Golden Tilefish Hook Selectivity Comparison from Two Longline Surveys

Paul Nitschke (NEFSC-NOAA), Jill A. Olin (MTU), Laurie \& John Nolan (F/V Sea Capture)
Matthew Seely, Brandon Muffley \& José Montañez (MAFMC)

Fleet 1 (FLEET-1)
Hypothesis: A dome shaped selectivity pattern exists in the fishery.

Hook Selectivity 150 hooks/station 1 Nautical Mile

- 2017 Pilot 20\% small - 60\% medium - 20\% Large
- 2020 survey

50\% small - 50\% medium

8/0 small - 12/0 medium - 14/0 Large

Hook Selectivity 150 hooks/station 1 Nautical Mile Catch Rates by Hook size

- 2017 Pilot

59\% small - 27\% medium - 14\% Large
Small hooks caught 2.2 times more fish (\#s) than medium hooks. Small hooks caught 4.2 times more fish (\#s) than large hooks.

- 2020 survey

70\% small - 30\% medium
Small hooks caught 2.4 times more fish (\#s) than medium hooks.

2017 Tilefish Longline Pilot Survey

2017 Tilefish Longline Pilot Survey

Proportions by hook size

2020 Tilefish Longline Survey

2020 Tilefish Longline Survey

Proportions by hook size

Small shift in the proportion at length but there is a large difference in \mathbf{Q} between the hook sizes.

Landings at length

Conclusions

- Results of the hook size selectivity comparison and to a lesser extent the spatial \& depth refuge effects are consistent with a dome shaped selectivity pattern.
- The degree of doming (descending right side) remains more elusive since a flat topped selectivity assumption may not be justified in the survey.

Survey Design Question

Longer-term, perhaps a survey designed with 2 hook sizes (smalls and mediums) could inform fishery selectivity through the modeling of the survey with separate estimates of Q and dome shaped selectivity for each hook size? Cost-benefit trade-off?

What is the optimal fishery independent tilefish longline survey for the Buck?
 What are the trade-offs?

If we assume 300 k is available for a survey in a two year period. Example: 150k annual survey or 300k every two years or 600k every 6 years.

- Pre-recruit index annually (limited spatial extent core, only small hooks to increase Q with less stations, better information on age 3 and 4 relative to commercial fishery, frequent assessments).
- Every two years (limited spatial extent core, two hook sizes, less useful as a prerecruit index, perhaps better information to inform selectivity in the assessment, estimate Q and selectivity by hook size, less frequent assessment-about 3 years).
- Every 6 years (spatially extent outside of core, two hook sizes, not useful as a prerecruit index, could perhaps inform selectivity, could inform general longer-term stock range expansion and contraction, could provide better information on blueline, could help support a longer term constant ABC decision).

