Plausible bounds for availability of and net efficiency for northern shortfin squid in the US fishery & Northeast Fishery Science Center Bottom Trawl Survey

Co-Authors:

John P Manderson. OpenOcean Research Brooke Lowman. NEFSC Cooperative Research Branch Ben Galuardi, NOAA GARFO Anna Malek Mercer. NEFSC Cooperative Research Branch

Disclosure: Manderson serves as science advisor for 3 major shore side facilities & some independent owner operators in the illex fishery.

Part of a larger collaborative to develop products valuable to the 2021 Research Track Assessment (RTA) (Lowman, Mercer, Manderson, Rago on RTA Working Group)

1) Technical and economic aspects of northern shortfin squid (*llex illecebrosus*) processing and marketing essential for interpreting fishing effort and catch as indicators of population trend and condition (*Completed*)

2) Harvester perspectives on ecological, economic and social factors driving *llex illecebrosus* landings in US waters (*Ongoing*)

3) Analysis of pulses of immigration of *llex illecebrosus* into the fishery within framework of a generalized depletion model with an open population assumption (*Ongoing*)

4) Standardized fishery LPUE/CPUE developed using standard FDD and NOAA Cooperative research study fleet data (Ongoing)

5) Mental model of ecological & human dimensions of Illex fishery system. (Ongoing)

6) Plausible bounds to availability & net efficiency for fishery & survey (this work)

Why focus on the availability (v) of & net efficiency (q) for Illex to the NEFSC survey & US fishery?

"Rago 2021. Indirect Methods for Bounding Biomass and Fishing Mortality for Illex Squid and Implications of an Alternative Quota in 2022. Rept. to SSC"

Provide Rago with plausible bounds for v_{fishery} , q_{fishery} , v_{survey} , q_{survey}

Rago 2021; Table 2.1. Data sources, input parameters and outputs for the various models used to derive bounds on biomass and fishing mortality for Illex squid.

M etho d/Mo del	Data	Years	Input Parameters	Output	Comme nts
Depletion Model	 Landings by week Effort by week for trips, days fished, days absent Ave wt/indiv by week 	1997- 2018. Exclude 2006- 2007.	None	Estimated q for Effort Effort Initial Pop Size Proportional depletion	Violation of assumptions evident in most years Lack of fit suggests low intensity of fishing mortality and high level of mig ration/recruit men into the fishing area
Envelope	 Fall Survey swept area biomass Landings 	1997- 2019	Min and Max F Min and max M Min and Max q Min and Max v	 Upper limit Biomass Lower Limit Biomass 	 Constrained upper and lower bounds of biomass suggest feasible range of population behavior for any population dynamics model.
Es capement	 Fall Survey swept area biomass Landings 	1997- 2019	Min and max M Min and Max q Min and Max v	Realized fraction escapagement by year Evaluation of alternative harvest scenarios	 Evaluate 1k dihood of exceeding target escape ment for alternative quotas over historical period. Compare with other ma nagement, eg with 50% es capement.
Mass Balance	 Min swept area Spring survøy Min Swept area Fall survøy Total Catch 	1997- 2019	• Ratio of F/M • Min and Max پې	 Estimates of migration, growth and recru itment necessary to balance catch and natural Mortality 	 Uses simple mass balance to illustrate potential magnitude of inshore and offshore movements and growth.
VMS	VMS locations of fishing speeds and durations Average net width by permit number	2017-2019	 Availability Move along nule— accep table rate of depletion during fishing Area of fishing activity relative to total habitat area. Ratio of density in fished to unfished areas 	Maximu m F Area weighted average F	 Fishing mortality estimates are for entire season. Divide by 24 to obtain weekly F for comparisons

frontiers in Marine Science

Front. Mar. Sci., 23 February 2021 | https://doi.org/10.3389/fmars.2021.631657

ORIGINAL RESEARCH article

Marine Conservation and Sustainability

	SECTION	ARTICLES			ARTICLE ALERTS
< Articles					HE RESEARCH TOPIC dels of Marine and Estuarine Species: Advances for a S

Check for

Northern Shortfin Squid (*Illex illecebrosus*) Fishery Footprint on the Northeast US Continental Shelf

📓 Brooke A. Lowman^{1,2}, 📷 Andrew W. Jones¹, 📃 Jeffrey P. Pessutti¹, 📃 Anna M. Mercer³, 🔄 John P. Manderson⁴ and 🔄 Benjamin Galuardi^{2,5}

¹ERT, Inc. under Contract to Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Narragansett, RI, United States

²School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States

³Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Narragansett, RI, United States ⁴OpenOcean Research, Philadelphia, PA, United States

⁶Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, MA, United States

Expanded update to Lowman's 2021 work on availability to the fishery (framework developed at Industry organized & hosted November 2019 Illex summit)

Feature	Lowman et al. 2021	Manderson et al. 2021
Surveys for training & testing	US surveys & NOAA Study fleet	US + DFO Canada FI trawl surveys
Modeling Framework	VAST (Delta model with binomial GLMM)	binomial GAMM
Evaluation of prediction accuracy		10 fold cv + ROC
Availability estimate	V _f	$v_f \& v_s$
Net efficiency estimate (expert opinion)		q _f & q _s

Availability Estimates Approach

- Develop Species Distribution Model (SDM) using available US & Canadian fishery independent bottom trawl survey data
- Evaluate prediction accuracy of SDM & determine thresholds for classification of species distribution areas (SDAs)
- Use SDAs along with fishery and survey footprints to estimate availability to fishery (v_f) and the NEFSC survey (v_s)

Survey data used to train & evaluate SDM (2008-2019: All surveys performed 2008. 2019 pre-covid)

Timing of surveys

Squid abundant slope sea where there is no survey data (Rathjen, 1981; Vecchione & Pohle, 2002; Harrop et al, 2014; Shea et al, 2017)

ICES Journal of Marine Science

ICES Journal of Marine Science (2020), 77(2), 539-552. doi:10.1093/icesjms/fsz254

Original Article

Combining fisheries surveys to inform marine species distribution modelling

Meadhbh Moriarty () ^{1,2,3,4}*, Suresh A. Sethi^{3,5}, Debbi Pedreschi⁶, T. Scott Smeltz^{2,3}, Chris McGonigle¹, Bradley P. Harris³, Nathan Wolf³, and Simon P. R. Greenstreet⁴

Use generalized additive mixed models with survey as random effect to integrate data from multiple surveys.

Final GAMM model with lowest AIC

Family: binomial Link function: logit

```
Formula:
Total.Count > 1 ~ s(Survey, bs = "re", by = dum) + offset(logAreasw) +
      s(altitude, by = Survey, bs = "cc") + te(x.utm, y.utm, yr,
      by = seas, bs = "cs")
```

```
Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.7728 0.5325 -14.6 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Approximate significance of smooth terms:

	edf	Ref.df	Chi.sq	p-value	
s(Survey):dum	2.740645	3	183.669	< 2e-16	***
s(altitude):SurveyCAN	0.008599	8	0.006	0.48695	
s(altitude):SurveyMENH	3.517151	8	112.050	6.33e-08	***
s(altitude):SurveyNEAMAP	4.409370	8	88.891	1.19e-07	***
s(altitude):SurveyNEFSC	2.225924	8	11.370	0.00168	**
te(x.utm,y.utm,yr):seas	80.096403	125	4844.023	< 2e-16	***
Signif. codes: 0 '***'0	0.001'**'	0.01 '*	° 0.05 '	.'0.1''	1
R-sq.(adj) = 0.403 Deviance explained = 40.1%					

-REML = 5390.4 Scale est. = 1 n = 20877

GAMM Residuals

Are basis dimensions (=wiggliness) of smoothers appropriate?

Method: REML Optimizer: outer newton
full convergence after 8 iterations.
Gradient range [-0.001293864,0.0001167029]
(score 5390.423 & scale 1).
Hessian positive definite, eigenvalue range [0.00130545,8.830364].
Model rank = 162 / 162

Basis dimension (k) checking results. Low p-value (k-index<1) may indicate that k is too low, especially if edf is close to k'.

	k'	edf	k-index	p-value
s(Survey):dum	4.0000	2.7407	NA	NA
s(altitude):SurveyCAN	8.0000	0.0086	0.97	0.14
s(altitude):SurveyMENH	8.0000	3.5171	0.97	0.08 .
s(altitude):SurveyNEAMAP	8.0000	4.4094	0.97	0.13
s(altitude):SurveyNEFSC	8.0000	2.2259	0.97	0.14
te(x.utm,y.utm,yr):seas	125.0000	80.0964	0.86	<2e-16 ***
Signif. codes: 0 '***'	0.001 '**'	0.01 '*'	0.05 '.	' 0.1' ' 1

Model cross validation-evaluation

10 fold cross validation: Train model with random selection of 90% of the data. Use remaining 10% to compare prediction against observations. Perform Receiver Operator Characteristic (ROC) analysis of confusion matrix developed over range of occupancy probability thresholds. Repeat 10 x's

Predictions classified using predictive value threshold (0.7)

Predictions

Developed distribution areas using Sensitivity-specificity & Predictive value threshold

> Predictions Prediction - SE Predictions + SE

2nd half 2019

Illex_GAMM_predictGrid_fall_2019.tif

Illex_GAMM_predictGrid_fall_2019.tif

Spatial errors in prediction 2nd half of year 2008-2019

Higher frequency false positives

Higher frequency false negatives

Sensitivity-specificity threshold=0.29

Predictive value threshold = 0.7

Estimates of species distribution area from SDM using thresholds

1st half of year

2nd half of year

Footprint of directed fishery & incidental catch estimated using VTR data (Any cell with directed or incidental catches of illex)

Estimated availability to the Fishery (Vf) Developed with classified "fall" projections of SDM

Estimated availability to NEFSC survey ("Spring" and "Fall" V_s) offshore strata 1-30, 350, 351, 36-40 and 61-76 (Area estimate 209,670km²).

Net efficiency estimates in the fishery (q_f) and NEFSC survey (q_s) developed using expert opinion

- Question:"What percent of squid under the boat do you think you catch in your cod end"
- Q fishery (N=13 experts in fishery: Goodwin's, Axelson's, Ruhle's (N=3), Knight, Lackner, Bright, Conrad, Sawyer, Wise)
 - Median = 0.25; 95% CI= 0.178, 0.363; Range=0.02-0.85
- Q survey (N= 5 experts. Worked in Illex fishery, part of NTAP, worked with Bigelow net in field. Roebuck, Ruhle's (N=2), Gartland, Knight)
 - Median = 0.075; 95% CI=0.0318, 0.121; Range=0.02-0.2

Parameter	Plausible upper bound
V fishery	0.011
V survey fall	0.427
V survey spring	0.288
q fishery	0.363
q survey	0.121

(Lowman 2021: $v_{fishery} = 0.014$ to 0.363, using US survey data alone in VAST)

Why $v_s \& v_f$ are overestimated here

- SDM not inclusive of shelf slope sea or areas to north east of Scotian Shelf squid are known to occupy

- Illex are pelagic: Ours is a 2 dimensional approach to a 3 dimensional problem

- Plausible upper bounds calculated using areas developed with predictive value threshold

- US fishery area calculated using cells where any directed or incidental catch of squid was reported

(Note: Canadian fishery not considered but available information indicates it is primarily an artisanal jig fishery conducted with small boats (<36ft) in Newfoundland)

Acknowledgments

to those who generously provided survey data

- Phil Grayson & Nancy Shackle from DFO
- James Gartland, VIMS, NEAMAP
- Rebecca Peters, Maine DNR