2020 Management Track Assessment \& Peer Review: Butterfish

Charles Adams
NEFSC Population Dynamics Branch
July 22, 2020

Outline

- Methods
- Results
- Biological reference points
- Projections
- Assumptions \& uncertainties
- ABC projections

Background

- Last assessed in 2017 with ASAP4 using data for 1989-2016
- Status: not overfished, overfishing not occurring
- Last benchmark in 2014 as part of SAW 58 with ASAP4 using data for 1989-2012
- Status: not overfished, overfishing not occurring

Recommended level of review

- Level 2 (Expedited)
- Calculate new values for existing BRPs
- Updated discard estimates
- Updated NEAMAP indices at age

Methods: model formulation

- ASAP4
- Years: 1989-2019
- Ages: 0 to $4+$
- Fishery
- 1 fleet (landings + discards)
- 1 commercial selectivity time block
- Selectivity set to full for ages $2+$
- CVs based on variance for discards

Methods: model formulation

- Surveys
- NEFSC fall offshore 1989-2019
- Catchability fixed as a product of availability $(A=0.62)$ and efficiency (0.2)
- A is mean for 1989-2015 (no longer updated)
- NEFSC fall inshore 1989-2008
- NEAMAP fall 2007-2019
- Selectivity set to full for age 0
- CVs design-based estimates rescaled based on RMSE diagnostics

Methods: model formulation

- Recruitment CV set to 0.6
- M is estimated

Methods: model runs

- Run 1
- Add data for 2017-2019 to the 2017 model
- Run 2
- Switch to corrected time series of discards
- Run 3
- Use NEAMAP indices at age calculated with the NEAMAP ALK

Results: F

Results: SSB

Results: recruitment

Results: retro

- Run 3

Biological reference points

- Update $\mathrm{F}_{\text {MSY }}$ using $2 M / 3$ (Patterson 1992)
- ASAP4 estimate of $M=1.29$
- $\mathrm{F}_{\text {MSY }}=2 \times 1.29 / 3=0.86$
- Update SSB $_{\text {MSY }}$ using AGEPRO projections
- Fishery selectivity, maturity and weights at age from time series averages
- Recruitment from ASAP4 estimates 1989-2019
- 2020 landings $=23,752 \mathrm{mt}(\mathrm{DAH})$
- 2021-2070 F = $\mathrm{F}_{\mathrm{MSY}}$ proxy $=0.86$

Biological reference points

	2017	2020
$\mathrm{~F}_{\text {MSY }}$ proxy	0.82	0.86
SSB $_{\text {MSY }}(\mathrm{mt})$	48,681	42,247
Overfishing r	No	No
Overfished	No	No

Biological reference points

Projections

Year	Catch (mt)	SSB (mt)	F
2020	23,752	17,234	1.31
2021	19,588	29,784	0.86
2022	28,239	39,956	0.86

Assumptions \& uncertainties

- Assumptions about recruitment and 2020 catches in the projections were unlikely to be realized and would affect the accuracy of the projections
- Assumption of achieving the catch limit was unlikely because it has been 5-8 times higher than the observed catches during 2017-2019
- Because the average recruitment for the whole time series is higher than that in recent years, it may cause the projections to overestimate biomass. Using a recent period of recruitment may improve the accuracy of projections

Assumptions \& uncertainties

- Recommendations for 2021 research track
- Alternative approaches for estimating mean weights at age should be considered
- Consider a selectivity function that estimates the age2 fishery selectivity
- Reconsider the fishing mortality rate reference point
- Given the observation of declining recruitment with declining stock size, it may be possible to estimate a stock-recruitment function which could be used for reference point estimation

Assumptions \& uncertainties

- Additional uncertainty arises because the reference points are calculated from the previous assessment and are not internally consistent with the estimate of M from the update
- BRPs have been recalculated to enable internal consistency with the estimate of M

Summary

- SSB \& recruitment continue to decline
- No change in stock status
- Not overfished, overfishing not occurring
- The PRC endorsed the model and the inferences that resulted as representing the best scientific information available
- Concerns about the 2020 catch assumption and sampling from the entire time series of recruitment

Requested projections for 2021-2022

- Assumed 2020 catch $=5443$ mt
- Based on linear trend for 2013-2019
- Recruitment drawn from most recent ten years, 2010-2019

Projections: 100\% CV

Annual					
	OFL	ABC	ABC	ABC	ABC
Year	Catch	Catch	F	SSB	P* *
2021	22,053	11,993	0.431	36,935	0.232
2022	24,341	17,854	0.590	32,113	0.355

Average					
	OFL	ABC	ABC	ABC	ABC
Year	Catch	Catch	F	SSB	P* *
2021	22,053	14,924	0.549	35,957	0.320
2022	23,674	14,924	0.495	32,340	0.290

Projections: 150\% CV

Annual

	OFL	ABC	ABC	ABC	ABC
Year	Catch	Catch	F	SSB	P* *
2021	22,053	9,966	0.352	37,604	0.232
2022	24,810	16,918	0.541	33,160	0.362

Average					
	OFL	ABC	ABC	ABC	ABC
Year	Catch	Catch	F	SSB	P* *
2021	22,053	13,442	0.488	36,454	0.324
2022	30,556	13,442	0.432	33,412	0.225

