Short-term forecasts of species

 distributions for fisheries managementMalin Pinsky, Rutgers University
Alexa Fredston, University of California Santa Cruz Brandon Muffley, Mid-Atlantic Fishery Management Council

Potential change in species distribution

Fisheries management requires knowing where fish are

Fisheries management requires knowing where fish are

- Stock definitions

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management
- Incidentalcatch

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management
- Incidentalcatch
- New fishery species

Southeast region

Fisheries management requires knowing where fish are

- Stock definitions
- Stakeholder
representation
- Spatial management
- Incidentalcatch
- New fishery species
- Allocations

West Coast regionSoutheast region
Greater Atlantic region Federal waters (generally extend from 3 to 200 nautical miles off the coast)

Research questions

1. Can dynamic range models forecast changes in species distributions?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Goals

Goals

True forecasts will require forecast oceanographic conditions

Test
retrospective forecasts

Goals

Goals

Focal species

Spoiler alerts: summer flounder models

1. Non-climate factors (fishing, dispersal) influence species distributions
2. Species distributions are highly variable, not marching up the coast
3. Dynamic range models can forecast distribution shifts with some skill

Model structure

Modelstructure

Model structure

Model structure

Temperature dependence

Temperature at which
recruitment is maximized mortality is minimized movement is maximized

Temperature

Summary of approach

Fit to data from bottom trawl survey, 1972-2006

Summary of approach

Fit to data from bottom trawl survey, 1972-2006

Test the forecast 20072016

Summary of approach

Fit to data from bottom trawl survey, 1972-2006

Test the forecast 20072016

This is a proof of concept, not a future forecast!

Bayesian network (DAG); T \rightarrow movement

Estimated number of individuals in a patch, age, and year
Temperature

Bayesian network (DAG); T \rightarrow movement

Length at age key

Estimated number of individuals in a patch, age, and year
Temperature

Bayesian network (DAG); $\mathrm{T} \rightarrow$ movement

Bayesian network (DAG); T \rightarrow recruitment

Bayesian network (DAG); T \rightarrow mortality

Research questions

1. Can dynamic range models forecast changes in species distributions?

Forecast vs. reality: centroid position

Forecast vs. reality: overall abundance

Forecast vs. reality: Mid-Atlantic Bight vs Gulf of Maine / Georges Bank

Forecast vs. reality: abundance by patch

Forecast vs. reality: 37-38 N

Forecast vs. reality: best estimates

Estimated

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Updates and next steps

1. All model features are programmed

Not shown: options to fit to length data or add a stock-recruit relationship
2. Summer flounder models are running on supercomputers at Rutgers this month
3. Ran traditional SDMs for comparison
4. Next up: formally evaluate and compare models
5. Other three species are in the works

Our questions for you

1. If this was a future forecast, what would you do with it?
2. What types of information (for example, biomass in/out of Mid-Atlantic Bight) would be most useful?
3. Are there other data streams or parameter estimates you suggest we use, recognizing the generality / specificity trade-off?

Potential Project Application(s)

EAFM Guidance Document

Example Climate-Related Policies and Recommendations

- Develop and evaluate approaches for MAFMC fisheries and their management to become more adaptive to change
- Use models to develop short-term forecasts and medium-term projections
- Identify new species likely to become established in the MidAtlantic (from the South Atlantic) and species likely to expand or shift distribution into waters under the jurisdiction of New England

Species Distribution Shifts

- Collaborated with Morley et al. 2018 on Projecting shifts in thermal habitat during the $21^{\text {st }}$ century project
- Highly informative and considered in a strategic way - i.e., EAFM guidance document
- This project allows Council to potentially consider distribution change in a more tactical way
- Focus on Mid At. species, but interest in possible South At. changes

Examples of Potential Science Applications

Less Uncertainty \longrightarrow More Uncertainty

Ecosystem factors accounted	Assessment considered habitat and ecosystem effects on stock productivity, distribution, mortality and quantitatively included appropriate factors reducing uncertainty in short term predictions. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are stable. Comparable species in the region have synchronous production characteristics and stable short-term predictions. Climate vulnerability analysis suggests low risk of change in productivity due to changing climate.	Assessment considered habitat/ecosystem factors but did not demonstrate either reduced or inflated short-term prediction uncertainty based on these factors. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are variable, with mixed productivity and uncertainty signals among comparable species in the region. Climate vulnerability analysis suggests moderate risk of change in productivity from changing climate.	Assessment either demonstrated that including appropriate ecosystem/habitat factors increases short-term prediction uncertainty, or did not consider habitat and ecosystem factors. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are variable and degrading. Comparable species in the region have high uncertainty in short term predictions. Climate vulnerability analysis suggests high risk of changing productivity from changing climate.

From MAFMC Scientific and Statistical Committee OFL CV Guidance Document 2020 https://www.mafmc.org/ssc

- SOE risks to meeting management objectives
- Linking ecosystem indicators to distribution changes

Examples of Potential Science Applications

- Inform research priority projects
- SSC priority area - Climate change impacts on stock productivity and distribution shifts
- Stock assessment information
- Ecosystem TORs and Ecosystem and Socio-Economic Profiles for assessments
- Stock projection considerations

Examples of Potential Council Application

- Continued development and implementation of EAFM guidance document
- Comprehensive review this year
- Connection/link with Ecosystem Work Group

Risk Assessment Update 2020

Table 4: Species level risk analysis results; $l=$ low risk (green), $l \mathrm{~lm}=$ low-moderate risk (yellow), mh=moderate to high risk (orange), $\mathrm{h}=$ high risk (red)

Species	Assess	Fstatus	Bstatus	FW1Pred	FW1Prey	FW2Prey	Clima	istShift	EstHabitat
Ocean Quahog									
Surfclam					1	1	mh	mb	
Summer flounder		I	lm	1	,	,	lm	mh	h
Scup		1		1	+	$!$	1 m	ml	h
Black sea bass		1			I	+	mh	mh	
Atl. mackerel		h	h		1	1	1 m	mh	
Butterfish			1		1			h	
Longfin squid	lm	lm	lm		.	Im	I	mh	
Shortfin squid	lm	lm	lm			lm		h	
Golden tilefish			lm	1			$m h$		
Blueline tilefish	h	h	Int				mh		1
Bluefish			h			,	1	mh	h
Spiny dogfish	lm	1	lm			!	1	h	
Monkfish	h	lm	lm			,		min	
Unmanaged forage	na	na	na		lm	lm	na	na	na
Deepsea corals	na	na	na				na	na	na

Table 5: Ecosystem level risk analysis results; $1=10 w$ risk (green), $1 \mathrm{~m}=\mathrm{low}$-moderate risk (yellow), mh=moderate to high risk (orange), $\mathrm{h}=\mathrm{high}$ risk (red)

System	EcoProd	CommRev	RecVal	FishRes1	FishRes4	FleetDiv	Social	ComFood	RecFood
Mid-Atlantic	lm		h				1 ml		h

Potential Management Applications

- Council Actions
- Dynamic allocation strategies/considerations (e.g. black sea bass)
- East Coast Climate Change and Distribution Shift Scenario Planning Project

Research Application Questions for SSC

1. Comment on potential applicability of short-term forecasts of species distribution for stock assessment, science, and management purposes of MidAtlantic species. Consider potential implications for the SSC's OFL CV approach
2. Provide any research recommendations and inclusion of relevant data for future model development that could facilitate their consideration of factors influencing determination of ABCs .

> Feedback from the SSC and EOP Committee/AP (2/23 meeting) will be provided to the Council for consideration at April Council meeting

