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Abstract 

Does prey drive availability of bluefish? Assessing small pelagic fish trends in space and time 
using piscivore diet data 

Changing distribution and abundance of small pelagics may drive changes in predator 
distributions, affecting predator availability to fisheries and surveys. However, small 
pelagic fish are difficult to survey directly, so we developed a novel method of assessing 
small pelagic fish aggregate abundance via predator diet data. We used piscivore diet data 
collected from multiple bottom trawl surveys within a Vector Autoregressive Spatio-
Temporal (VAST) model to assess trends of small pelagics on the Northeast US shelf. The 
goal was to develop a spatial “forage index” to inform survey and/or fishery availability in 
the bluefish (Pomatomus saltatrix) stock assessment. Using spring and fall surveys from 
1973-2020, 20 small pelagic groups were identified as major bluefish prey using the diet 
data. Then, predators were grouped by diet similarity to identify 21 piscivore species with 
the most similar diet to bluefish in the region. Diets from all 22 piscivores were combined 
for the 20 prey groups at each surveyed location, and the total weight of small pelagic prey 
per predator stomach at each location was input into a Poisson-link delta model to estimate 
expected prey mass per predator stomach. Best fit models included spatial and spatio-
temporal random effects, with predator mean length, number of predator species, and sea 
surface temperature as catchability covariates. Spring and fall prey indices were split into 
inshore and offshore areas to reflect changing prey availability over time in areas available 
to the recreational fishery and the bottom trawl survey, and also to contribute to regional 
ecosystem reporting. 



 

1 Introduction 

The objective of this work was to create a “prey index” to evaluate changes in bluefish prey 
over time and in space using Vector Autoregressive Spatio-Temporal modeling (VAST 
(Thorson and Barnett 2017; Thorson 2019)). This approach was patterned on Ng et al. 
(2021), which used predator stomach data to create a biomass index for a single prey, 
Atlantic herring. Expected biomass of herring per stomach was estimated in VAST with 2 
linear predictors, the number of herring per stomach and the average weight of herring in a 
stomach. 

We adapted the approach of Ng et al. (2021) to get an index for “bluefish prey” in aggregate 
rather than a single prey species. Further, we include inshore and offshore regions by 
combining results across regional bottom trawl surveys surveys as was done for summer 
flounder biomass in Perretti and Thorson (2019). Finally, since bluefish themselves are 
somewhat sparsely sampled by the surveys, we aggregate all predators that have a similar 
diet composition to bluefish to better represent bluefish prey biomass. 

We characterize mean weight of bluefish prey from all piscivores caught at each survey 
location and model that over time/space. Covariates potentially affecting perceived 
patterns in the bluefish prey index include number of predators, size composition of 
predators, and sea surface temperature (SST) at each survey location. 

Therefore, the steps involved to estimate the forage index included defining the input 
dataset, and running multiple configurations of the VAST model. Steps involved in defining 
the dataset included defining “bluefish prey”, defining a set of piscivore predators with 
similar diets to bluefish, integrating diet data from two regional surveys, and integrating 
supplementary SST data to fill gaps in in-situ temperature data measurements. Steps 
involved in running the VAST model included decisions on spatial footprint, model 
structure, model selection to determine if spatial and spatio-temporal random effects were 
supported by the data, and further model selection to determine which catchability 
covariates were best supported by the data. Finally, subsets of the spatial domain were 
defined to match bluefish assessment inputs (survey and recreational fishery CPUE) for 
potential use as covariates in bluefish stock assessment models, and a bias-corrected 
(Thorson and Kristensen 2016) forage index for each spatial subset was generated. 

This approach is generalizable to any spatial subset of the full VAST spatial domain, such 
that forage indices for each ecoregion on the Northeast US continental shelf, or for other 
piscivore predators can also be generated. 

2 Methods 

2.1 Input dataset 

Fish food habits data are collected aboard several regional fishery independent surveys in 
the Northeast US. The longest time series of diet has been collected by the Northeast 
Fisheries Science Center (NEFSC) bottom trawl survey (Smith and Link 2010) from south of 



 

Cape Hatteras, NC to the Scotian Shelf at the US/Canada border since the early 1970s, 
which represents the bulk of the data for this analysis. Using similar survey protocols to the 
NEFSC survey, the NorthEast Area Monitoring and Assessment Program (NEAMAP) survey 
has collected fish diet data in inshore waters from Cape Hatteras, NC to Cape Cod, MA since 
2008 (Northeast Area Monitoring & Assessment Program (NEAMAP) et al. 2021). All 
analyses were completed in R (Team 2021). 

2.1.1 Defining bluefish prey 

Bluefish eat small pelagics that are not well sampled by bottom trawl surveys. Bluefish 
themselves are not well sampled by bottom trawl surveys. Nevertheless, the diet samples 
collected for bluefish indicate that anchovies, herrings, squids, butterfish, scup, and small 
hakes are important prey. See the Bluefish Ecosystem Socioeconomic Profile working 
paper, as well as this web summary page link for NEFSC survey and this presentation link 
for NEAMAP survey bluefish diet composition summaries. 

Using all sampled bluefish stomachs included in the NEFSC food habits database 1973-
2021, we created a list of all pelagic nekton bluefish prey that had at least 10 observations 
(Table 2.1). Broad categories such as empty stomach, fish unidentified, Osteichthyes, 
unidentified animal remains, and blown stomach were not included in the prey list. 

https://sgaichas.github.io/bluefishdiet/DietSummary.html
https://docs.google.com/presentation/d/1VlP0OsSLnoaoFHHt7kJbrqNTgBJqI6Ru/edit#slide=id.p1


 

Table 2.1: Prey identified in bluefish stomachs, NEFSC diet database, 1973-2021. 

Prey name Prey common name 

Bluefi

sh 
stom

achs 

(n) 

LOLIGO SP  423 

ENGRAULIDAE ANCHOVIES 408 

ANCHOA MITCHILLI BAY ANCHOVY 321 

PEPRILUS TRIACANTHUS BUTTERFISH 307 

CEPHALOPODA "SQUIDS CUTTLEFISH AND OCTOPODS" 262 

ANCHOA HEPSETUS STRIPED ANCHOVY 171 

ETRUMEUS TERES ROUND HERRING 126 

AMMODYTES SP SAND LANCES 96 

STENOTOMUS CHRYSOPS SCUP 69 

MERLUCCIUS BILINEARIS SILVER HAKE 53 

ILLEX SP  40 

CLUPEA HARENGUS ATLANTIC HERRING 37 

CLUPEIDAE HERRINGS 30 

POMATOMUS SALTATRIX BLUEFISH 22 

ENGRAULIS EURYSTOLE SILVER ANCHOVY 18 

LOLIGO PEALEII LONGFIN SQUID 17 

SCOMBER SCOMBRUS ATLANTIC MACKEREL 14 

PLEURONECTIFORMES FLATFISHES 13 

CYNOSCION REGALIS WEAKFISH 12 

BREVOORTIA TYRANNUS ATLANTIC MENHADEN 10 

2.1.2 Defining piscivore predators 

The choice of predators is largely intended to balance increasing sample size for modeling 
bluefish prey with using predators likely to be foraging similarly to bluefish. One extreme 
assumption would be to include only bluefish as predators, but there are relatively few 
bluefish diet samples due to incomplete availability to bottom trawl surveys (see 
supplemental information). This would miss prey available to bluefish because we have not 
sampled bluefish adequately. The opposite extreme assumption would be to include all 
stomachs that contain any of the top bluefish prey, regardless of which species ate the prey. 
This would include predators that do not forage similarly to bluefish and might therefore 



 

“count” prey that are not actually available to bluefish due to habitat differences. The 
intermediate approach which selects a group of piscivores that forage similarly to bluefish 
both increases sample size and screens out the most dissimilar predators to bluefish. A 
further refinement to the input data is only using the prey items identified above as 
“bluefish prey” across all predators identified as piscivores. 

For bluefish forage index modeling, we are selecting a set of predators that have high diet 
similarity to bluefish. Garrison and Link (2000) evaluated similarity of predator diets on 
the Northeast US shelf to develop foraging guilds. The Schoener similarity index (Schoener 
1970) was applied 

to assess the dietary overlap, 𝐷𝑖𝑗 , between predator pairs: 

𝐷𝑖,𝑗 = 1– 0.5(∑|𝑝𝑖,𝑘– 𝑝𝑗,𝑘|) 

where 𝑝𝑖,𝑘 = mean proportional volume of prey type 𝑘 in predator 𝑖 and 𝑝𝑖,𝑘 = 
mean proportional volume of prey type 𝑘 in predator 𝑗 (Garrison and Link 2000). 

Garrison and Link (2000) used NEFSC bottom trawl survey data 1973-1997. We are using 
diets from 1985-2020 to characterize the forage index. Therefore an additional 20+ years 
of diet information is available to assess whether predator diet similarity has changed. Diet 
similarity analysis has been completed (B. Smith, pers. comm.), with a table of prey 
similarity available via this link on the NEFSC food habits shiny app that was used to define 
feeding guilds based on 50 predators. We evaluated results from several clustering 
algorithms (see this link) to determine how robustly different sets of predators grouped 
with bluefish. The working group selected the piscivore list based on the “complete” 
clustering algorithm, including all species that clustered with all 3 sizes of bluefish (Table 
2.2). 

https://fwdp.shinyapps.io/tm2020/#4_DIET_OVERLAP_AND_TROPHIC_GUILDS
https://sgaichas.github.io/bluefishdiet/PreySimilarityUpdate.html


 

Table 2.2: Predators with highest diet similarity to Bluefish, NEFSC diet database, 1973-2020. 



 

Predator name 
Size 

category 
Minimum 

length (cm) 
Maximum 

length (cm) 

ATLANTIC COD XL 81 150 

ATLANTIC HALIBUT M 31 60 

ATLANTIC HALIBUT L 61 90 

BLUEFISH S 3 30 

BLUEFISH M 31 70 

BLUEFISH L 71 118 

BUCKLER DORY M 21 50 

CUSK L 51 104 

FOURSPOT FLOUNDER L 41 49 

GOOSEFISH S 5 30 

GOOSEFISH M 31 60 

GOOSEFISH L 61 90 

GOOSEFISH XL 91 124 

LONGFIN SQUID S 1 15 

LONGFIN SQUID M 16 30 

NORTHERN SHORTFIN SQUID S 3 15 

NORTHERN SHORTFIN SQUID M 16 30 

POLLOCK L 51 80 

POLLOCK XL 81 120 

RED HAKE L 41 98 

SEA RAVEN S 4 25 

SEA RAVEN M 26 50 

SEA RAVEN L 51 68 

SILVER HAKE M 21 40 

SILVER HAKE L 41 76 

SPINY DOGFISH M 36 79 

SPINY DOGFISH L 80 117 

SPOTTED HAKE M 21 40 

STRIPED BASS M 31 70 

STRIPED BASS L 71 120 



 

Predator name 
Size 

category 
Minimum 

length (cm) 
Maximum 

length (cm) 

SUMMER FLOUNDER M 21 40 

SUMMER FLOUNDER L 41 70 

THORNY SKATE XL 81 108 

WEAKFISH M 26 50 

WHITE HAKE M 21 40 

WHITE HAKE L 41 136 

This piscivore dataset better captured predators that feed similarly to bluefish (e.g. striped 
bass), and has a higher proportion of stations with bluefish prey than a dataset based on 
the Garrison and Link (2000) piscivore definition. We also evaluated a piscivore definition 
using only the predators that always cluster with bluefish no matter what clustering 
algorithm is applied. However, a dataset based on that limited piscivore list excluded 
predators highlighted by bluefish experts (e.g., striped bass) and resulted in the inclusion of 
fewer overall stations than the either of the above piscivore definitions, with a lower 
proportion of included stations with bluefish prey. 

The NEAMAP survey operates closer to shore than the current NEFSC survey. While both 
surveys capture many of the same predators, some are not available close to shore and 
others are more available close to shore. The NEAMAP dataset includes the following 
piscivore predators and size ranges, adding two species not captured by the NEFSC survey 
offshore but included based on working group expert judgement of prey similarity to 
bluefish (Spanish mackerel and spotted sea trout) and leaving out those not captured 
inshore: 

• Summer Flounder 21-70 cm 

• Silver Hake 21-76 cm 

• Weakfish 26-50 cm 

• Atlantic Cod 81-150 cm 

• Bluefish 3 – 118 cm 

• Striped Bass 31 – 120 cm 

• Spanish Mackerel 10 – 33.5 cm 

• Spotted Sea Trout 15.5 – 34 cm 

• Spiny Dogfish 36 – 117 cm 

• Goosefish 5 – 124 cm 

2.1.3 Integrating regional surveys 

For each survey dataset, the full diet database was filtered to include only predators on the 
list of piscivores with the most diet similarity to bluefish (Table 2.2). Then, the list of 
bluefish prey (Table 2.1) was used to categorize prey items for each predator as “bluefish 
prey” or “other prey”. Each station was given a unique station identifier (cruise and station 



 

number), and the total weight (g) of bluefish prey at each station was summed. Total 
bluefish prey weight was divided by the total number of stomachs across all piscivore 
predators at the station to get mean bluefish prey weight (g) at each station. In addition, 
the number of piscivore species and the mean size (total length, cm) across all piscivores 
was calculated at each station. Seasons were identified as “Spring” (collection months 
January - June) and “Fall” (collection months July-December) to align with assumptions 
used in the bluefish stock assessment. Vessel identifiers were assigned based on years and 
survey, with two vessels used for the NEFSC survey (R/V Albatross prior to 2009 and R/V 
Bigelow 2009 to present) and a single vessel used for the NEAMAP survey 2008-present. 
These were used to evaluate whether vessel effects were present. Variable names were 
reconciled between NEFSC and NEAMAP, and the datasets were appended into a single 
dataset with one row per station including station ID, year, season, date, latitude, longitude, 
vessel, mean bluefish prey weight, mean piscivore length, number of piscivore species, and 
sea surface temperature (degrees C). 

2.1.4 Filling gaps in sea surface temperature (SST) data 

Initial dataset checks revealed that approximately 10% of survey stations were missing in-
situ sea water temperature measurements. Gaps in temperature information were more 
prevalent early in the time series (1980s and early 1990s), although stations without 
temperature data were found in nearly all years (see “SST mismatch by year” section at this 
link). Rather than truncate the dataset to only those stations with in-situ temperature 
measurements, we investigated other sources of SST data to fill gaps. 

Two SST data sources were investigated, both based on satellite data: the National Oceanic 
and Atmospheric Administration Optimum Interpolation Sea Surface Temperature (NOAA 
OI SST) V2 High Resolution Dataset (Reynolds et al. 2007) data provided by the NOAA PSL, 
Boulder, Colorado, USA, from their website at https://psl.noaa.gov, and the higher 
resolution source data for the OI SST, the AVHRR Pathfinder SST data linked here (Saha et 
al. 2018). Both sources provide global daily SST at different spatial resolutions (OI SST uses 
a 25 km grid, and AVHRR uses a 4 km grid) from 1981-present. 

The OI SST data are provided as global files for each year. Files for years 1985-2021 were 
downloaded from 
https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/sst.day.mean.[year].v2.nc 
as rasters using code developed by Kim Bastille for Northeast US ecosystem reporting, 
cropped to the Northeast US spatial extent, and converted to R dataframe objects where the 
temperature of a grid cell is associated with the coordinates at the center of the grid cell. 
Then, OI SST temperature was matched to the survey data using year, month, day and 
spatial nearest neighbor matches to survey station locations. 

AVHRR data is organized into year/data folders with 2 nc files for each date, one day and 
one night. A list of survey year-month-day combinations was generated from the piscivore 
diet dataset to download only AVHRR daily files within ± 2 days of survey dates from 
https://www.ncei.noaa.gov/data/oceans/pathfinder/Version5.3/L3C/[year]/data/. The 
“sea_surface_temperature” and “quality_level” fields were extracted as rasters, cropped to 
the Northeast US spatial extent, appended into an annual dataset and saved as R dataframe 

https://sgaichas.github.io/bluefishdiet/SSTmethods.html
https://sgaichas.github.io/bluefishdiet/SSTmethods.html
https://psl.noaa.gov/
https://www.ncei.noaa.gov/products/avhrr-pathfinder-sst
https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/sst.day.mean
https://www.ncei.noaa.gov/data/oceans/pathfinder/Version5.3/L3C/%5Byear%5D/data/


 

objects similar to the OI SST methods. Examination of a subset of AVHRR SST data with 
quality level 3 and above showed extended periods with little SST data within the survey 
domain, likely due to cloud cover (see “SST AVHRR 2021 survey dates” section at this link). 
Therefore, to match AVHRR SST to survey stations, methods for combining and filling 
temporal and spatial gaps would be required, which was beyond the scope of the current 
analysis. 

For survey stations with in-situ temperature measurements, the in-situ measurement was 
retained. For survey stations with missing temperature data (~10% of all stations), OI SST 
was substituted for input into VAST models. 

2.2 VAST modeling 

We used VAST (Thorson and Barnett 2017; Thorson 2019) to evaluate changes in bluefish 
prey biomass and distribution over time. VAST is structured to estimate fixed and random 
effects across two linear predictors, which are then multiplied to estimate an index of the 
quantity of interest. Using notation from Thorson (2019), a full model for the first linear 
predictor 𝜌1 for each observation (𝑖) can include fixed intercepts (𝛽) for each category (𝑐) 
and time (𝑡), spatial random effects (𝜔) for each location (𝑠) and category, spatio-temporal 
random effects (𝜀) for each location, category, and time, fixed vessel effects (𝜂) by vessel 
(𝑣) and category, and fixed catchability impacts (𝜆) of covariates (𝑄) for each observation 
and variable (𝑘): 

𝜌1(𝑖) = 𝛽1(𝑐𝑖, 𝑡𝑖) + 𝜔1
∗(𝑠𝑖, 𝑐𝑖) + 𝜀1

∗(𝑠𝑖, 𝑐𝑖, 𝑡𝑖) + 𝜂1(𝑣𝑖 , 𝑐𝑖) +∑

𝑛𝑘

𝑘=1

𝜆1(𝑘)𝑄(𝑖, 𝑘) 

The full model for the second linear predictor 𝜌2 has the same structure, estimating 𝛽2, 𝜔2, 
𝜀2, 𝜂2, and 𝜆2 using the observations, categories, locations, times, and covariates. VAST 
models can also include habitat (density) covariates, which we did not implement here, and 
have left out of the equation for simplicity. 

2.2.1 Structural decisions 

Thorson (2019) lists 15 major decisions for constructing a VAST model. These include 
decisions on spatial domain, categories modeled (species, ages, etc), data type (presence 
absence, number, weight), including spatial and or spatio-temporal variation, spatial 
resolution, univariate vs multivariate response and factors, specifying temporal 
correlation, including density and or catchability covariates, treatment of area swept 
calculation, including vessel effects, selecting a link function, specifying derived quantities, 
bias correcting derived quantities, and model selection. Here we outline the decisions made 
in developing the forage index. 

2.2.1.1 Spatial domain 

Models were run using the full Northwest Atlantic grid built into VAST (Fig. 2.1). Specific 
strata sets were used from this full model to develop indices matching the spatial extent of 
different assessment inputs (see below). 

https://sgaichas.github.io/bluefishdiet/SSTmethods.html


 

 

Figure 2.1: Northwest Atlantic Grid (blue outline) from https://github.com/James-Thorson-
NOAA/FishStatsUtils 

2.2.1.2 Categories, data type, and link function 

We model all bluefish prey in aggregate as a single category. The mean weight of bluefish 
prey in a stomach at each location is treated as biomass data in the model. Therefore, VAST 
applies a delta model where the first linear predictor models encounter rate and the 
second linear predictor models amount of prey (equivalent to positive catch rates on a 
survey). Following what Ng et al. (2021) did for herring, as well as recommended practice 
for biomass data (Thorson 2019), we apply a Poisson-link delta model to estimate expected 
prey mass per predator stomach. 

2.2.1.3 Spatial variation, resolution, response type, and temporal correlation 

We include spatial and spatio-temporal variation in both linear predictors, but test whether 
the data support these effects using model selection (see below). Similar to Ng et al. (2021) 
we used the default spatial smoother in VAST, the stochastic partial differential equation 
(SPDE) approximation to the Mat'ern correlation function (method = “mesh”; Thorson 
(2019)). Although directional correlation (anisotopy) can be common in fishery collections 
with depth gradients along a continental shelf (Thorson 2019), we tested whether the 
inclusion of anisotopy as a fixed effect was supported using model selection (see below). 

https://github.com/James-Thorson-NOAA/FishStatsUtils
https://github.com/James-Thorson-NOAA/FishStatsUtils


 

We used a higher spatial resolution than Ng et al. (2021) did for herring-predator pairs, 
here defining 500 “knots” or standardized locations optimally allocated among all observed 
survey stations in the full dataset as estimated by k-means clustering of the data, to define 
the spatial dimensions of each seasonal model and the annual model. 

Modeling all bluefish prey in aggregate leads to a univariate model, producing a single 
forage index which is most easily integrated into the bluefish assessment model. We did 
not include temporal correlation in fixed intercepts to maintain independence of forage 
abundance in each modeled year (Thorson 2019). We did not include temporal correlation 
in spatio-temporal random effects because most survey areas were sampled each year, so 
projecting forage “hotspots” between years using temporal correlation was not desirable 
for this application. 

2.2.1.4 Including covariates, vessel effects, area swept, and other decisions 

We explored multiple combinations of catchability covariates and vessel effects. Surveys 
were conducted aboard multiple vessels over time and between NEFSC and NEAMAP, so 
we investigated vessel effects for the NEAMAP vessel and NEFSC vessels Albatross and 
Bigelow (commonly included in regional stock assessments when survey indices are not 
modeled separately). Vessel effects were modeled as overdispersion parameters. 
Catchability covariates explored included mean predator length at each station, number of 
predator species at each station, and sea surface temperature (SST) at each station. 

The predator length covariate may more directly model vessel differences in predator 
survey catch that affect stomach contents than modeling a vessel catchability covariate 
directly. Ng et al. (2021) found that predator length covariates were strongly supported as 
catchability covariates (larger predators being more likely to have more prey in stomachs). 
The rationale for including number of predator species is that more species “sampling” the 
prey field at a particular station may result in a higher encounter rate (more stations with 
positive bluefish prey in stomachs). Water temperature was also included as a potential 
catchability covariate, because temperature affects predator feeding rate. 

VAST can include habitat or density covariates that are expected to drive modeled species 
distribution and abundance (as opposed to catchability covariates, which affect our survey 
observations). For example, a certain habitat or depth may limit the range or productivity 
of a species. Because we are interested in an aggregate index of forage fish that includes a 
diversity of species that use many different habitats, including density covariates 
appropriate across all species (that affect density in the same way) may not be feasible, and 
was not explored for this project. 

Although the forage fish index is based on trawl-surveyed fish predators and the area 
swept of the net capturing predators is available, determining the actual area swept of the 
predators “sampling” the prey field is less clear. Therefore, we set area swept to 1 as 
recommended for “sampling gears” with unknown effective sampling areas, which means 
our forage abundance index does not have an interpretable scale, but should be 
proportional to actual forage biomass (Thorson 2019). 



 

The derived quantity of interest here is a biomass index for each of spring, fall, and annual 
datasets for bluefish prey species. We have also included supplementary plots of the center 
of gravity for each seasonal model and the annual model. 

Bias correction of the forage fish biomass index for each model (and spatial subdivisions, 
see below) is based on Thorson and Kristensen (2016), as implemented in the VAST 
development branch code (https://github.com/James-Thorson-NOAA/VAST/tree/dev). 

2.2.2 Model selection 

We compared the AIC for the 500 knot models to see if including the spatial and spatio-
temporal random effects in the first and second linear predictors improved the model fit. 
Model structures tested include with and without anisotopy (2 fixed parameters), and with 
and without spatial and spatio-temporal random effects in the second linear predictor or 
both linear predictors. This follows the model selection process outlined in Ng et al. (2021) 
using restricted maximum likelihood (REML; Zuur et al. (2009)). 

Following this, we evaluated catchability covariates using AIC to determine which are best 
supported by the data. We used the structure selected by the REML model selection, then 
evaluated vessel effects (overdispersion) and a range of potential catchability covariates 
using maximum likelihood to calculate AIC instead of REML, because the spatial and spatio-
temporal random effects are the same across models. 

Our two-step model selection (1: spatial and spatio-temporal random effects, 2: 
catchability covariates) was completed using the script 
bluefishdiet/VASTunivariate_bfp_modselection.R. 

2.3 Spatial definitions 

Our main goal is to determine whether bluefish prey availability has changed in inshore 
waters where the recreational fishery primarily operates. Our food habits datasets do not 
extend into inland waters such as bays and sounds, with the exception of Cape Cod Bay. (In 
the future we might be able to investigate food habits from ChesMMAP or surveys south of 
Cape Hatteras.) However, there is data from both historical NEFSC surveys and NEAMAP in 
state coastal waters (0-3 miles from shore), and offshore across the continental shelf. 

The model has been partitioned into several definitions of “inshore” and “offshore” for the 
stock assessment inputs. First we define a partition that is the MAB and GB areas only as 
the GOM is not relevant to the bluefish assessment. This is called MABGB (Fig. 2.2), while 
the full model is AllEPU. Within this partition, 

1. Survey inshore vs offshore to evaluate availability to the survey index. Strata 
partitions include: 

– Albatross inshore stations (Fig. 2.3) 

– Bigelow inshore bluefish index stations (Fig. 2.4) 

– offshore bluefish index stations (considered for addition in 2022, Fig. 2.5) 

– offshore non-bluefish stations 

https://github.com/James-Thorson-NOAA/VAST/tree/dev
https://github.com/sgaichas/bluefishdiet/blob/main/VASTunivariate_bfp_modselection.R


 

2. Recreational fishery inshore vs offshore to evaluate availability to the MRIP CPUE 
index. Strata partitions include 

– shoreline to 3 miles out (State waters, Fig. 2.6) 

– offshore of 3 miles (Federal waters) 

NEFSC survey strata definitions are built into the VAST northwest-atlantic extrapolation 
grid already. We defined additional new strata to address the recreational inshore-offshore 
3 mile boundary. The area within and outside 3 miles of shore was defined using the sf R 
package as a 3 nautical mile (approximated as 5.556 km) buffer from a high resolution 
coastline from thernaturalearth R package. This buffer was then intersected with the 
current FishStatsUtils::northwest_atlantic_grid built into VAST and saved using 
code here. Then, the new State and Federal waters strata were used to split NEFSC survey 
strata where applicable, and the new full set of strata were used along with a modified 
function from FishStatsUtils::Prepare_NWA_Extrapolation_Data_Fn to build a custom 
extrapolation grid for VAST as described in detail here. 

All strata were applied in both seasonal and annual models. 

Model output strata of interest for the bluefish assessment are mapped below: 

https://github.com/sgaichas/bluefishdiet/blob/main/VASTcovariates_updatedPreds_sst_3mi.Rmd#L49-L94
https://sgaichas.github.io/bluefishdiet/VASTcovariates_finalmodbiascorrect_3misurvstrat.html


 

2.3.1 Key Strata 

2.3.1.1 Mid-Atlantic and Georges Bank 

 

Figure 2.2: Map of Mid-Atlantic and Georges Bank region. 



 

2.3.1.2 Albatross inshore survey strata 

 

Figure 2.3: Map of inshore survey strata formerly surveyed by the R/V Albatross, now 
surveyed by NEAMAP. 



 

2.3.1.3 Bluefish Inshore Survey Strata (Bigelow) 

 

Figure 2.4: Map of bluefish inshore survey strata accessible to the R/V Bigelow 



 

2.3.1.4 Bluefish Offshore Survey Strata (proposed 2022) 

 

Figure 2.5: Map of bluefish offshore survey strata proposed for the 2022 assessment 



 

2.3.1.5 State waters 

 

Figure 2.6: Map of state waters: coastline out to 3 nautical miles from shore. 

 

Seasonal models were run using the script 
bluefishdiet/VASTunivariate_bfp_allsurvs_lencovSST_ALLinoffsplits.R, which 
contains all stratum definitions. The annual model was run using the script 
bluefishdiet/VASTunivariate_bfp_allsurvsANNUA:_lencovSST_ALLinoffsplits.R. 

The final model runs included all selected covariates, stratum definitions, and bias 
correction for the biomass index. 

3 Results 

3.1 Input dataset overview 

The list of bluefish prey derived from the most common identifiable prey items in NEFSC 
diet database (Table 2.1) includes the majority of bluefish diet composition by decade (Fig. 
3.1) and season (Fig. 3.2). Colors in the plots show included prey, while gray sections 
represent “fish unidentified” and other categories not included in this analysis. Even when 

https://github.com/sgaichas/bluefishdiet/blob/main/VASTunivariate_bfp_allsurvs_lencovSST_ALLinoffsplits.R
https://github.com/sgaichas/bluefishdiet/blob/main/VASTunivariate_bfp_allsurvsANNUAL_lencovSST_ALLinoffsplits.R


 

evaluated annually and seasonally (where bluefish sample sizes may be small for a year-
season combination), a majority of observed diet is included in the dataset for analysis (Fig. 
3.3). 

 

Figure 3.1: Bluefish diet by decade, NEFSC bottom trawl surveys. 



 

 

Figure 3.2: Bluefish diet by season, NEFSC bottom trawl surveys. 



 
 



 

Figure 3.3: Bluefish diet by season and year, NEFSC bottom trawl surveys. 

The full NEFSC diet database 1985-2021 contains 25634 survey stations with diet 
collections. When including only piscivores feeding similarly to bluefish, the survey 
stations with diet collections in this time period is 22751. Of these piscivore diet stations, 
9027 included our defined bluefish prey, or 39.6773768%. For comparison, 1814 stations 
have diet samples for bluefish alone, with 905 or 49.8897464% including our defined 
bluefish prey. 

NEAMAP survey stations with diet collections for piscivores (n = 3838) had a higher 
proportion with our defined bluefish prey (n = 2418, 63.0015633%). 

The number of survey stations missing surface temperature data varied considerably by 
decade. A large percentage of survey stations lacked in-situ temperature measurements 
between 1985 and 1990, while the percentage of stations missing temperature was 
generally below 10% (with a few exceptions) from 1991-2021 (Table 3.1). Therefore, 
OISST temperature estimates were more commonly substituted early in the time series. 



 

Table 3.1: Number of survey stations by year and season with in situ sea surface temperature 
measurements. 



 

Year 
Spring N 

stations 

Spring N 

stations with 

in situ 

temperature 

Spring 

percent 

missing 

temperature 

Fall N 

stations 

Fall N 

stations with 

in situ 

temperature 

Fall percent 
missing 

temperature 

1985 255 85 67 233 85 64 

1986 266 112 58 208 95 54 

1987 252 126 50 232 103 56 

1988 192 97 49 226 104 54 

1989 242 81 67 267 124 54 

1990 245 102 58 287 74 74 

1991 280 269 4 348 339 3 

1992 335 323 4 413 373 10 

1993 353 346 2 403 379 6 

1994 325 301 7 309 303 2 

1995 395 377 5 362 267 26 

1996 368 359 2 309 304 2 

1997 375 370 1 288 287 0 

1998 450 443 2 340 334 2 

1999 469 464 1 341 338 1 

2000 438 429 2 295 292 1 

2001 416 412 1 293 290 1 

2002 448 440 2 293 287 2 

2003 343 335 2 301 294 2 

2004 385 378 2 287 284 1 

2005 341 332 3 290 283 2 

2006 414 411 1 329 326 1 

2007 411 406 1 454 435 4 

2008 424 273 36 464 208 55 

2009 506 492 3 475 451 5 

2010 438 421 4 452 438 3 

2011 421 406 4 441 437 1 

2012 457 449 2 458 450 2 

2013 488 482 1 483 475 2 



 

Year 
Spring N 

stations 

Spring N 

stations with 

in situ 

temperature 

Spring 

percent 

missing 

temperature 

Fall N 

stations 

Fall N 

stations with 

in situ 

temperature 

Fall percent 
missing 

temperature 

2014 403 387 4 453 434 4 

2015 446 442 1 461 431 7 

2016 450 425 6 473 435 8 

2017 353 310 12 260 239 8 

2018 352 332 6 400 371 7 

2019 419 392 6 453 427 6 

2020 112 101 10 136 136 0 

2021 391 373 5 425 400 6 

3.2 VAST model selection 

Comparisons of AIC are presented for both the first (spatial and spatio-temporal random 
effects, Table ??) and second (catchability covariates, Table ??) rounds of model selection. 

Models compared using REML are identified by model name (“modname” in Tables ??) 
which includes all prey aggregated (“allagg” for all models), season (“all” for annual models 
of months 1-12, “fall” for models of months 7-12, and “spring” for models of months 1-6), 
number of knots (500 for all models), and which fixed and random spatial and spatio-
temporal effects were included in which linear predictor (1 or 2). The names for model 
options and associated VAST model settings are: 

Model selection 1 (spatial, spatio-temporal effects, no covariates) options (following Ng et 
al. (2021)) and naming: * All models set Use_REML = TRUE in fit_model specifications. 
* Modeled effects, model name suffix, and VAST settings by model: 

1. “_alleffectson” = Spatial and spatio-temporal random effects plus anisotropy in both 
linear predictors; FieldConfig default (all IID) 

2. “_noaniso” = Spatial and spatio-temporal random effects in both linear predictors 
with anisotopy turned off; FieldConfig default (all IID) and use_anisotopy = FALSE 

3. “_noomeps2” = Spatial and spatio-temporal random effects plus anisotropy only in 
linear predictor 1; FieldConfig = 0 for Omega2, Epsilon2 

4. “_noomeps2_noaniso” = Spatial and spatio-temporal random effects only in linear 
predictor 1 with anisotopy turned off; FieldConfig = 0 for Omega2, Epsilon2 and 
use_anisotopy = FALSE 

5. “_noomeps2_noeps1” = Spatial random effects plus anisotropy only in linear 
predictor 1; FieldConfig = 0 for Omega2, Epsilon2, Epsilon1 

6. “_noomeps2_noeps1_noaniso” = Spatial random effects only in linear predictor 1 
with anisotopy turned off; FieldConfig = 0 for Omega2, Epsilon2, Epsilon1 and 
use_anisotopy = FALSE 



 

7. “_noomeps12” = Anisotropy, but no spatial or spatio-temporal random effects in 
either linear predictor; FieldConfig = 0 for both Omega, Epsilon 

8. “_noomeps12_noaniso” = No spatial or spatio-temporal random effects in either 
linear predictor; FieldConfig = 0 for both Omega, Epsilon and use_anisotopy = 
FALSE 

 

Using REML, models including spatial and spatio-temporal random effects as well as 
anisotropy were best supported by the data. This was true for the spring dataset, the fall 
dataset, and the annual (seasons combined) dataset. 

For the second round of model selection with different combinations of vessel effects and 
or catchability covariates, “modname” in ?? follows a similar pattern as above, with all prey 
aggregated (“allagg” for all models), season (“all” for annual models of months 1-12, “fall” 
for models of months 7-12, and “spring” for models of months 1-6), number of knots (500 



 

for all models), and which vessel effects or covariates were included. The names for model 
options and associated VAST model settings are: 

Model selection 2 (covariates) options, FieldConfig default (all IID), with anisotropy: 

1. “_base” = No vessel overdispersion or length/number covariates 
 

2. “_len” = Predator mean length covariate 

3. “_num” = Number of predator species covariate 

4. “_lennum” = Predator mean length and number of predator species covariates 

5. “_sst” = Combined in situ and OISST covariate 

6. “_lensst” = Predator mean length and SST covariates 

7. “_numsst” = Number of predator species and SST covariates 

8. “_lennumsst” = Predator mean length, number of predator species, and SST 
covariates 

9. “_eta10” = Overdispersion (vessel effect) in first linear predictor (prey encounter) 

10. “_eta11” = Overdispersion (vessel effect) in both linear predictors (prey encounter 
and weight) 



 

 

Catchability covariates were better supported by the data than vessel effects. Model 
comparisons above and here led us to the best model fit using mean predator length, 
number of predator species, and SST at a survey station as catchability covariates. 

https://sgaichas.github.io/bluefishdiet/VASTcovariates_updatedPreds_sst.html


 

3.3 Bias-corrected spatial forage indices 

3.3.1 Fall Index 

Many indices for different spatial strata can be derived from the VAST model. Fall indices 
(Fig. 3.4) for the full spatial domain (AllEPU) through smaller strata were produced. The 
same regions are used for all models. 

 

Figure 3.4: All Fall forage indices 

We can compare the indices relevant to bluefish on the same scale: inshore (Albatross 
strata), inshore bluefish, offshore bluefish, and further out, plus the state and federal 
waters split (Fig. 3.5). 



 

 

Figure 3.5: Bluefish-related Fall forage indices 

Proportions of prey in each bluefish relevant area can be compared (here as a proportion of 
the full MABGB index; Fig. 3.6). 



 

 

Figure 3.6: Fall forage indices as proportion of the Mid Atlantic and Georges Bank area. 

3.3.2 Fall predicted ln-density 

The VAST model predicts density of forage fish across the entire model domain for each 
year (Fig. 3.7). 



 

 

Figure 3.7: Yearly maps of VAST model estimated forage fish density for Fall (months 7-12). 

3.3.3 Fall Diagnostics 

Basic VAST diagnostics include maps of the spatial grid knot placement (“Data_and_knots”), 
maps of included station locations for each year (“Data_by_year”), residual plots (“quantile 
residuals”), maps of residuals for each station (“quantile_residuals_on_map”), an anisotropy 
plot indicating directional correlation (“Aniso”), and a plot of the estimated change in 



 

forage fish center of gravity over time (“center_of_gravity”). We present these plots for each 
of the models in numbered sections below. 

3.3.3.1 Data_and_knots 

 

Fall diagnostics:Data_and_knots 



 

3.3.3.2 Data_by_year 

 

Fall diagnostics:Data_by_year 



 

3.3.3.3 quantile_residuals 

 

Fall diagnostics:quantile_residuals 



 

3.3.3.4 quantile_residuals_on_map 

 

Fall diagnostics:quantile_residuals_on_map 



 

3.3.3.5 Aniso 

 

Fall diagnostics:Aniso 



 

3.3.3.6 center_of_gravity 

 

Fall diagnostics:center_of_gravity 

 

3.3.4 Spring Index 

Spring indices (Fig. 3.8) for the full spatial domain (AllEPU) through smaller strata were 
produced. 

 

Figure 3.8: All Spring forage indices 



 

We can compare the indices relevant to bluefish on the same scale: inshore (Albatross 
strata), inshore bluefish, offshore bluefish, and further out, plus the state and federal 
waters split (Fig. 3.9). 

 

Figure 3.9: Bluefish-related Spring forage indices 

Proportions of prey in each bluefish relevant area for spring can be compared (here as a 
proportion of the full MABGB index; Fig. 3.10). 



 

 

Figure 3.10: Spring forage indices as proportion of the Mid Atlantic and Georges Bank area. 

3.3.5 Spring predicted ln-density 

The VAST model predicts density of forage fish across the entire model domain for each 
year (Fig. 3.11). 



 

 

Figure 3.11: Yearly maps of VAST model estimated forage fish density for Spring (months 1-6). 

3.3.6 Spring Diagnostics 

Diagnostics shown for the spring model are as described above for the fall model. 



 

3.3.6.1 Data_and_knots 

 

Spring diagnostics:Data_and_knots 



 

3.3.6.2 Data_by_year 

 

Spring diagnostics:Data_by_year 



 

3.3.6.3 quantile_residuals 

 

Spring diagnostics:quantile_residuals 



 

3.3.6.4 quantile_residuals_on_map 

 

Spring diagnostics:quantile_residuals_on_map 



 

3.3.6.5 Aniso 

 

Spring diagnostics:Aniso 



 

3.3.6.6 center_of_gravity 

 

Spring diagnostics:center_of_gravity 

 

3.3.7 Annual Index 

The Annual forage index uses data from all months each year (1-12). The same plots are 
presented as those above for Fall and Spring indices. Fig. 3.12 shows all annual forage index 
time series with standard errors. 

 

Figure 3.12: All Annual forage indices 



 

We can compare the annual indices relevant to bluefish on the same scale: inshore 
(Albatross strata), inshore bluefish, offshore bluefish, and further out, plus the state and 
federal waters split (Fig. 3.13). 

 

Figure 3.13: Bluefish-related Annual forage indices 

Proportions of prey in each bluefish relevant area for the annual model can be compared 
(here as a proportion of the full MABGB index; Fig. 3.14). 



 

 

Figure 3.14: Annual forage indices as proportion of the Mid Atlantic and Georges Bank area. 

3.3.8 Annual predicted ln-density 

The VAST model predicts density of forage fish across the entire model domain for each 
year (Fig. 3.15). 



 

 

Figure 3.15: Yearly maps of VAST model estimated annual forage fish density (months 1-12). 

3.3.9 Annual Diagnostics 

Diagnostics shown for the annual model are as described above for the falland spring 
models. 



 

3.3.9.1 Data_and_knots 

 

Annual diagnostics:Data_and_knots 



 

3.3.9.2 Data_by_year 

 

Annual diagnostics:Data_by_year 



 

3.3.9.3 quantile_residuals 

 

Annual diagnostics:quantile_residuals 



 

3.3.9.4 quantile_residuals_on_map 

 

Annual diagnostics:quantile_residuals_on_map 



 

3.3.9.5 Aniso 

 

Annual diagnostics:Aniso 



 

3.3.9.6 center_of_gravity 

 

Annual diagnostics:center_of_gravity 

 

The full results of all models are archived on google drive rather than github to save space. 

3.4 Woods Hole stock assessment model (WHAM) input time series 

Current inputs for the bluefish assessment implemented in WHAM (Stock and Miller 2021) 
include a subset of the stratum-specific indices calculated above. The index is calculated for 
each season and the annual model for several regions relevant to the bluefish assessment: 

1. Albatross New (AlbNew) includes all inshore and new offshore survey strata 
(largest area, combines area in Figs. 2.3, 2.4, and 2.5) 

2. Albatross Old (AlbOld) includes all inshore survey strata (combines area in Figs. 2.3 
and 2.4) 

3. Bigelow New (BigNew) includes the subset of inshore survey strata that can be 
sampled by the R/V Henry Bigelow plus new offshore strata (combines area in Figs. 
2.4 and 2.5) 

4. Bigelow Old (BigOld) includes the subset of inshore survey strata that can be 
sampled by the R/V Henry Bigelow (area in Fig. 2.4) 

5. StateWaters includes the coastline to 3 nautical miles offshore (smallest area, in Fig. 
2.6) 

WHAM model inputs were processed with the WHAMinputs.R script. 

Indices in the strata above for input in to WHAM are plotted below (Figs. 3.16, 3.17, 3.18). 

https://drive.google.com/drive/folders/1PsEk5hhQ7fR0Gq4NnYPvU4V59d4nIR8E
https://github.com/sgaichas/bluefishdiet/blob/main/WHAMinputs.R


 

3.4.1 WHAM forage index time series Fall 

 

Figure 3.16: Time series of VAST estimated fall forage indices for input into WHAM, 1985-
2021 



 

3.4.2 WHAM forage index time series Spring 

 

Figure 3.17: Time series of VAST estimated spring forage indices for input into WHAM, 1985-
2021 



 

3.4.3 WHAM forage index time series Annual 

 

Figure 3.18: Time series of VAST estimated annual forage indices for input into WHAM, 1985-
2021 

All of the above indices were provided for testing within the WHAM-based bluefish 
assessment model. 

4 Discussion 

Bluefish are generalist predators. Understanding how bluefish availability may be affected 
by their prey field means looking across many potential prey species, including species not 
well sampled by bottom trawl surveys. We characterized aggregate forage fish trends using 
piscivore stomach data as input observations to a vector autoregressive spatio-temporal 
(VAST) model. The resulting model-derived forage indices suggest that aggregate forage 
fish biomass has fluctuated in both space and time in the Northeast US, especially in areas 
relevant to the bluefish assessment. Evaluating these indices within the bluefish 
assessment model as covariates reflecting bluefish availability to fisheries and surveys is in 
progress. 

Although time series of aggregate forage biomass for direct comparison with this work are 
lacking, we think, due to good sample sizes and VAST model diagnostics, that this is the 



 

best representation we have of aggregate forage fish trends in this region. Fish stomach 
data has been used to index prey abundance, especially for data-poor prey taxa poorly 
sampled by bottom trawls, in multiple ecosystems worldwide (Fahrig et al. 1993; Link 
2004; Mills et al. 2007; Cook and Bundy 2012; Lasley-Rasher et al. 2015; Rohan and 
Buckley 2017; Sydeman et al. 2022). Integrating fish stomach content information within a 
VAST model to index prey biomass was shown to be successful with selected predators of 
Atlantic herring in the Northeast US (Ng et al. 2021), using a subset of the data we used 
here. In particular, reasonable agreement was found between the Atlantic cod diet-derived 
Atlantic herring biomass index and Atlantic herring assessment biomass trends. However, 
herring indices based on stomach contents from other individual predators (e.g., silver 
hake) had poor agreement with herring assessment trends (Ng et al. 2021). Ng et al. (2021) 
noted that decadal trends generally agreed across predators between diet-based and stock 
assessment Atlantic herring biomass indices, but that shorter term trends varied 
considerably by seasons and predators. Further, changes in spatial overlap between 
individual predators and prey over time was noted by Ng et al. (2021) as a potential issue 
with using diet-based indices of Atlantic herring abundance. 

Aggregation of predators and seasons was one recommendation for future work from Ng et 
al. (2021) to address some of the issues with using predator stomach data to evaluate prey 
biomass. Our approach combining stomach data across multiple piscivore predators was 
intended to improve sample size for the aggregate prey index so that our results integrate 
across individual predator sampling variability and changes in predator-prey overlap, and 
perhaps clarify the longer term, decadal trends in forage fish biomass. Further, evaluating 
forage species in aggregate should also reduce issues of changing overlap of predators with 
individual prey species. However, we don’t have an aggregate forage fish assessment time 
series for comparison. Using survey biomass catch of forage fish directly can be 
problematic, including issues with poor sample size or missing data for key small pelagic 
fish (anchovies, sandlance) and cephalopods (Mills et al. 2007; Rohan and Buckley 2017). 
Further, bottom trawl survey biomass time series for assessed forage species can be at 
odds with other assessment inputs and assessment-estimated biomass trends in the 
Northeast US. For example, Atlantic mackerel bottom trawl survey indices have generally 
increased while assessment estimated biomass, largely driven by an egg survey and 
information on catch, is decreasing (NEFSC 2018). Therefore, our forage index represents 
an alternative, possibly more complete assessment of aggregate forage fish in this region 
than can be obtained directly from bottom trawl surveys. 

Changes in forage fish are of interest across seasons, but changes in the fall index nearshore 
may be most closely aligned with abundance indices used in the bluefish assessment. 
Bluefish migrate into northern coastal waters in spring and return south in late fall to 
overwinter (Collette and Klein-Macphee 2002). Although bluefish catch patterns vary by 
state, recreational fishing dominates coastwide bluefish landings, and most recreational 
fishing activity (nearly 70% of landings) takes place in July-October (2022 bluefish 
research track summary report), months included in the fall forage index (months 7-12). 
Further, northern states, included in the spatial extent of the forage index, see peak 
recreational fishing during these months. Therefore, our fall forage indices may provide a 
reasonable match to the recreational catch per unit effort index used in the assessment. 



 

Similarly, fall forage indices for fishery independent survey strata also temporally and 
spatially align with both the fall NEFSC bottom trawl survey and fall NEAMAP bottom trawl 
survey stratified mean catch-per-tow used in the bluefish assessment (2022 bluefish 
research track summary report). 

While the fall forage fish indices are temporally aligned with bluefish assessment inputs 
and spatially aligned with two trawl survey indices used in the assessment, improvements 
in spatial overlap with recreational fisheries and other survey indices could be considered 
in the future. A large proportion (51%) of bluefish recreational landings come from inland 
waters: bays and estuaries including Chesapeake Bay, Delaware Bay, and Long Island 
Sound, with the next largest proportion (42%) coming from state waters extending 3 
nautical miles from the coastline (2022 bluefish research track summary report). The 
current forage index does not cover inland waters, aside from Narragansett Bay and 
Buzzards Bay. Diet data are available for Chesapeake Bay from the ChesMMAP survey, 
which could be added to the VAST model in the future. Less diet information is available for 
the portion of the bluefish range south of Cape Hatteras, although some collections have 
taken place. Investigation of sources of diet information, or possibly direct forage fish 
surveys for inland and southern areas would be worthwhile to see whether data are 
adequate to cover the full range of bluefish. In addition, it is worth exploring whether 
including indices as area-expanded estimates or as unexpanded forage density in each area 
of interest provides more information to the bluefish assessment model. 

The general method of using stomach information to estimate prey indices can be extended 
to address other predators with different prey fields (e.g., benthic feeders; Link (2004); 
Lasley-Rasher et al. (2015); Rohan and Buckley (2017)) or different spatial distributions. 
Further adjustments to the VAST model could explore the sensitivity of aggregate forage 
trends to the inclusion or exclusion of predators from diet sampling over time and the level 
of species identification in diets. For example, we aggregated predators most similar to 
bluefish based on analysis of the full diet database to minimize impacts from uneven 
sampling of individual predators, but some differences in predator sampling over time 
(e.g. squid stomachs sampled up to 2000s, not thereafter) may still affect the forage index. 
More importantly, we had to leave out the “fish unidentified” prey category which 
comprised 25-30% of bluefish diet because while these prey may be forage fish for 
bluefish, there is no guarantee they would be for other sampled predators we included in 
the model. Increased use of a broad “fish unidentified” category would degrade the use of 
this index in the future, so continued investment in high quality stomach data collection is 
crucial. In addition, including more information on the process of fish predation (which we 
somewhat controlled for as catchability covariates for number of predators, predator size, 
and temperature) may help to refine aggregate forage indices. For example, in this initial 
model we have not accounted for functional responses of predators, but new research may 
allow us to do so in future iterations (Smith and Smith 2020; Robertson et al. 2022). 

Overall, this index provides insight into temporal and spatial variation at the forage fish 
community level, which is important both for individual predators and for ecosystem 
assessment. Forage fish link lower trophic level productivity with larger fish important for 
human consumption and recreation as well as for protected species, so understanding 
aggregate forage dynamics within an ecosystem may support analysis related to 



 

management for multiple living resources (Smith et al. 2011; Essington et al. 2015; Levin et 
al. 2016; Punt et al. 2016; Tommasi et al. 2017; Soudijn et al. 2021). While aggregate 
indices of forage fish may be inherently more stable than individual forage species 
population trajectories, we still find substantial fluctuations in this forage index. 
Investigation into drivers of forage fish (and predator) spatial and temporal shifts 
demonstrate substantial variability. Many factors influence forage distribution and 
abundance, including environmental drivers changing habitat and impacting species 
differently, resulting in often unclear or mixed signals across taxa, although general trends 
in the Northeast US are towards the northeast and into deeper water (Fredston et al. 2021; 
Suca et al. 2021). This initial aggregate forage index provides the opportunity to investigate 
whether temporal and spatial trends are coherent with aggregate zooplankton indices and 
or spatial and temporal patterns in environmental drivers. Ongoing analyses of ecosystem 
linkages with the forage index may provide insight both for improving the index for future 
predator stock assessments and for ecosystem reporting in the Northeast US (NEFSC 
2022). 
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