulated choice occasion with trip cost of $\$ 36$ and zero catch of other species Decision-maker characterisitcs set at population averages from ME-NY

Counterfactual simulation

- A more practical benefit of the discrete choice modeling approach is that it allows us to conduct counterfactual simulations and assess their effect on overall angler satisfaction (\$) and other trip attributes (e.g., harvest)
- We ask: what would choices be under alternative fishery scenarios?

Components of the RDM

Now for Part 2:
(1) Discrete choice model of fishing decisions

- Use angler survey data to estimate structural behavioral parameters representing the importance of trip attributes (e.g., harvest, trip cost) on anglers' decisions to fish
- Allows us to compute the expected "utility" an angler would get from a fishing trip with specified attributes, as well as several other important trip-level outcomes
(2) Fishery simulation
- Use structural parameters + available fishery data to simulate trips under current conditions and alternative conditions in which some aspects are manipulated (e.g., regulations, length dist'n of the stock)
- Compute trip-level outcomes under both scenarios and aggregate over all trips

Fishery simulation

- Multi-part algorithm with three main components:
(1) Simulate "choice occasions" under baseline (2022) fishery conditions
(2) Calibration: determine how many choice occasions to simulate, ensure their outcomes are similar to observed trip outcomes in 2022
(3) Simulate choice occasions under alternative (2024) fishery conditions
- The entire algorithm is repeated 100 times, each time generating new data to account for statistical uncertainty in the input data
- Output includes predicted total harvest/discards in numbers and pounds, angler satisfaction (\$), and number of fishing trips. We compute the median value of the 100 iterations as the relevant summary statistic

Incorporating statistical uncertainty

- We bake into the model any uncertainty that is exploitable in the input data
- The model is run one 100 times, each time drawing new values from the estimated distribution of:
- Directed trips (MRIP)
- Catch-per-trip (MRIP)
- Projected 2024 population numbers-at-length for fluke and scup (NEFSC's stock assessment program) and subsequent 2024 recreational catch-at-length
- Mean weight per harvested fish in 2024 (MRIP)
- Angler behavioral parameters (discrete choice model)

Projected total harvest weight under SQ measures

Key improvements from last year

- Incorporation of MRIP statistical uncertainty in input data
- Model is run at the state, fishing mode, and daily level \rightarrow enables single-day adjustments to open season and projections by fishing mode
- In contrast, 2023 model was run at the state and bi-monthly level with post-estimation adjustments used to curtail/lengthen season by single days or weeks and provide estimates by fishing mode
- Accounts for population demographics (age and avidity) when predicting total demand for recreational fishing

Summary

- The structural econometric model (i) provides key information about what drives anglers to fish and (ii) enables a tractable analysis on the effect of counterfactual regulations on fishery outcomes
- Unlike previous approaches for predicting harvest, the RDM accounts for angler behavioral responses to management and the projected length distribution of the stock
- Predicts changes in angler satisfaction (\$) and fishing trips under proposed regulations, thus allowing for consideration of socio-economic outcomes in management decisions

Developing the RDM and decision support tool

- Collaborative process with stakeholders to ensure transparency and arrive at solutions to important data challenges
- Developed first R-shiny app in NOAA cloud
- Cloud processing reduced model run time from ~ 6 hours to ~ 15 minutes
- Plan to continue collaborating to improve decision support tool

Development timeline

DST working Group 6/15

- Monthly meetings with DST working group where we garnered and incorporated feedback about the graphic user interface
- Three meetings devoted to finding solutions to data concerns, and to provide technical overview about the model

DST working Group 7/20
Initial Cloud Meeting w/ Microsoft 7/28
DST working Group 8/17

DST working Group 9/21

DST working Group 10/19

Cloud Funding! 11/1

Model Development meeting 9/20
MRIP data selection
Accounting for MRIP Uncertainty

DST working Group 11/16

Detailed Model Overview 10/4

RMD 2024 Status-quo projections 11/8

Model Planning Meeting 5/11 Data concerns and potential solutions

Users first access to tool 11/29
Office hours 12/1
Office hours 12/5

Online user interface

(5) RDM Tool - Default $\times+$
$\leftarrow \rightarrow$ C recreationalifisheriesdstcom/app/rdmtool
RDMTool
Recreational Fisheries Decision Support Tool
Reoulaton Selection Results

Regulation Selection
 Results
 Documentation

REMINDER: (1) select state(s) - Just New Jersey included for now. (2) Make selections below (3) click run me and then the 'Results' tab to run model State
\square

$\mathrm{DE} \square \mathrm{MD} \square \mathrm{VA}$ VA $\square \mathrm{NC}$

Summer Flounder
Regulations combined or seperated by mode?

Scup

Regulations combined or seperated by mode?

Add Season

Online user interface

Many helping hands

Big thanks to all who provided feedback on the model and input data:

- RDM DST Working Group members
- Geret DePiper (NEFSC)
- Min-Yang Lee (NEFSC)
- Jorge Holzer (UMD)
- Sabrina Lovell (NOAA OST)
- Kurt Gottschall (CT DEEP)
- Mike Celestino (NJ DEP)
- Nicole Lengyel Costa (RI DEM)

Questions?

Back-up slides (not presented)

Similar recreational demand model applications

- Carr-Harris, Andrew, and Scott Steinback. 2020. "Expected Economic and Biological Impacts of Recreational Atlantic Striped Bass Fishing Policy." Frontiers in Marine Science. 6 (January): 1-20.
- Holzer, J., and K. McConnell. 2017. "Risk Preferences and Compliance in Recreational Fisheries." Journal of the Association of Environmental and Resource Economists 4 (S1): S1-43.
- Lee, M., S. Steinback, and K. Wallmo. 2017. "Applying a Bioeconomic Model to Recreational Fisheries Management: Groundfish in the Northeast United States." Marine Resource Economics 32 (2): 191-216.

Utility parameter estimates from mixed logit model

Attribute
$\sqrt{\text { SF kept }}$
$\sqrt{\text { BSB kept }}$
$\sqrt{\text { SF kept }} \times \sqrt{\text { BSB kept }}$
$\sqrt{\text { SF released }}$
$\sqrt{\text { BSB released }}$
$\sqrt{\text { scup catch }}$
cost
cost
Mean parameter
$0.827^{* * *}$
(0.070)
$0.353^{* * *}$
(0.048)
-0.056^{*}
(0.031)
0.065***
(0.022)
$0.074^{* * *}$
(0.013)
0.018*
(0.009)
$-0.012^{* * *}$
(0.000)
opt-out alternative:

constant	$-2.056^{* * *}$	$1.977^{* * *}$
	$(0.297)^{* *}$	(0.109)
avidity	$-0.010^{* *}$	
	(0.005)	
age	$0.010^{* *}$	
	(0.005)	

No. anglers	1,437
No. choices	8,522
LL	-7297
McFadden's pseudo R^{2}	0.221
AIC	14,629

Note: Standard errors in parentheses. Variables under the opt-alternative are interacted with a dummy variable that takes the value of one if the "Do something other than fishing" alternative is chosen and zero otherwise. "Avidity" is the number of fishing trips taken in the past year.
${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05$, $^{* * *} \mathrm{p}<0.010$.

Fishery simulation data

- Angler behavioral parameters come from the discrete choice model results
- Total trip costs by state and fishing mode come from NOAA's 2016-2017 National Marine Recreational Fishing Expenditures on Fishing Trips Survey, adjusted for inflation
- Angler ages and avidities come from unpublished survey-weighted data from NOAA's 2019-2020 National Marine Recreational Fishing Expenditures on Durable Goods Survey

Fishery simulation data

- Directed trips data (baseline-year 2022) from MRIP estimates at the state, month, mode, and kind-of-day level
- Catch-per-trip data from MRIP estimates at the state, wave, mode level using the most recent two years of data available
- Catch-at-length data from 2022 MRIP and volunteer angler survey data, aggregated to the region level and for all modes combined and adjusted to account for the projected length distribution of the stock in 2024

Fishery simulation data

- Projected 2024 population numbers-at-length from NEFSC's stock assessment program
- Used to adjust 2024 recreational catch-at-length based on the size of fish anglers are expected to encounter
- Mean weight per harvested fish in 2024 (under status-quo management measures) comes from 2023 MRIP data at the state and model level
- Mean weight per discarded fish in 2024 (under status-quo management measures) comes NEFSC's final estimates of discards in weight in 2022
- Percent changes in harvest/discard weights between status-quo and alternative measures based on L-W equations from NEFSC stock assessment scientists

More about the model

- RDM technical overview presentation slides from Summer Flounder, Scup, and Black Sea Bass Monitoring Committee Meeting on October 6th, 2023: https://www.mafmc.org/council-events/2023/oct-06/sfsbsb-mon-com

