Evaluation of generalized depletion modeling of the US Illex fishery

John P Manderson Ph'D. OpenOcean Research: email: john.manderson@openoceanresearch.com

Disclosure: Manderson's contributions to the 2022 Illex RT assessment supported by a consortium of processors \& independent owner-operators in the US Illex fishery

ICES Journal of Marine Science

ICES Journal of Marine Science (2020), doi:10.1093/icesjms/fsaa038

Review article
Contribution to the Symposium: 'Johan Hjort Symposium 2019'

Stock assessment and management of cephalopods: advances and challenges for short-lived fishery resources

Alexander I. Arkhipkin (1) ${ }^{1 *}$, Lisa C. Hendrickson (1) ${ }^{2}$, Ignacio Payá ${ }^{3}$, Graham J. Pierce ${ }^{4,5}$, Ruben H. Roa-Ureta ${ }^{6}$, Jean-Paul Robin ${ }^{7}$, and Andreas Winter ${ }^{1}$

Cephalopods:

- Fast population dynamics \& weak S-R relationships
- fishery independent survey data rarely comprehensive
- aging expensive \& time consuming
- age-based assessment impractical
"Best methods
... innovative depletion models fitted with in-season data"

Classical Leslie-Davis modeling applied to Illex fishery

Rago 2020: CPUE decreased continuously in only 4 of 19 years as expected if fishery closed to in-season migration

Generalized depletion modeling

Accounts for in-season migration \& complex catch-population size relationships

ICES Journal of Marine Science

ICES Journal of Marine Science (2012), 69(8), 1403-1415. doi:10.1093/icesjms/fss110

Modelling in-season pulses of recruitment and hyperstability-hyperdepletion in the Loligo gahi fishery around the Falkland Islands with generalized depletion models

Rubén H. Roa-Ureta*

Requires high frequency records
 (daily, weekly)
 - catch biomass
 - effort
 - representative individual weights of catch (to convert catch biomass to number)

Selected references:

Roa-Ureta, R.H., 2015. Stock assessment of the Spanish mackerel (Scomberomorus commerson) in Saudi waters of the Arabian Gulf with generalized depletion models under data-limited conditions. Fisheries Research 171 (2015) 68-77

Lin, Y.-J. et. al. 2017. A stock assessment model for transit stock fisheries with explicit immigration and emigration dynamics: application to upstream waves of glass eels. Fisheries Research 195, 130-140.

Maynou, F. et. al 2021 Application of a multi-annual generalized depletion model to the Mediterranean sand eel fishery in Catalonia. Fisheries Research 234: 105814

Generalized depletion modeling: with open population assumption Conceptual model

Ingress events

From Lin et al. 2017

Generalized depletion modeling: Permits nonlinear catchability

$$
C_{t}=k E_{t}^{\alpha} N_{t}^{\beta}{ }_{t}-{ }^{-M / 2}
$$

$C_{t}=$ Estimated catch in number at time t
$E_{t}=$ Fishing effort at time t
$N_{t}=$ Latent abundance of vulnerable fraction of population at time t
$\mathrm{M}=$ natural mortality at time step
$k=$ a scaler (similar to q)
$\alpha=$ effort response.
$\alpha<1$ (saturable. gear catches proportionally less with additional effort),
$\alpha \sim 1 \quad$ (catch proportional to effort)
$\alpha>1 \quad$ (synergistic. Disproportionate increase in catch with effort increase)
β abundance response (fishers perception of true population abundance)
$\beta<1$ (hyperstability. stable catch when population abundance declines)
$\beta=1$ (Proportionality. catch tracks population abundance)
$\beta>1$ (hyperdepletion. catch rate declines faster than population abundance)
Multiple fleets in a fishery can be modeled if k, α, and/or β sufficiently different

GDM parameter estimates

- Population: No \& M wk ${ }^{-1}$
- Fleet specific:
- catchability (k, α, β)
- Migration events ($P_{\text {mag }}$, Timing)

GDM requires:

- sound inferences in-season migration timing \& magnitude
- allot of data (to produce reasonable param/data ratios)
-1 fleet model w/ 1 ingress event = 7 parameters

Assumptions of classical depletion modeling

relaxed in GDM

1) Population vulnerable to fishery physically \& demographically closed
2) Natural mortality (M) constant
3) Catch linearly related to population abundance by scaler q
4) Catchability constant over fishing period \& a large pool of animals does not have a refuge \& $q \sim 0$
5) Units of fishing effort are independent \& do not compete
6) Fishing capacity is large enough that depletion can be detected \& parameters estimated
7) The assumptions of linear regression

Generalized depletion modeling: 2016 Illex season Data: Weekly landings \& industry weigh-out data

Fishery condition
Year Date Start Start Week End Week Closure (Wk) N weeks Total Catch \% in Data Industry Statistical \#Vessels landing>50k Days Fished

2013	$06-10$	24	37		14	$4,107,000$	81	Poor	Poor	12	12
2016	$06-13$	24	42		19	$7,004,000$	90	Poor	Poor	10	143
2017	$05-02$	22	37	37	16	$23,371,000$	100	Good	Good	20	149
2018	$05-28$	22	33	33	12	$25,524,000$	97	Good	Good	26	188
2019	$05-02$	21	34	34	14	$28,495,000$	94	Good	Good	32	338

2016 Freezer trawler fleet: 68\% of catch \& 55\% effort

GDM development strategy

 Step 1: MLE Fit pure depletion GDM w/ closed population assumption. Select "best" H0 model variantStep 2: Develop hypotheses for open population GDMs.
Step 3: Fit GDM reflecting open population hypotheses \& select "best" variants

Step 4: Select "best" hypothesis from H0....Hn
Step 5: Use "best" hypothesis model variant to develop parameter estimates \& derived quantities

2016 Generalized depletion modeling

H0. Pure depletion model w/closed population assumption
Of 48 models specified
7 converged with |param gradients| < 1 \& fewer than 2 SE NAs

Distribution	Method	Max.Abs.Grads.	M	$M_{1} \% C V$	NO	NO_\%CV	SE_Nas
aplnormal,aplnormal	BFGS	0.08	0.00001	4148.4156	$289,232,685$	46	0
negbin,negbin	CG	0.02	0.00015	2153.72601	$29,821,419$	2225	0
normal,normal	BFGS	0.07	0.00000	8958.41323	$6,929,326,679$	NA	1
lognormal_normal	CG	0.20	0.00138	438.812067	$4,179,970$	57	2
normal,lognormal	CG	0.15	0.00033	461.892935	$17,968,406$	90	2
lognormal,lognormal	BFGS	0.14	0.00003	1978.01903	$180,676,740$	2027	2
gamma,gamma	BFGS	0.05	0.00004	4559.80348	$520,690,210$	NA	2

Biological realism

- M low by orders of magnitude
- suggests squid ingress

GDM development strategy

Step 1: Fit a pure depletion GDM (HO) with closed population assumption. Select "best" model variant

Step 2: Develop hypotheses for open population GDMs.
Step 3: Fit GDM reflecting open population hypotheses \& select "best" variants

Step 4: Select "best" hypothesis from H0....Hn
Step 5: Use "best" hypothesis model variant to develop parameter estimates and derived quantities

Catch perturbation analysis 2016: Residuals of (HO) pure depletion model illill.2016_F2P0.0.n.In.fit.pred.CG

Freezer trawlers
Fleet $=$ freezer, Perturbations $=0$, Distribution $=$ Normal, Numerical algorithm $=C G$

Used primarily for open population hypothesis development

Wet boats (RSW + ICE)

Catch perturbation analysis

2016: Catch spike statistics. Anomalies in catch standardized by effort

2016 : Nonparametric catch spike statistic

Freezer week: 25-, 29-,31-, 35+, 37+,39+ Wet week: 25-, 27-, 29+, 33+, 37-, 39+

2016 : Parametric catch spike statistic

Freezer week: 29-, 31-,34+, 35+, 37+, 39+, 40+ Wet week: $27-, 28+, 33+, 37-, 38+, 39+$

Catch perturbation analysis
2016: Weight frequencies from industry data

Catch perturbation analysis 2016: Fleet dynamics

Catch relative to Hudson Self Valley Persistent catch SW all weeks Weeks 23-31, 33-34, 38-43

Some catch NE weeks 32, 35-37

Catch perturbation analysis 2016: Perturbation summary table

GDM development strategy

Step 1: Fit a pure depletion GDM (HO) with closed population assumption. Select "best" model variant

Step 2: Develop hypotheses for open population GDMs
Step 3: Fit GDM reflecting open population hypotheses \& select "best" variants

Step 4: Select "best" hypothesis from $\mathrm{H} 0 \ldots$... Hn
Step 5: Use "best" hypothesis model variant to develop parameter estimates and derived quantities

Parameter estimates of "best" model variants for $\mathrm{H} 1 \& \mathrm{H} 2 \mathrm{a}, \mathrm{b}$. (H3 variants fail criteria)

2016 Generalized depletion modeling
 "Best" hypothesis (P1P1) \& model variant (apIn.apIn.BFGS)

Choice based upon

a) numerical, statistical, biological realism criteria
b) confirmed using AIC \& variants with same distribution assumptions

Best H1 variant 2016. P1P1 aplognormal, aplognormal_BFGS

Parameter	Timing.freezer	Estimates.freezer	CVpCent.freezer	Timing.wet	Estimates.wet	CVpCent.wet
M.1/week	0.026	57		0.026	57	
No.thou	$26,221,404$	7		$26,221,404$	7	
Rec.thou.Wave1	$08-28 _09-03$	90,828	5657	$08-14 _08-20$	$37,092,712$	22
k.1/Days Fished	0	8		2	168	
alpha	1.61655	3		1.33916	11	
beta	1.67	1		0.29	33	

2016 Generalized depletion modeling
Model fit for "best" H1 model variant illill.2016_F2P1E0P1E0.0.apIn.apIn.pred.BFGS

In-season pulses : 08-28_09-03
Freezer trawlers

08-14_08-20
Wet boats (RSW + ICE)

GDM development strategy

Step 1: Fit a pure depletion GDM (H0) with closed population assumption. Select "best" model variant

Step 2: Develop hypotheses for open population GDMs.

Step 3: Fit GDM reflecting open population hypotheses \& select "best" variants

Step 4: Select "best" hypothesis from H0....Hn
Step 5: Use "best" hypothesis model variant to develop parameter estimates and derived quantities

2016 Generalized depletion modeling Derived quantities of interest: illill.2016_F2P1E0P1E0.0.apIn.apIn.pred.BFGS

2016 GDM vs Rago 2022 plausible bounds Comparison of GDM fishery based estimates (illill.2016_F2P1E0P1E0.0.apIn.apln.pred.BFGS) with Rago 2022 FI survey based estimates

Escapement biomass (MT)

Generalized depletion modeling 2013-2019
"Best" hypotheses \& variants. Important issues related to sample size

Catch-ability parameters

| Season | Model | Distribution | Method | k.freezer | \%_CV | alpha.fr | \%_CV | beta.fr | \%_CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | OP1P | Negbin | BFGS | $4.97 E+02$ | 110 | 1.12 | 44 | 0.01 | 1504 |
| 2016 | 1P1P | Apln | BFGS | $5.63 E-11$ | 8 | 1.62 | 7 | 1.67 | 1 |
| 2017 | 1P1P | Normal | BFGS | $4.70 \mathrm{E}-06$ | | 0.84 | 15 | 1.10 | |
| 2018 | OP0P | Gamma | BFGS | $4.83 E-05$ | 4524 | 0.44 | 33 | 1.11 | 126 |
| 2019 | 1P2P | Normal | BFGS | $8.30 \mathrm{E}-02$ | | 0.46 | 9 | 0.54 | 31 |

Season	Model	Distribution	Method	k.wet	\%_CV	alpha.wet	\%_CV	beta.wet	\%_CV
2013	OP1P	Negbin	BFGS	$2.25 \mathrm{E}-11$		0.47	51	2.49	
2016	1P1P	Apln	BFGS	$1.52 \mathrm{E}+00$	2	1.34	11	0.29	33
2017	1P1P	Normal	BFGS	$4.26 \mathrm{E}-02$	4	0.72	14	0.59	32
2018	OPOP	Gamma	BFGS	$1.67 \mathrm{E}-04$	51	1.17	63	0.93	256
2019	1P2P	Normal	BFGS	$1.07 \mathrm{E}-02$		0.53	28	0.65	

Catch perturbations (in-season immigration)

Season	Model	P1.Mag.fr.thou	\% CV	Wk.P1.fr
2013	OP1P			
2016	1P1P	90,828	5657	35
2017	1P1P	17,354	3718	24
2018	OP0P			
2019	1P2P	4,361	10363	27

| Season | Model | P1.Mag.wet.thou | \% CV | Wk.P1.wet | P2.Mag.wet.thou | \% CV | Wk.P2.wet | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | OP1P | 287,091 | 443 | | | | | |
| 2016 | 1P1P | $37,092,712$ | 22 | 33 | | | | |
| 2017 | 1P1P | $63,596,193$ | NA | 23 | | | | |
| 2018 | OPOP | | | | | | | |
| 2019 | 1P2P | $66,271,954$ | 684 | 26 | $62,144,970$ | 731 | 31 | |

\% CV (SE/Est*100) > \%100 or asymptotic SE not produced

Fleet specific parameters
Catch-ability \& catch perturbations

2019 1P2P model

N weeks = 14
2 ingress events into wet boat fleet
3 catchability params,
2 perturbations (*2 params) = 4 = 7 params
param/data= $7 / 14=0.5$

Generalized depletion modeling 2013-2019

 Sample sizes- With weekly time step insufficient

			Weekly step		Daily step		
Season	Weeks	Model	N Params	N_data_wk		Param/Data	N_data_day Param/Data
2013	14	OP1P	10	28	0.36	98	0.10
2016	19	1P1P	12	38	0.32	133	0.09
2017	16	1P1P	12	32	0.38	133	0.11
2018	12	OPOP	8	24	0.33	84	0.10
2019	14	1P2P	14	28	0.50	98	0.14

Daily time step

- increase precision
- Increase ability to detect in-season migration events including emigration *Pulses have large influence on quantities of interest
- Probably need catch rather than landings (0 inflation problem for freezer trawlers)

Generalized depletion modeling

- Could allow risk of overfishing to be assessed while accounting for in-season migration
- Could allow for in-season assessment
- Weekly landings data insufficient \& existing weight data not fully representative

Next steps

1) Near term.

Combine data simulation with analysis of existing landings and shorter time step.
a) Can existing landings data with shorter step provide sufficient precision \& sensitivity to ingress/egress events? (probably not)
b) Data simulation

Evaluate impacts of sample size, data quality, ingress/egress on parameter sensitivities
c) Develop methods to generate full suite of uncertainty estimates for quantities of interest

2) Medium term

Based on findings of \#1) develop collaborative research study/experimental fishery to...
a) develop in-season data \& information streams to support GDM

Include in-season information sharing between fishery, assessors and fisheries oceanographers to get inferences about migration right
b) pilot study: evaluate utility of approach in operational assessment

