Plausible bounds for availability of and net efficiency for northern shortfin squid in the US fishery \& Northeast Fishery Science Center Bottom Trawl Survey

Co-Authors:
John P Manderson. OpenOcean Research
Brooke Lowman. NEFSC Cooperative Research Branch Ben Galuardi, NOAA GARFO Anna Malek Mercer. NEFSC Cooperative Research Branch

Disclosure: Manderson serves as science advisor for 3 major shore side facilities \& some independent owner operators in the illex fishery.

Part of a larger collaborative to develop products valuable to the 2021 Research Track Assessment (RTA)
 (Lowman, Mercer, Manderson, Rago on RTA Working Group)

1) Technical and economic aspects of northern shortfin squid (Ilex illecebrosus) processing and marketing essential for interpreting fishing effort and catch as indicators of population trend and condition (Completed)
2) Harvester perspectives on ecological, economic and social factors driving /lex illecebrosus landings in US waters (Ongoing)
3) Analysis of pulses of immigration of Ilex illecebrosus into the fishery within framework of a generalized depletion model with an open population assumption (Ongoing)
4) Standardized fishery LPUE/CPUE developed using standard FDD and NOAA Cooperative research study fleet data (Ongoing)
5) Mental model of ecological \& human dimensions of Illex fishery system. (Ongoing)
6) Plausible bounds to availability \& net efficiency for fishery \& survey (this work)

Why focus on the availability (v) of \& net efficiency (q) for Illex to the NEFSC survey \& US fishery?
"Rago 2021. Indirect Methods for Bounding Biomass and Fishing Mortality for Illex Squid and Implications of an Alternative Quota in 2022. Rept. to SSC"

Provide Rago with plausible bounds
for Vfishery Q $_{\text {fishery }}$ V $_{\text {survey }}$, Q $_{\text {survey }}$

Rago 202 1; Table 2.1. Data sources, input parameters and outputsfor the various models used to derive bounds on biomass and fishing mortality for Illex squid.

Method/Model	Data	Years	Input Panmeters	Output	Comments
Depletion Model	- Landings by week - Effort by week for trips, days fished, days absent - Ave $\mathrm{wt} /$ indiy by week	19972018. Exclude 2006- 2007.	None	- Estimated q for Effort - Initial Pop Size - Proportional depletion	- Violation of assumptions evident in most years - Lack of fit suggests low intensity of fishing mo rality and high level of mig ration/recruit ment into the fishing area
Envelope	- Fall Survey swept area biomass - Landings	$\begin{aligned} & 1997- \\ & 2019 \end{aligned}$	Min and Max F Min and $\max \mathrm{M}$ Min and Max q Min and Max	- Upper limit Biomass - Lower Limit Biomass	- Constrained upper and lower bounds of biomass suggest feasible range of population behavior for any population dynamics model.
Es capement	\cdot Fall Survey swept area biomass - Landings	$\begin{aligned} & 1997- \\ & 2019 \end{aligned}$	Min and max M Min and Max q Min and Max	- Realized fraction escapapement by year - Evaluation of altemative harvest scenarios	
Mass Balance	- Min swept area Spring survey - Min Swept area Fall survey - Total Catch	$\begin{aligned} & 1997-1 \\ & 2019 \end{aligned}$	- Ratio of F/M - Min and Max gy	- Estimates of migration, growth and recru itment necessary to balance catch and natural Mortality	- Uses simple mass balance to illustrate potential magnitude of inshoreand offshore movements and growh.
VMS	- VMS locations of fishing speeds and durations - Average net widh by permit number	$\begin{aligned} & 2017- \\ & 2019 \end{aligned}$	- Availability - Move along ruleaccep table rate of depletion during fishing - Area of fishing activity relative to total habitat area. - Ratio of density in fished to unfished are as	- MaximumF - Area weighted average F	- Fishing mortality estimates are for entire season Divide by 24 to obtan weekly F for comparisons

Feature	Lowman et al. 2021	Manderson et al. 2021
Surveys for training \& testing	US surveys \& NOAA Study fleet	US + DFO Canada FI trawl surveys
Modeling Framework	VAST (Delta model with binomial GLMM)	binomial GAMM
Evaluation of prediction accuracy		10 fold cv + ROC
Availability estimate	v_{f}	$\mathrm{v}_{\mathrm{f}} \& \mathrm{v}_{\mathrm{s}}$
Net efficiency estimate (expert opinion)		$\mathrm{q}_{\mathrm{f}} \& \mathrm{q}_{\mathrm{s}}$

Availability Estimates
 Approach

- Develop Species Distribution Model (SDM) using available US \& Canadian fishery independent bottom trawl survey data
- Evaluate prediction accuracy of SDM \& determine thresholds for classification of species distribution areas (SDAs)
- Use SDAs along with fishery and survey footprints to estimate availability to fishery $\left(\mathrm{v}_{\mathrm{f}}\right)$ and the NEFSC survey $\left(\mathrm{v}_{\mathrm{s}}\right)$

Survey data used to train \& evaluate SDM

 (2008-2019: All surveys performed 2008. 2019 pre-covid)

Timing of surveys

Squid abundant slope sea where there is no survey data (Rathjen, 1981; Vecchione \& Pohle, 2002; Harrop et al, 2014;
Shea et al, 2017)

ICES Journal of Marine Science

CIEM

ICES Journal of Marine Science (2020), 77(2), 539-552. doi:10.1093/icesjms/fsz254

Original Article

Combining fisheries surveys to inform marine species

 distribution modellingMeadhbh Moriarty (1) ${ }^{1,2,3,4 *}$, Suresh A. Sethi ${ }^{3,5}$, Debbi Pedreschi', T. Scott Smeltz ${ }^{2,3}$, Chris McGonigle ${ }^{1}$, Bradley P. Harris ${ }^{3}$, Nathan Wolf ${ }^{3}$, and Simon P. R. Greenstreet ${ }^{4}$

Use generalized additive mixed models with survey as random effect to integrate data from multiple surveys.

Final GAMM model with lowest AIC

Family: binomial
Link function: logit
Formula:
Total. Count > $1 \sim$ s(Survey, bs = "re", by = dum) + offset(logAreasw) + s(altitude, by = Survey, bs = "cc") + te(x.utm, y.utm, yr, by = seas, bs = "cs")

Parametric coefficients:

	Estimate Std. Error z	value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	-7.7728	0.5325	-14.6	$<2 e-16 * * *$

Signif. codes: 0 ‘***’ 0.001 ‘**' 0.01 ‘*' 0.05 '.' 0.1 ' 1

Approximate significance of smooth terms:

	edf	Ref.df	Chi.sq	p-value					
s(Survey): dum	2.740645	3	183.669	< 2e-16	***				
s(altitude):SurveyCAN	0.008599	8	0.006	0.48695					
s(altitude):SurveyMENH	3.517151	8	112.050	$6.33 \mathrm{e}-08$					
s(altitude): SurveyNEAMAP	4.409370	8	88.891	$1.19 \mathrm{e}-07$	***				
s(altitude):SurveyNEFSC	2.225924	8	11.370	0.00168	**				
te(x.utm, y.utm, yr): seas	80.096403	125	4844.023	< 2e-16					
		0.01 '*' 0.05 ', 0.1 ' 1							
Signif. codes:	0.001 '**,								
$\text { R-sq. }(a d j)=0.403 \quad \text { Deviance explained }=40.1 \%$									

GAMM Residuals

Are basis dimensions (=wiggliness) of smoothers appropriate?

Method: REML Optimizer: outer newton
full convergence after 8 iterations.
Gradient range [-0.001293864,0.0001167029]
(score 5390.423 \& scale 1).
Hessian positive definite, eigenvalue range [0.00130545,8.830364]. Model rank $=162 / 162$

Basis dimension (k) checking results. Low p-value (k-index<1) may indicate that k is too low, especially if edf is close to k'.

Model cross validation-evaluation

ROC curve

Sensitivity-Specificity

Negative-positive

Predictive value

\# true pred.
\# obs in class

\# true pred.
\# obs in class + \# false pred

10 fold cross validation: Train model with random selection of 90% of the data. Use remaining 10% to compare prediction against observations. Perform Receiver Operator Characteristic (ROC) analysis of confusion matrix developed over range of occupancy probability thresholds. Repeat 10 x's

Spatial errors in prediction $2^{\text {nd }}$ half of year 2008-2019

Higher frequency false positives
Sensitivity-specificity threshold=0.29

Higher frequency false negatives
Predictive value threshold $=0.7$
accuracyClass $\begin{array}{ll}\mathrm{FN} & \stackrel{\otimes}{\widetilde{\sim}} \\ \mathrm{FP} & \stackrel{\sim}{\sim} \\ \mathrm{TN} & \stackrel{\otimes}{己} \\ \mathrm{TP} & \stackrel{1}{2}\end{array}$

Estimates of species distribution area from SDM using thresholds
$1^{\text {st }}$ half of year

$2^{\text {nd }}$ half of year

Footprint of directed fishery \& incidental catch estimated using VTR data (Any cell with directed or incidental catches of illex)

Estimated availability to the Fishery (Vf)
Developed with classified "fall" projections of SDM

Estimated availability to NEFSC survey ("Spring" and "Fall" V_{s}) offshore strata 1-30, 350, 351, 36-40 and 61-76 (Area estimate 209,670 km^{2}).

Net efficiency estimates in the fishery $\left(q_{f}\right)$ and NEFSC survey (q_{s}) developed using expert opinion

- Question:"What percent of squid under the boat do you think you catch in your cod end"
- $\mathrm{q}_{\text {fishery }}$ ($\mathrm{N}=13$ experts in fishery: Goodwin's, Axelson's, Ruhle's ($\mathrm{N}=3$), Knight, Lackner, Bright, Conrad, Sawyer, Wise)
- Median $=0.25 ; 95 \% \mathrm{Cl}=0.178,0.363 ;$ Range=0.02-0.85
- $\mathbf{q}_{\text {survey (}} \mathrm{N}=5$ experts. Worked in Illex fishery, part of NTAP, worked with Bigelow net in field. Roebuck, Ruhle's ($\mathrm{N}=2$), Gartland, Knight)
- Median = 0.075; 95\% CI=0.0318, 0.121; Range=0.02-0.2

Parameter	Plausible upper bound
$\mathrm{V}_{\text {fishery }}$	0.011
$\mathrm{~V}_{\text {survey }}$ fall	0.427
$\mathrm{~V}_{\text {survey }}$ spring	0.288
q fishery	0.363
q survey	0.121

Why $v_{s} \& v_{f}$ are overestimated here

(Lowman 2021: $\mathrm{V}_{\text {fishery }}=0.014$ to 0.363 , using US survey data alone in VAST)

- SDM not inclusive of shelf slope sea or areas to
north east of Scotian Shelf squid are known to occupy
- Illex are pelagic: Ours is a 2 dimensional approach
north east of Scotian Shelf squid are known to occup to a 3 dimensional problem
- Plausible upper bounds calculated using areas developed with predictive value threshold
- US fishery area calculated using cells where any directed or incidental catch of squid was reported
都
(Note: Canadian fishery not considered but available information indicates it is primarily an artisanal jig fishery conducted with small boats (<36ft) in Newfoundland)

Acknowledgments
 to those who generously provided survey data

- Phil Grayson \& Nancy Shackle from DFO
- James Gartland, VIMS, NEAMAP
- Rebecca Peters, Maine DNR

