

Oceanographic Indicators for Northern Shortfin Squid, *Illex illecebrosus*, in the Northwest Atlantic

MAFMC May 2022 SSC Meeting Sarah Salois, Kimberly Hyde SMAST | University of Massachusetts Dartmouth Northeast Fisheries Science Center | NOAA Fisheries

Acknowledgements

Government: Anna Mercer, Brooke Lowman, Sarah Gaichas, Thomas Swiader, Andrew Jones, Sarah Turner, Lisa Hendrickson, Benjamin Galuardi, Daniel Hocking, Paula Fratantoni Academia: Adrienne Silver, Avijit Gangopadhyay, Glen Gawarkiewicz, Steve Lorenz Industry: John Manderson, Katie Almeida, Bill Bright, Greg Didomenico, Jeff Kaelin, Meghan Lapp, Jimmy Ruhle Management: Paul Rago

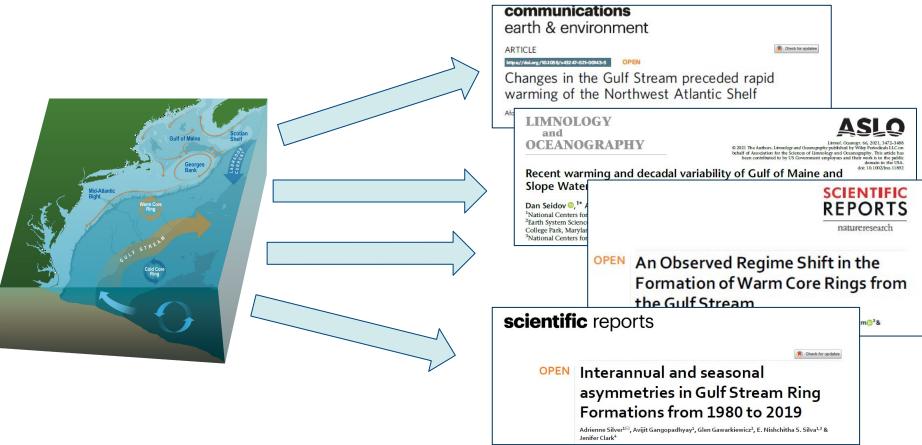
Oceanographic Indicators - Takeaways

Identified a suite of environmental variables which may serve as indicators of:

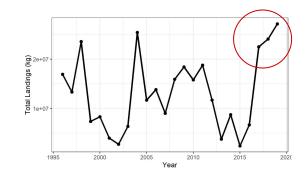
- 1. *Illex* habitat condition
- 2. Areas of increased productivity

Implications for:

- 1. Identifying areas of *Illex* aggregation
- 2. Understanding distribution and availability


Background

- → Northeast US shelf is a dynamically complex region
- Seasonal/interannual variations in oceanic and atmospheric conditions result in variability in
 - Timing, location, and magnitude of biological and physical features
- Changes in the latitudinal position, strength and seasonality of the shelf-break front can
 - Alter nutrient supplies, affect primary productivity



Northeast Continental Shelf

Motivation

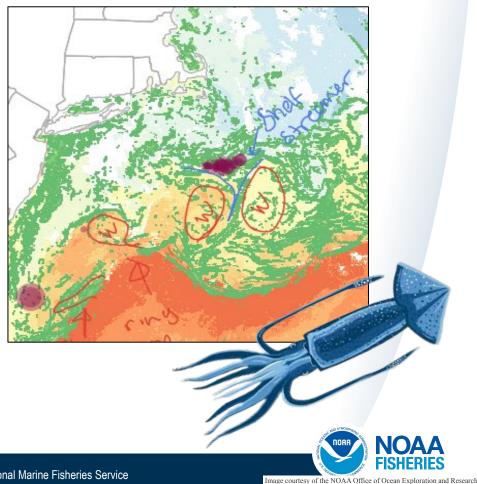
- → Goal: Identify spatiotemporal patterns of Illex catch in relation to oceanographic processes
- → Objectives :
 - **1**. Analyze patterns in oceanographic conditions relative to catch rates
 - **2**. Develop oceanographic indicators to support in season assessment

Image courtesy of: Lowman et. al 2021

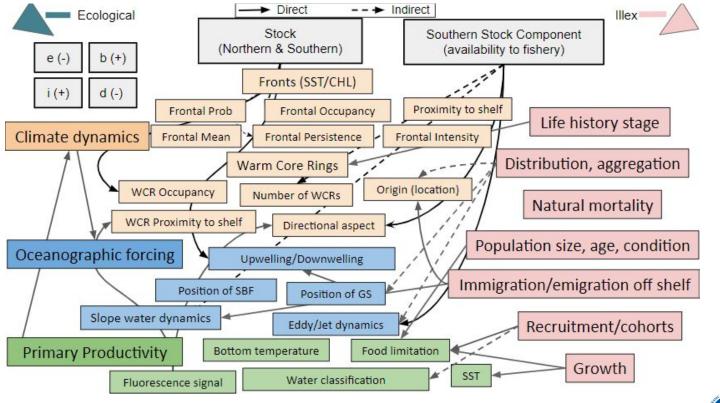
TOR 4:

- Characterize annual and weekly, in-season spatio-temporal trends in body size based on length and weight samples collected from the landings by port samplers and provided by Illex processors. Consider the environmental factors that may influence trends in body size and recruitment. If possible, integrate these results into the stock assessment.
 - GAM results identify relationships between catch per unit effort and environmental factors
 - Resulting indicators may be useful for GDM hypothesis development and validation,

TOR 6:

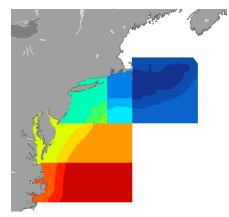

- Describe the data that would be needed to conduct in-season stock assessments for adaptive management and identify whether the data already exist or if new data would need to be collected and at what frequency.
 - Results may help to identify the types and frequency of oceanographic data that exist and will continue to be collected going forward.

Methods


Combine data streams Visualize patterns Generate Hypotheses

Generalized additive models

via Deep Connections 2019 expedition.


General Hypotheses

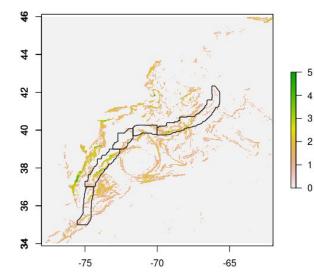
General Hypotheses

- Frontal dynamics (abundance/distribution/growth/aggregation)
- → Warm core rings (immigration, mortality, emigration)
- → Fronts and WCRs (aggregation/abundance/growth/distribution)
- → Bottom temperature (emmigration, growth, aggregation)
- → Slope water composition (immigration/emigration)

Response variable: Catch data

• Dataset:

- Combined Study fleet and Observer data spanning 2008-2020
- Nominal CPUE from wet boat fleet
- Non-directed trips


• Rationale:

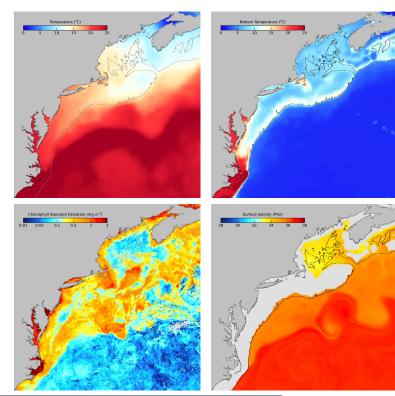
- High resolution haul level VTR data
 - A. Jones et. al 2020 found that study fleet CPUE patterns were similar to other data sets, this work showed SF could be used to track trends
- Wet boats may be more likely to capture environmental signal compared to freezer boats
 - B. Lowman's analyses found fleet differences
 - Likely due to differential processing capacity
- Identify areas of low catch to get a more complete picture of spatial range/aggregation of Illex

• Fronts

- Proportion of pixels identified as a front surrounding shelf break
- Warm Core Rings
 - Ring footprint (including lags)
 - Orientation to fishing point
- Slope/shelf conditions
 - SST mean, sd, anomalies
 - CHL mean, sd, anomalies
 - Bottom temperature
 - Salinity

Temperature (Deg C) • Fronts Proportion of pixels identified as a front Latitude surrounding shelf break Warm Core Rings Ring Angle Orientation Ring footprint (including lags) 0 Orientation to fishing point Ο N Slope Slope/shelf conditions W F SST mean, sd, anomalies CHL mean, sd, anomalies East = $\alpha < \theta$ Bottom temperature West = $\alpha > \theta$ Salinity Sargasso

* Animation credit: <u>SIRATES blog</u>, * Annotated JC chart: Gangopadhyay et al. 2020


Temperature (Deg C) • Fronts Proportion of pixels identified as a front Latitud surrounding shelf break Warm Core Rings Ring Angle Orientation Ring footprint (including lags) 0 Orientation to fishing point Ο N Slope Slope/shelf conditions W F SST mean, sd, anomalies CHL mean, sd, anomalies East = $\alpha < \theta$ Bottom temperature West = $\alpha > \theta$ Salinity Sargasso

• Fronts

- Proportion of pixels identified as a front surrounding shelf break
- Warm Core Rings
 - Ring footprint (including lags)
 - Orientation to fishing point

• Slope/shelf conditions

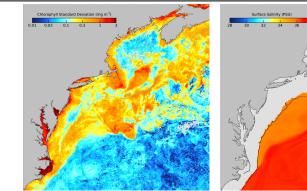
- SST mean, sd, anomalies
- CHL mean, sd, anomalies
- Bottom temperature
- Salinity

• Fronts

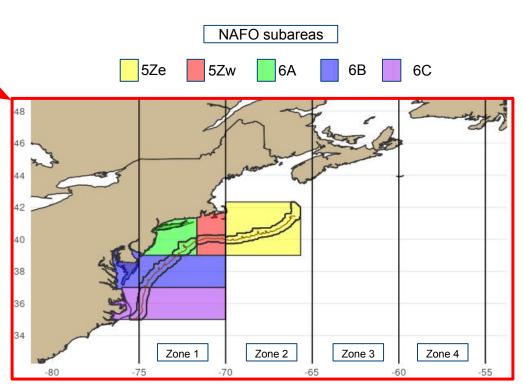
- Proportion of pixels identified as a fro surrounding shelf break
- Warm Core Rings
 - Ring footprint (including lags)
 - Orientation to fishing point

• Slope/shelf conditions

- SST mean, sd, anomalies
- CHL mean, sd, anomalies
- Bottom temperature
- Salinity

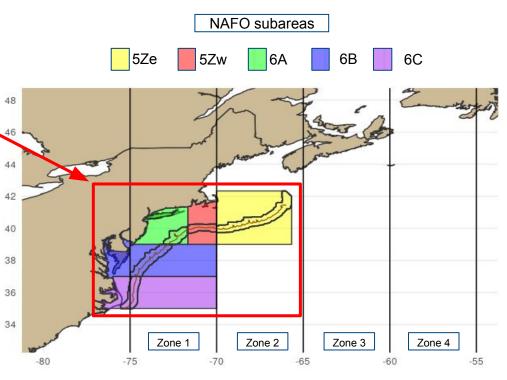

The Impact of Warm Core Rings on Middle Atlantic Bight Shelf Temperature and Shelf Break Velocity

Jacob Forsyth^{1,2} ^(D), Glen Gawarkiewicz¹ ^(D), and Magdalena Andres¹ ^(D)

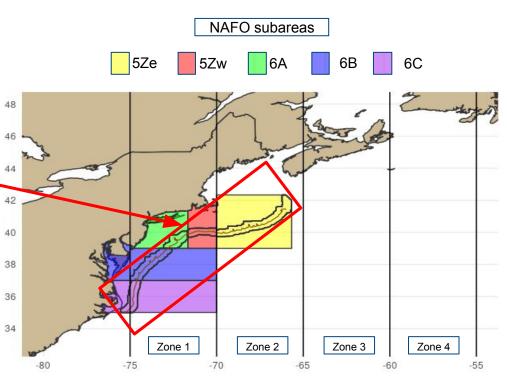

¹Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, ²Department Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Diatom Hotspots Driven by Western Boundary Current Instability

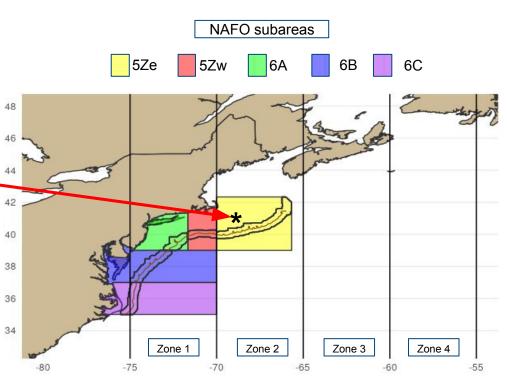
Hilde Oliver¹ ^(D), Weifeng G. Zhang¹ ^(D), Walker O. Smith Jr.^{2,3} ^(D), Philip Alatalo¹ ^(D), P. Dreux Chappell⁴ ^(D), Andrew J. Hirzel¹ ^(D), Corday R. Selden⁴ ^(D), Heidi M. Sosik¹ ^(D), Rachel H. R. Stanley⁵ ^(D), Yifan Zhu⁴ ^(D), and Dennis J. McGillicuddy Jr.¹ ^(D)



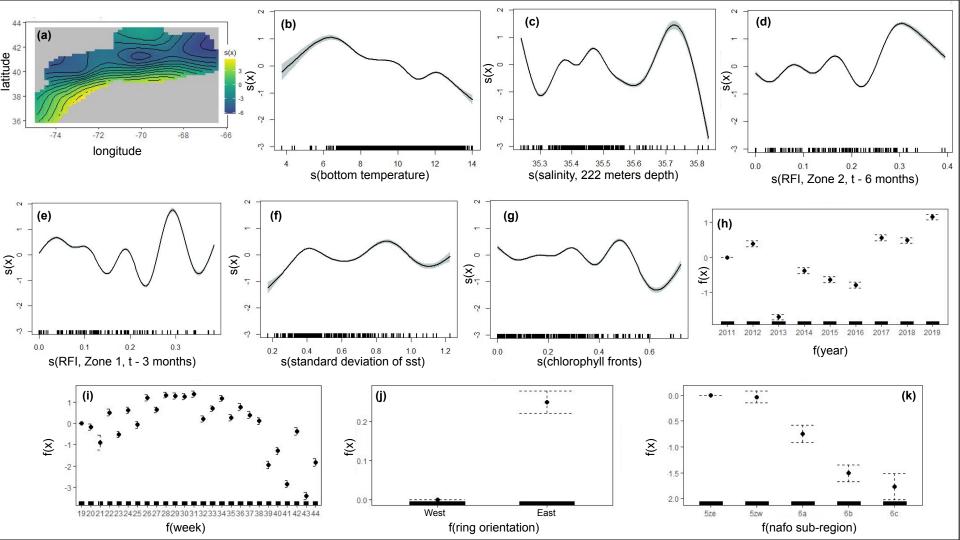
Variable	Range	Spatial Scale	Included
CPUE	2008 - 2020	74 – 66° W , 35 – 45° N	Yes (response)
Year	2011 - 2020	NES	Yes (f)
Week	18 - 44	NES	Yes (f)
Longitude	74.9 - 66.5	NES	Yes (s)
Latitude	35.9 - 45.5	NES	tes (s)
CHL anomaly	0.53 - 2.08	NAFO	No (s)
CHL mean	0.35 - 2.11	NAFO	No (s)
CHL std. deviation	0.04 - 1.28	NAFO	No (s)
SST anomaly	-2.50 - 2.28	NAFO	No (s)
SST mean	10.24 - 28.41	NAFO	No (s)
SST std. deviation	0.17 - 1.58	NAFO	Yes (s)
CHL Fvalid	0.00 - 0.72	NESBR	Yes (s)
SST Fvalid	0.00 - 0.30	NESBR	No (s)
Bottom temp	3.75 - 14.04	FP	Yes (s)
Salinity 47m	34.55 - 35.92	NESBR	No (s)
Salinity 55m	33.56 - 36.04	NESBR	No (s)
Salinity 110m	34.86 - 36.05	NESBR	No (s)
Salinity 222m	35.21 - 35.83	NESBR	Yes (s)
Distance to ring (km)	3.45 - 886.68	KM	No (s)
Ring distance to shelf (km)	15.41 - 264.58	KM	No (s)
RFI, Zone 1	0.00 - 0.37	75 – 70° W	No (s)
RFI, Zone 2	0.00 - 0.64	70 – 65° W	No (s)
RFI, Zone 3	0.00 - 0.55	65 – 60° W	No (s)
RFI, Zone 4	0.00-0.45	60 – 55°W	No (s)
RFI, Zone 1, lag 6mo	0.00 - 0.30	75 – 70° W	No (s)
RFI, Zone 2, lag 6mo	0.00 - 0.39	70 – 65° W	Yes (s)
RFI, Zone 3, lag 6mo	0.00 - 0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 6mo	0.00 - 0.58	60 – 55°W	No (s)
RFI, Zone 1, lag 3mo	0.00 - 0.38	75 – 70° W	Yes (s)
RFI, Zone 2, lag 3mo	0.00 - 0.55	70 – 65° W	No (s)
RFI, Zone 3, lag 3mo	0.00-0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 3mo	0.00-0.42	60 – 55°W	No (s)
Shelf occupancy	0.00 - 15.00	NES	No (s)
Shelf_occ_Lag6mo	0.00 - 14.00	NES	No (s)
Ring orientation	West, East	NES	Yes (f)
NAFO subarea	5Ze, 5Zw, 6A, 6B,6C	NAFO	Yes (f)

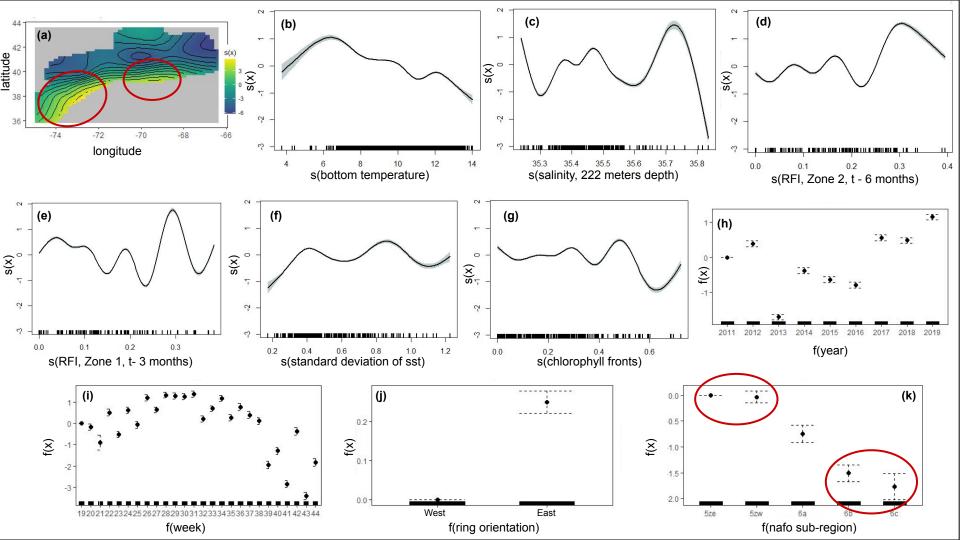

Longitude

Variable	Range	Spatial Scale	Included
CPUE	2008 - 2020	74 – 66° W , 35 – 45° N	Yes (response)
Year	2011 - 2020	NES	Yes (f)
Week	18 - 44	NES	Yes (f)
Longitude	74.9 - 66.5	NES	Yes (s)
Latitude	35.9 - 45.5	NES	Yes (s)
CHL anomaly	0.53 - 2.08	NAFO	No (s)
CHL mean	0.35 - 2.11	NAFO	No (s)
CHL std. deviation	0.04 - 1.28	NAFO	No (s)
SST anomaly	-2.50 - 2.28	NAFO	IND (S)
SST mean	10.24 - 28.41	NAFO	No (s)
SST std. deviation	0.17 - 1.58	NAFO	Yes (s)
CHL Fvalid	0.00 - 0.72	NESBR	Yes (s)
SST Fvalid	0.00 - 0.30	NESBR	No (s)
Bottom temp	3.75 - 14.04	FP	Yes (s)
Salinity 47m	34.55 - 35.92	NESBR	No (s)
Salinity 55m	33.56 - 36.04	NESBR	No (s)
Salinity 110m	34.86 - 36.05	NESBR	No (s)
Salinity 222m	35.21 - 35.83	NESBR	Yes (s)
Distance to ring (km)	3.45 - 886.68	KM	No (s)
Ring distance to shelf (km)	15.41 - 264.58	KM	No (s)
RFI, Zone 1	0.00 - 0.37	75 – 70° W	No (s)
RFI, Zone 2	0.00 - 0.64	70 – 65° W	No (s)
RFI, Zone 3	0.00 - 0.55	65 – 60° W	No (s)
RFI, Zone 4	0.00-0.45	60 – 55°W	No (s)
RFI, Zone 1, lag 6mo	0.00 - 0.30	75 – 70° W	No (s)
RFI, Zone 2, lag 6mo	0.00 - 0.39	70 – 65° W	Yes (s)
RFI, Zone 3, lag 6mo	0.00 - 0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 6mo	0.00 - 0.58	60 – 55°W	No (s)
RFI, Zone 1, lag 3mo	0.00 - 0.38	75 – 70° W	Yes (s)
RFI, Zone 2, lag 3mo	0.00 - 0.55	70 – 65° W	No (s)
RFI, Zone 3, lag 3mo	0.00-0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 3mo	0.00-0.42	60 – 55°W	No (s)
Shelf occupancy	0.00 - 15.00	NES	No (s)
Shelf_occ_Lag6mo	0.00 - 14.00	NES	No (s)
Ring orientation	West, East	NES	Yes (f)
NAFO subarea	5Ze, 5Zw, 6A, 6B,6C	NAFO	Yes (f)

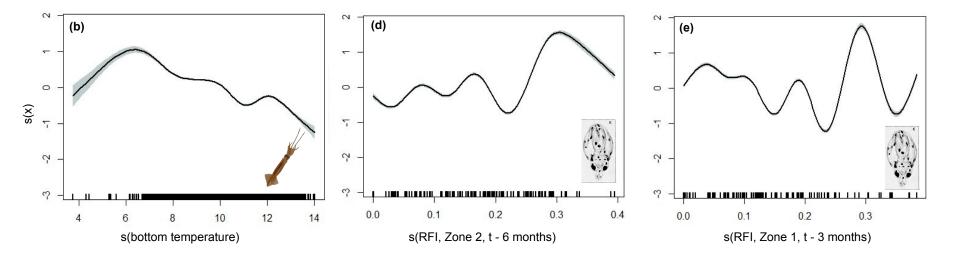

Longitude

Variable	Range	Spatial Scale	Included
CPUE	2008 - 2020	74 – 66° W , 35 – 45° N	Yes (response)
Year	2011 - 2020	NES	Yes (f)
Week	18-44	NES	Yes (f)
Longitude	74.9 - 66.5	NES	Yes (s)
Latitude	35.9 - 45.5	NES	Yes (s)
CHL anomaly	0.53 - 2.08	NAFO	No (s)
CHL mean	0.35 - 2.11	NAFO	No (s)
CHL std. deviation	0.04 - 1.28	NAFO	No (s)
SST anomaly	-2.50 - 2.28	NAFO	No (s)
SST mean	10.24 - 28.41	NAFO	No (s)
SST std. deviation	0.17 - 1.58	NAFO	Yes (s)
CHL Fvalid	0.00 - 0.72	NESBR	Yes (s)
SST Fvalid	0.00 - 0.30	NESBR	No (s)
Bottom temp	3.75 - 14.04	FP	Yes (s)
Salinity 47m	34.55 - 35.92	NESBR	No (s)
Salinity 55m	33.56 - 36.04	NESBR	No (s)
Salinity 110m	34.86 - 36.05	NESBR	No (s)
Salinity 222m	35.21 - 35.83	NESBR	Yes (s)
Distance to ring (km)	3.45 - 886.68	KM	No (s)
Ring distance to shelf (km)	15.41 - 264.58	KM	No (s)
RFI, Zone 1	0.00 - 0.37	75 – 70° W	No (s)
RFI, Zone 2	0.00 - 0.64	70 – 65° W	No (s)
RFI, Zone 3	0.00 - 0.55	65 – 60° W	No (s)
RFI, Zone 4	0.00-0.45	60 – 55°W	No (s)
RFI, Zone 1, lag 6mo	0.00 - 0.30	75 – 70° W	No (s)
RFI, Zone 2, lag 6mo	0.00 - 0.39	70 – 65° W	Yes (s)
RFI, Zone 3, lag 6mo	0.00 - 0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 6mo	0.00 - 0.58	60 – 55°W	No (s)
RFI, Zone 1, lag 3mo	0.00 - 0.38	75 – 70° W	Yes (s)
RFI, Zone 2, lag 3mo	0.00 - 0.55	70 – 65° W	No (s)
RFI, Zone 3, lag 3mo	0.00-0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 3mo	0.00-0.42	60 – 55°W	No (s)
Shelf occupancy	0.00 - 15.00	NES	No (s)
Shelf_occ_Lag6mo	0.00 - 14.00	NES	No (s)
Ring orientation	West, East	NES	Yes (f)
NAFO subarea	5Ze, 5Zw, 6A, 6B,6C	NAFO	Yes (f)

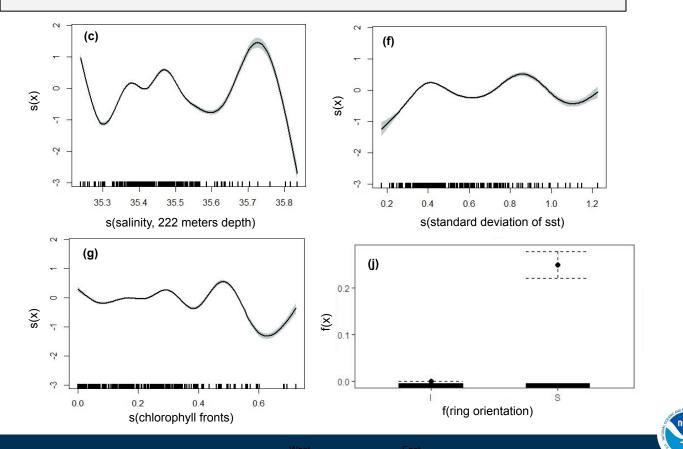



Longitude

Variable	Range	Spatial Scale	Included
CPUE	2008 - 2020	74 – 66° W , 35 – 45° N	Yes (response)
Year	2011 - 2020	NES	Yes (f)
Week	18 - 44	NES	Yes (f)
Longitude	74.9 - 66.5	NES	Yes (s)
Latitude	35.9 - 45.5	NES	Yes (s)
CHL anomaly	0.53 - 2.08	NAFO	No (s)
CHL mean	0.35 - 2.11	NAFO	No (s)
CHL std. deviation	0.04 - 1.28	NAFO	No (s)
SST anomaly	-2.50 - 2.28	NAFO	No (s)
SST mean	10.24 - 28.41	NAFO	No (s)
SST std. deviation	0.17 - 1.58	NAFO	Yes (s)
CHL Fvalid	0.00 - 0.72	NESBR	Yes (s)
SST Fvalid	0.00 - 0.30	NESBR	No (s)
Bottom temp	3.75 - 14.04	FP	Yes (s)
Salinity 47m	34.55 - 35.92	NESBR	No (s)
Salinity 55m	33.56 - 36.04	NESBR	No (s)
Salinity 110m	34.86 - 36.05	NESBR	No (s)
Salinity 222m	35.21 - 35.83	NESBR	Yes (s)
Distance to ring (km)	3.45 - 886.68	KM	No (s)
Ring distance to shelf (km)	15.41 - 264.58	KM	No (s)
RFI, Zone 1	0.00 - 0.37	75 – 70° W	No (s)
RFI, Zone 2	0.00 - 0.64	70 – 65° W	No (s)
RFI, Zone 3	0.00 - 0.55	65 – 60° W	No (s)
RFI, Zone 4	0.00-0.45	60 – 55°W	No (s)
RFI, Zone 1, lag 6mo	0.00 - 0.30	75 – 70° W	No (s)
RFI, Zone 2, lag 6mo	0.00 - 0.39	70 – 65° W	Yes (s)
RFI, Zone 3, lag 6mo	0.00 - 0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 6mo	0.00 - 0.58	60 – 55°W	No (s)
RFI, Zone 1, lag 3mo	0.00 - 0.38	75 – 70° W	Yes (s)
RFI, Zone 2, lag 3mo	0.00 - 0.55	70 – 65° W	No (s)
RFI, Zone 3, lag 3mo	0.00-0.43	65 – 60° W	No (s)
RFI, Zone 4, lag 3mo	0.00-0.42	60 – 55°W	No (s)
Shelf occupancy	0.00 - 15.00	NES	No (s)
Shelf_occ_Lag6mo	0.00 - 14.00	NES	No (s)
Ring orientation	West, East	NES	Yes (f)
NAFO subarea	5Ze, 5Zw, 6A, 6B,6C	NAFO	Yes (f)



Longitude


Indicators of habitat condition

Page 24 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

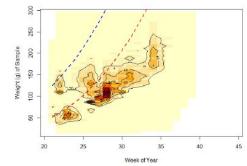
Indicators of areas of productivity

TOR 4:

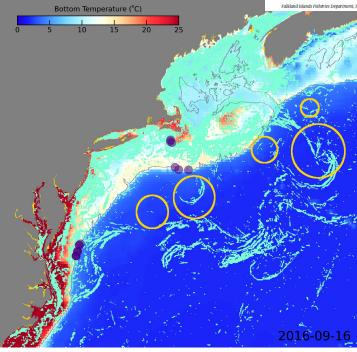
Environmental impacts on recruitment migrations of Patagonian longfin squid (*Doryteuthis gahi*) in the Falkland Islands with reference to stock assessment

Andreas Winter*, Alexander Arkhipkin

Falkland Islands Fisheries Department, P.O. Box 597, Stanley FIQQ 12Z, Falkland Islands


Catch perturbation analysis

2016: Perturbation summary table



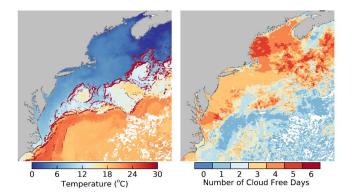
(Manderson et al. 2022)

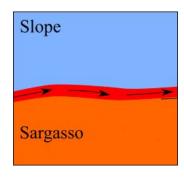
Weight prediction surface, year= 2019

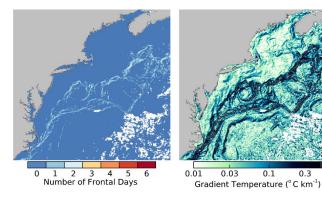
em, i zo. oox oor, suuney rugg i zz, ruixunu isunus

 Generalized Depletion Modeling (GDM)

- Identify oceanographic signature for dates of catch perturbations
- Contribute to biological realism component of hypothesis development


Hidden Markov Models (HMM)


- Inferences about system states
- Covariates can affect mean states of the system
- Covariates can inform transition probabilities


CrossMark

TOR 6:

- Automation and validation of current data streams
- Oceanographic indicators and mechanistic drivers
- Continued and enhanced collaboration with science and industry

0.3

COOPERATIVE RESEARCH

* Animation credit: SIRATES blog

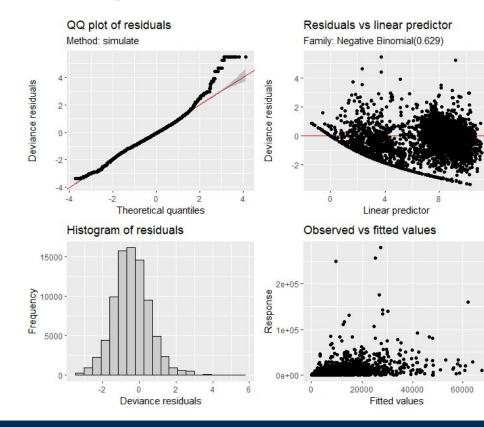
(Image credit: Kim Hyde)

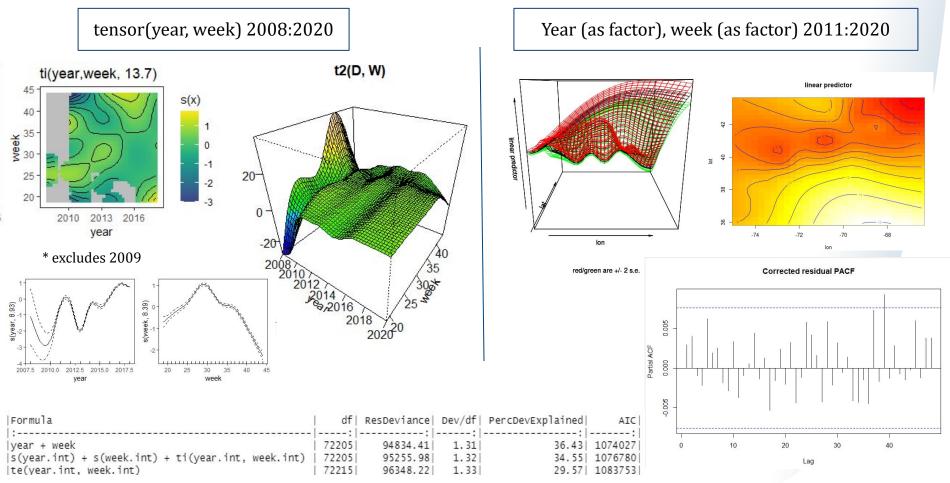
Conclusions & Takeaways

Identified a suite of environmental variables with significant associations to CPUE:

- 1. *Illex* habitat condition :
 - a. BT, Ring Footprint Index
- 2. Areas of increased productivity
 - a. CHL fronts, salinity, orientation of ring, sd SST

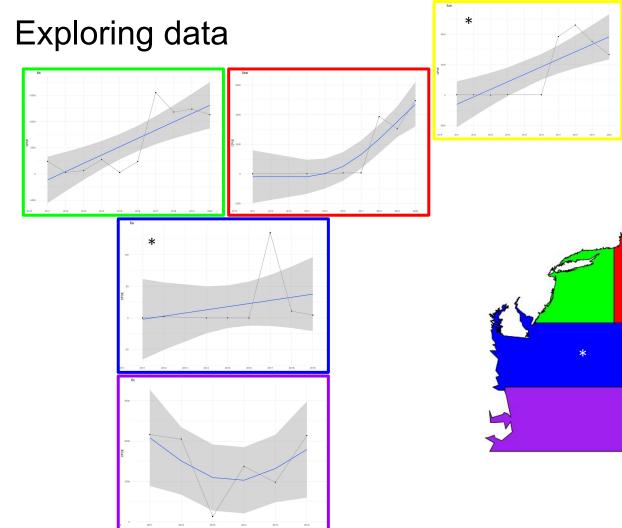
Potential for future assessments:


- 1. Identifying areas of *Illex* aggregation a. Mechanistic drivers
- 2. Understanding distribution and availability
 - a. Ingress/egress events

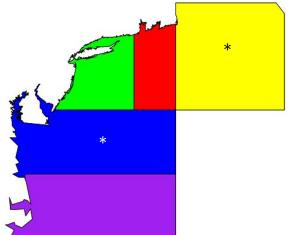

Diagnostics

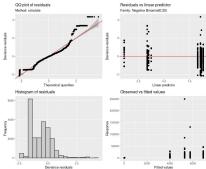
worst 0.997 observed 0.997 estimate 0.997	8405 0.8305 8405 0.8062 _sd) s(fvali 6172 0.7 0970 0.4	569 0.7611444 200 0.6828201 464 0.6118442	0.6149561	0.7944047	0.8697239 0.7674654
\$worst					
<pre>para s(lon,lat) s(bt) s(sal_222m) s(zlag6mo) s(z1lag3mo) s(sst_sd) s(fvalid_chl) para s(lon,lat) s(bt) s(sal_222m) s(z2lag6mo) s(z1lag3mo) s(st_sd) s(fvalid_chl)</pre>	3.541122e-26 1.996658e-27 1.451792e-24 7.773789e-26 3.196450e-24 1.312706e-24 1.707446e-23 s(z11ag3mo) 3.189120e-24 3.448533e-01 1.532674e-01 2.707715e-01 3.504526e-01 1.000000e+00	3.359147e-26 1.00000e+00 5.852027e-01 5.432314e-01 3.448533e-01 2.790431e-01 3.183178e-01 5.(sst_sd) 1.332299e-24 2.790431e-01 9.035643e-02 2.274945e-01 2.34424e-01 2.999836e-01 1.000000e+00	3.183178e-01 6.502473e-02 1.872171e-01 1.617594e-01 2.164813e-01 2.869425e-01	.448723e-24 7 .432314e-01 1 .033201e-01 1 .000000e+00 2 .004730e-01 1 .707715e-01 3 .274945e-01 2	1.879673e-01 1.021077e-01 2.004730e-01 1.000000e+00 3.504526e-01 2.344424e-01

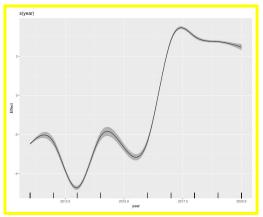
Year x Week

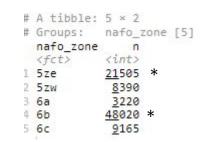


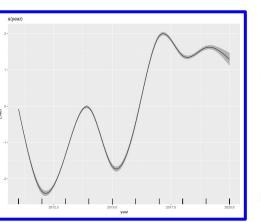
Details - Methods

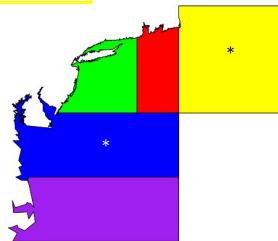


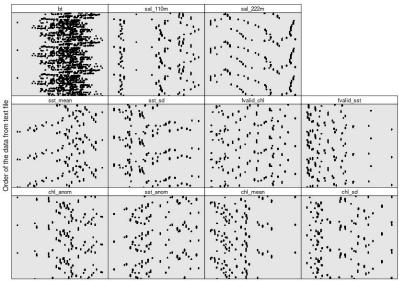

Page 32 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

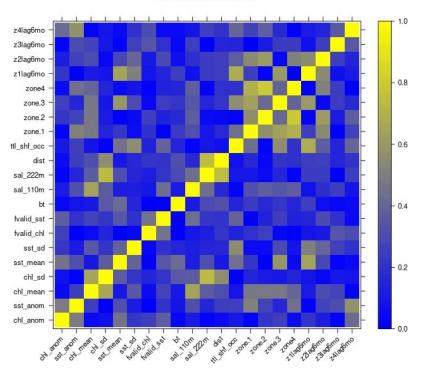

ŧ	A tibble:	5 × 2	
#	Groups:	nafo_zone	[5]
	nafo_zone	n	
	<fct></fct>	<int></int>	
- 1	5ze	<u>21</u> 505 *	
2	5zw	8390	
3	6a	3220	
4	6b	48020 *	
5	6c	9165	






*





*

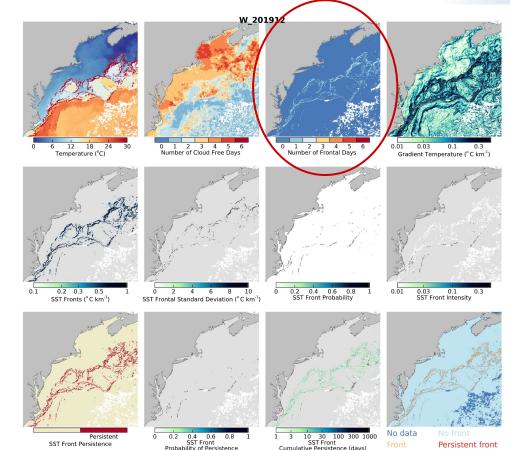
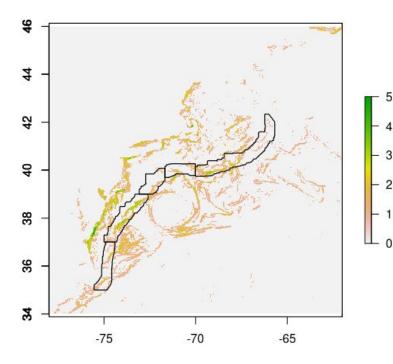
Value of the variable

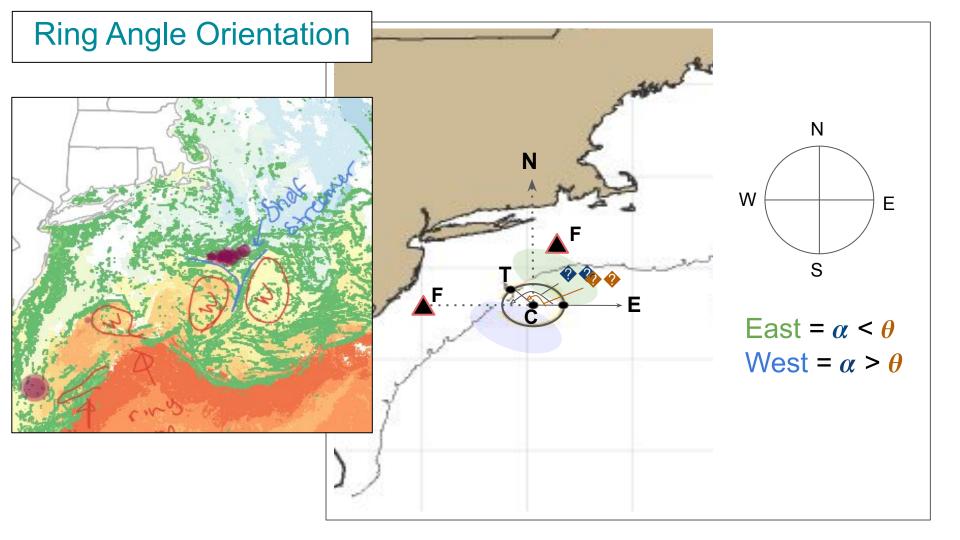
Correlation matrix

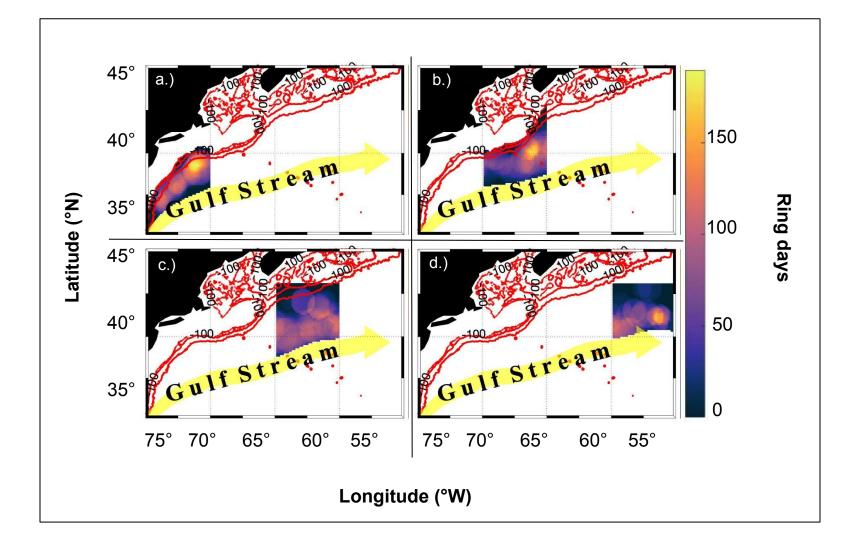
Oceanographic variables

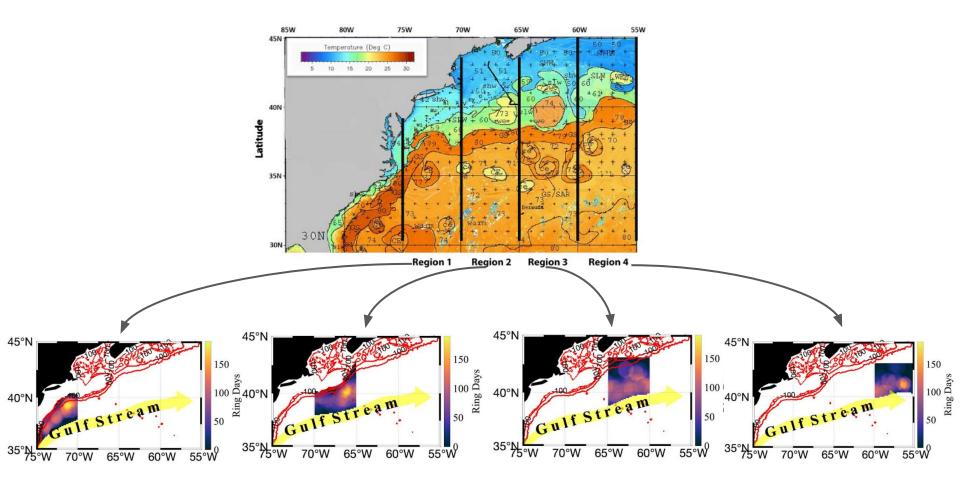
• Frontal Metrics

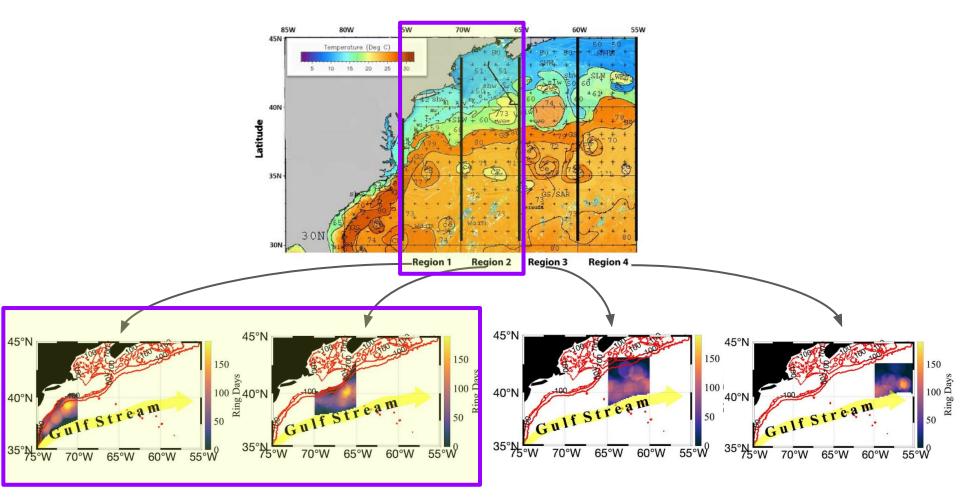
- BOA algorithm to compute gradients (Belkin & O'Reilly, 2009)
- Applied a threshold to gradients to determine front
- $\Delta_{GRAD_SST} >= 0.4 ^{\circ}C$ ■ $\Delta_{GRAD_CHL} >= 0.06 \text{ mgm}^{-3}$ ■ Frontal pixels (F_{valid}): number of days pixel was identified as a front (> threshold, 0.4 °C)

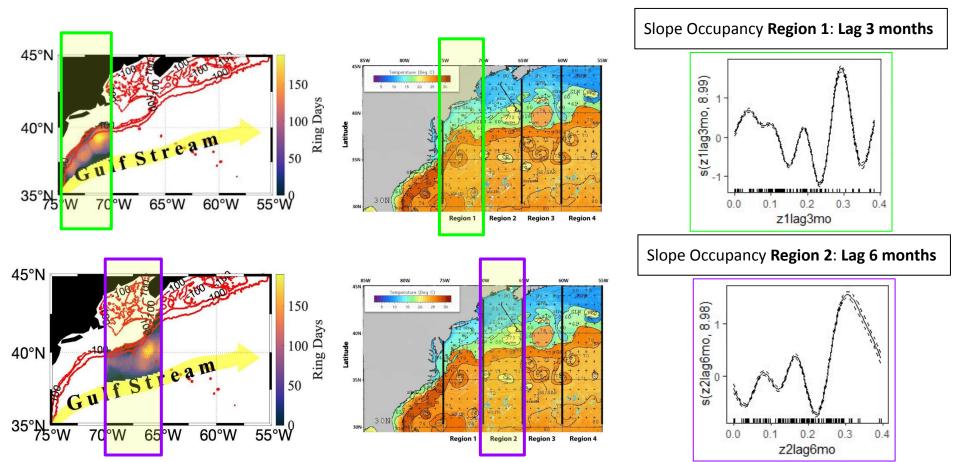



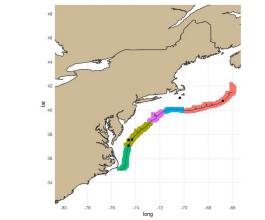

Image credit: Kim Hyde NEFSC


Proportion of pixels that were identified as a front in the shelf break region (40 km on either side of shelf break)


<pre>> 5Ze <- mean(fvalid[[1]] > 0) [1] 0.28675</pre>
<pre>> 5Zw <- mean(fvalid[[2]] > 0) [1] 0.2205246</pre>
<pre>> 6a <- mean(fvalid[[3]] > 0) [1] 0.1801763</pre>
<pre>> 6b <- mean(fvalid[[4]] > 0) [1] 0.3876345</pre>
<pre>> 6c <- mean(fvalid[[5]] > 0) [1] 0.3141979</pre>




Slope Occupancy/Footprint by Region(Zone)


Slope Occupancy/Footprint by Region(Zone)

Slope occupancy/footprint by Region(Zone)

Salinity smooths varying depths

35.1 35.6

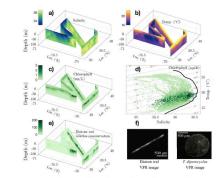
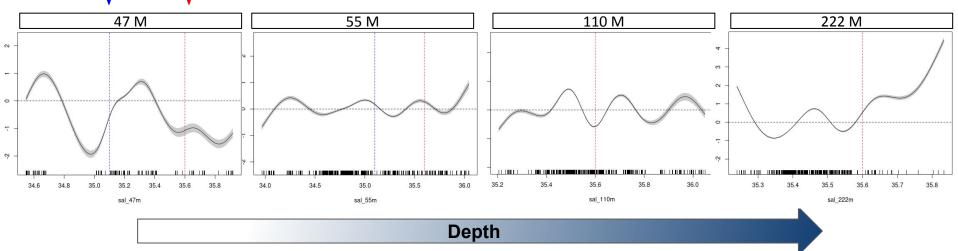



Figure 2. Valor flackion iscorder (VPI) loss 3, 7, and 8. (4) Salishty (b) inseperature; (c) chorophyll (Cb) concentate; (d) conceptation; (c) former porting; ref. Salgram from the twas, colored by (c) concentation; (d) conceptation; ref. Salgram from the twas, colored by (c) concentation; (d) conceptation; ref. Salgram from the twas, colored by (c) concentation; (d) conceptation; ref. Salgram from the twas, colored by (c) concentration; (d) conceptation; ref. Salgram from the twas, colored by (c) concentration; (d) no conceptation; ref. Salgram from the submit of c) conceptation; ref. (d) no conceptation; re

range(na.omit(wet\$depth))
[1] 1 425 fathoms

1.8288M

777.24M

Mode 201.168M
range(na.omit(frz\$depth))

18.288M

91.44M

2046.427M

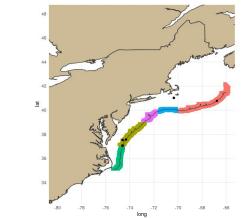
Median 149.9616M

10 1119 fathoms

Median 182.88M

[1] Min

Max Mode


[1]

Min

Max

Mode

Salinity smooths varying depths

35.1 35.6

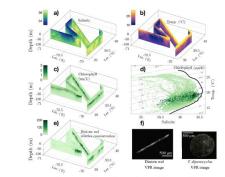
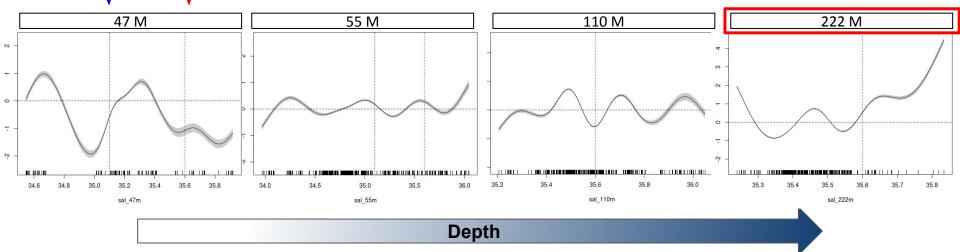



Figure 2. Valor flackion Scorelly (VPB) lows 2, 7, and 8. (a) Salishty (b) isomperature; (c) chorophyll (CB) concentator; (d) conresponding 7. Salgarian from the twos, colored by (c) concentration, with the black the solvwarge the coll Sciences 3-7 public from 0-5 1, 7 N from 11-06 summer depetively analyzed climatiological assars from the Naximal Centers for Interformerial Information Northwest Adamts Ragional Ocean Climatology, with the searce (b) color har und in (c); (c) information; (f) nor example VPR integree - cellend in a statistic on a science of the color of the output of the science of t

range(na.omit(wet\$depth))
[1] 1 425 fathoms

1.8288M

777.24M

18.288M

91.44M

2046.427M

Median 149.9616M

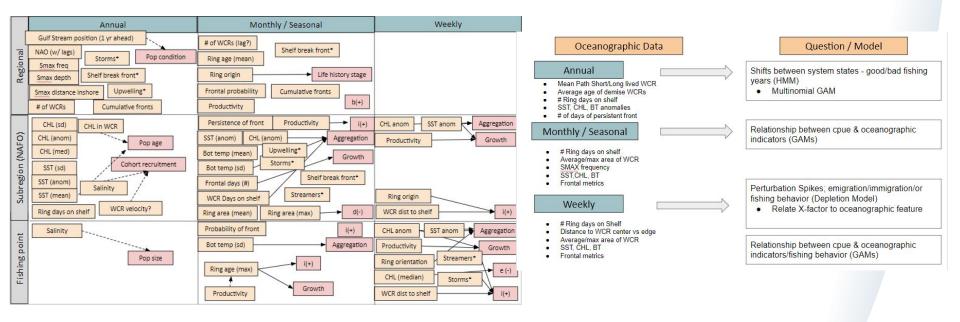
Mode 201.168M range(na.omit(frz\$depth))

10 1119 fathoms

Median 182.88M

[1] Min

Max Mode


[1]

Min

Max

Mode

General Hypotheses

