Evaluation of Alternative Catch Limits for the U.S. Illex illecebrosus fishery in 2023

Presentation to Mid-Atlantic Fishery Management Council Scientific and Statistical Committee
Via Webinar

Lisa Hendrickson, Northeast Fisheries Science Center
Paul Rago, Science and Statistical Committee, Chair March 7, 2023

Objectives

- Update and improve methods applied in 2022
- Add 2022 data for NEFSC fall survey biomass and U.S. fishery catch
- Compute probabilities of exceeding theoretical BRPs
- Summarize results

What's changed since the 2022 analyses?

- Effects of NEFSC fall survey uncertainty on risk of violating Escapement and F/M Thresholds (Paul's previous presentation)
- Addition of 2022 NEFSC fall survey biomass and U.S. fishery catch data
- Compared Escapement and F/M estimates with theoretical BRPs used for other squid stocks

1. Percent spawner escapement (all sizes combined)
2. F / M (used for forage finfish species)

- Updated average probability of overfishing across all years given each alternative catch limit for each theoretical BRP
- Updated results with respect to Council's P* Risk Policy

 FISHERIES

Percentiles and Probabilities of B, F and Escapement

- Compute naïve percentiles from the 250,000 realizations for each year y (N.q*N.v*N.M=40 ${ }^{3}$)
- Compare $\operatorname{Esc}\left(\mathrm{y} \mid \mathrm{C}_{\mathrm{H}}\right)$ to some threshold level T, e.g., 50% Escapement
- Compute probability of overfishing (i.e., falling below escapement threshold) as sum of cases over all assumed $\{\mathrm{q}, \mathrm{v}, \mathrm{M}\}$ for all years y where $\left(\operatorname{Esc}\left(y \mid C_{H},\{q, v, M\}\right)<T\right)$
- Divide this sum by product of number of years times N.q * N.v* N.M
- Composite probability assumes that all historical abundance estimates B. 0 (y) are equally likely. This could be refined to account for trend and/or autocorrelation in the future.

Examining the parameter space

Isopleths of Illex biomass (mt) estimates for combinations of q and v for 2022 (left) and marginal distribution of biomass estimates over all combinations of q, v, and M (right).

Biomass estimates for the 2022 NEFSC fall survey

Empirical PDF for Biomass (mt) for 2022

FISHERIES

Isopleths of IIlex F estimates (per week) for various combinations of q and v for 2022 (left) and derived distribution of F (per week) for 2022 (right). Dashed red lines represent the range of 2019 VMS F estimates.

Feasible F estimates for 2022 NEFSC fall survey

Empirical PDF for fishing mortality (weekly) for 2022 plus VMS F

Isopleths of Escapement as a function of q and v (left) and empirical distribution of Escapement based on observed catch in 2022 and observed NEFSC fall bottom trawl indices (right).

Feasible escapement estimates for 2022 NEFSC fall survey

Empirical PDF for escapement for 2022

Percentiles of Biomass, F, and Escapement for each year

Table 2

	Percentile				
Year	1%	5%	50%	95%	99%
1997	36,936	47,606	185,199	865,375	$1,391,943$
1998	68,670	100,773	461,803	$2,511,512$	$4,309,863$
1999	16,659	20,539	70,284	305,065	484,055
2000	39,716	54,571	245,669	$1,235,322$	$2,019,005$
2001	15,880	21,181	90,438	441,055	712,910
2002	20,474	28,830	137,883	708,998	$1,160,249$
2003	38,093	81,196	555,374	$3,620,695$	$6,441,818$
2004	48,560	58,474	185,866	766,910	$1,202,999$
2005	37,365	52,649	228,845	$1,195,665$	$2,031,464$
2006	112,292	165,629	823,876	$4,395,210$	$7,367,541$
2007	67,191	93,137	438,818	$2,220,827$	$3,594,807$
2008	60,798	81,274	347,123	$1,696,752$	$2,754,724$
2009	60,209	79,882	333,176	$1,616,953$	$2,624,473$
2010	40,379	52,028	200,551	937,797	$1,515,733$
2011	44,257	56,041	207,244	943,577	$1,513,930$
2012	36,093	47,085	190,855	906,125	$1,456,294$
2013	18,594	25,256	112,956	561,099	908,174
2014	38,171	51,336	224,932	$1,106,103$	$1,785,947$
2015	24,409	34,331	165,564	848,404	$1,381,160$
2016	34,526	48,299	223,883	$1,145,734$	$1,888,454$
2018	83,637	110,417	461,407	$2,224,021$	$3,582,213$
2019	57,584	71,257	247,196	$1,080,734$	$1,715,310$
2021	62,327	77,011	265,302	$1,157,927$	$1,841,132$
2022	39,283	57,304	280,654	$1,486,312$	$2,484,105$

Year

Estimated F (per 25-wk season) (1997-2022) based on based on 250,000 combinations of q, v, and M for each year [left]. Log seasonal F [right]. Average weekly F is the total F divided by 25 weeks.

Low Fs, wide confidence intervals and lack of trend

Table 3

Percentiles of

 Escapement, 1997-2022

[^0]Percentiles of F/M
$1997-2022$

Year	$\mathbf{1 \%}$	$\mathbf{5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{9 5 \%}$	$\mathbf{9 9 \%}$
1997	0.011	0.018	0.102	1.166	2.153
1998	0.006	0.010	0.068	0.836	1.664
1999	0.019	0.030	0.164	1.783	3.205
2000	0.005	0.008	0.047	0.576	1.093
2001	0.007	0.011	0.063	0.756	1.421
2002	0.003	0.004	0.026	0.331	0.636
2003	0.001	0.002	0.015	0.224	0.568
2004	0.024	0.039	0.205	2.169	3.835
2005	0.007	0.012	0.079	0.951	1.842
2006	0.002	0.004	0.024	0.301	0.590
2007	0.003	0.005	0.028	0.342	0.656
2008	0.007	0.011	0.064	0.769	1.444
2009	0.008	0.013	0.074	0.874	1.635
2010	0.011	0.019	0.107	1.231	2.270
2011	0.014	0.022	0.125	1.404	2.565
2012	0.009	0.014	0.083	0.967	1.800
2013	0.005	0.008	0.046	0.560	1.063
2014	0.006	0.009	0.053	0.637	1.203
2015	0.002	0.004	0.022	0.272	0.523
2016	0.004	0.007	0.040	0.490	0.937
2018	0.008	0.012	0.071	0.841	1.575
2019	0.018	0.029	0.156	1.704	3.071
2021	0.018	0.029	0.160	1.751	3.154
2022	0.003	0.004	0.027	0.346	0.675

Probabilities of falling below Escapement Thresholds or exceeding F/M Thresholds

Probabilities (avg. 1997-2022) of falling below hypothetical

 Escapement Thresholds for alternative catch limits of 24,000-60,000 mt

Alternative Catch (mt)	Escapement Threshold				
	0.35	0.4	$\mathbf{0 . 5}$	0.6	0.75
24000	0.0106	0.0198	0.0574	0.1350	0.3602
25000	0.0120	0.0221	0.0630	0.1449	0.3757
26000	0.0134	0.0245	0.0688	0.1548	0.3906
27000	0.0149	0.0271	0.0748	0.1647	0.4052
28000	0.0165	0.0298	0.0808	0.1746	0.4192
29000	0.0181	0.0326	0.0870	0.1843	0.4329
30000	0.0199	0.0356	0.0932	0.1941	0.4462
31000	0.0217	0.0387	0.0995	0.2037	0.4591
32000	0.0237	0.0418	0.1059	0.2132	0.4716
33000	0.0257	0.0451	0.1123	0.2227	0.4837
34000	0.0278	0.0485	0.1187	0.2320	0.4955
35000	0.0299	0.0520	0.1252	0.2412	0.5070
36000	0.0322	0.0555	0.1316	0.2503	0.5181
37000	0.0346	0.0592	0.1381	0.2594	0.5288
38000	0.0370	0.0629	0.1446	0.2683	0.5393

Alternative Catch (mt)	F/M Threshold					
	0.33	0.5	0.666	1	1.5	
24000	0.2694	0.1906	0.1446	0.0912	0.0510	
25000	0.2763	0.1962	0.1494	0.0947	0.0536	
26000	0.2830	0.2017	0.1540	0.0983	0.0561	
27000	0.2895	0.2070	0.1585	0.1017	0.0586	
28000	0.2958	0.2122	0.1629	0.1050	0.0610	
29000	0.3020	0.2172	0.1672	0.1083	0.0634	
30000	0.3080	0.2221	0.1714	0.1115	0.0657	
31000	0.3138	0.2269	0.1755	0.1147	0.0680	
32000	0.3195	0.2316	0.1795	0.1178	0.0702	
33000	0.3251	0.2362	0.1834	0.1208	0.0725	
34000	0.3305	0.2407	0.1873	0.1238	0.0746	
35000	0.3358	0.2451	0.1910	0.1267	0.0768	
36000	0.3410	0.2494	0.1947	0.1295	0.0789	
37000	0.3460	0.2536	0.1983	0.1323	0.0809	
38000	0.3510	0.2577	0.2019	0.1351	0.0830	
39000	0.3559	0.2618	0.2053	0.1378	0.0850	
40000	0.3606	0.2657	0.2087	0.1405	0.0870	/
41000	0.3653	0.2696	0.2121	0.1431	0.0889	For an F/M
42000	0.3698	0.2734	0.2154	0.1457	0.0908	Threshold
43000	0.3743	0.2772	0.2186	0.1482	0.0927	
44000	0.3787	0.2809	0.2218	0.1507	0.0946	
45000	0.3830	0.2845	0.2249	0.1531	0.0964	
46000	0.3873	0.2880	0.2280	0.1555	0.0982	avg risk of
47000	0.3914	0.2915	0.2310	0.1579	0.1000	
48000	0.3955	0.2949	0.2339	0.1602	0.1017	Overfishing
49000	0.3996	0.2983	0.2369	0.1625	0.1035	
50000	0.4035	0.3016	0.2397	0.1648	0.1052	.27 when
51000	0.4074	0.3049	0.2426	0.1670	0.1069	
52000	0.4112	0.3081	0.2454	0.1692	0.1085	catch Immi
53000	0.4150	0.3113	0.2481	0.1714	0.1102	
54000	0.4187	0.3144	0.2508	0.1735	0.1118	60,000 mt
55000	0.4223	0.3175	0.2535	0.1756	0.1134	
56000	0.4259	0.3205	0.2561	0.1777	0.115	
57000	0.4294	0.3235	0.2587	0.1798	. 1165	
58000	0.4329	0.3264	0.2613	0.181	0.1181	
59000	0.4363	0.3294	0.2638	. 1838	0.1196	
60000	0.4397	0.3322	0.2663	0.1858	0.1211	

Table 12

Alternative Catch (mt)	Escapement Threshold				
	0.35	0.0098	0.0164	0.0388	0.0650
25000	0.0109	0.0183	0.0423	0.0691	0.0922
26000	0.0121	0.0202	0.0460	0.0731	0.0958
27000	0.0134	0.0222	0.0496	0.0771	0.0994
28000	0.0147	0.0244	0.0532	0.0810	0.1028
29000	0.0162	0.0266	0.0569	0.0848	0.1062
30000	0.0176	0.0289	0.0605	0.0886	0.1095
31000	0.0192	0.0313	0.0642	0.0922	0.1127
32000	0.0208	0.0338	0.0678	0.0959	0.1159
33000	0.0225	0.0364	0.0714	0.0994	0.1190
34000	0.0243	0.0390	0.0749	0.1029	0.1221
35000	0.0261	0.0417	0.0785	0.1064	0.1250
36000	0.0280	0.0444	0.0819	0.1097	0.1280
37000	0.0300	0.0472	0.0854	0.1131	0.1308
38000	0.0320	0.0500	0.0888	0.1163	0.1337
39000	0.0341	0.0528	0.0922	0.1195	0.1364
40000	0.0362	0.0557	0.0955	0.1227	0.1392
41000	0.0384	0.0586	0.0988	0.1257	0.1418
42000	0.0406	0.0615	0.1020	0.1288	0.1444
43000	0.0429	0.0644	0.1052	0.1318	0.1470
44000	0.0452	0.0673	0.1084	0.1347	0.1496
45000	0.0476	0.0702	0.1115	0.1375	0.1520
46000	0.0499	0.0731	0.1146	0.1404	0.1545
47000	0.0524	0.0760	0.1177	0.1431	0.1569
48000	0.0548	0.0789	0.1207	0.1459	0.1593
49000	0.0572	0.0818	0.1236	0.1485	0.1616
50000	0.0597	0.0846	0.1265	0.1512	0.1639
51000	0.0622	0.0875	0.1294	0.1538	0.1661
52000	0.0647	0.0903	0.1323	0.1563	0.1684
53000	0.0672	0.0931	0.1351	0.1588	0.1706
54000	0.0697	0.0960	0.1378	0.1613	0.1727
55000	0.0723	0.0987	0.1406	0.1637	0.1749
56000	0.0748	0.1015	0.1433	0.1661	0.1770
57000	0.0773	0.1043	0.1459	0.1684	0.1791
58000	0.0799	0.1070	0.1485	0.1707	0.1811
59000	0.0824	0.1097	0.1511	0.1730	0.1831
60000	0.0849	0.1124	0.1537	0.1752	0.1851

Choosing an ABC Consistent with Council Risk Policy

Risk of overfishing (P^{*}) cannot exceed 0.49 irrespective of relative biomass

Risk decreases slowly as stock size falls below 1.5 $B / B_{\text {msy }}$

Risk decreases sharply when $B / B_{\text {msy }}<1$

No fishing when $B / B_{\text {msy }}<0.1$

Theoretical Reference Points

No approved Biological Reference Points for I. illecebrosus and promulgated BRPs are no longer considered appropriate

Percent Escapement levels have been used for other squid species, such as:
Illex argentinus, Doryteuthis gahi, Doscidicus gigas and Ommastrephes bartramii = F40\% Escapement
Risk of overfishing for Illex can be expressed as:

1. The probability of falling below a specific Escapement Threshold level (e.g., $35 \%, 40 \%, 50 \%$) or
2. The probability of exceeding $F / M=2 / 3,1$ or other values that attempt to preserve forage fish (but not subannual or semelparous) for its predators.

One can estimate the joint probability of exceeding F/M threshold and falling below an Escapement Threshold.

The only other requirement to apply the Council's Risk Policy is a guesstimate of the likely 2023 status of the U.S. Illex Stock Component (i.e., $B_{t} / B_{\text {msy }}$).
Is the population trending OR randomly fluctuating around a mean? Is that mean near $\mathrm{B}_{\text {MSY }}$ or $0.5 \mathrm{~B}_{\text {MSY }}$ or ??

Figure 13. "Slinky plot" of probability of Escapement < 50\%, by year (1997-2022), given alternative catch limits of 24,000-60,000 mt. Each dot represents an alternative catch; lowest at bottom and highest at top.

Probability of Escapement<50\% alternative quotas vs year

Council's P* Risk Policy

Figure 14. Probabilities of Escapement < 50\% for alternative catch limits of $24,000-60,000 \mathrm{mt}$. Each line is the trajectory of a given year reflecting the effect of different B. 0 values by year. Initial population size (B.0) in each year based on the observed catch and range of assumed q, v, and M values.

P^{*} values are based on the assumed 2023 status of the U.S. IIlex Stock Component.

Probabilities of Escapement $<\mathbf{4 0 \%}$ (left) and < 50\% (right), by year, based on the assumed 2023 status of the U.S. Illex Stock Component. Initial population size (B.0) in each year is based on the observed catch and range of assumed q, v, and M values. Y-axis scale differences, but same P^{*} values.

Probability Escapement<40\%|Alt Quotas vs Year

Probability of Escapement<50\% alternative quotas vs year

And now for some numbers....

Probabilities (1997-2022 avg.) of falling below various Escapement Thresholds for alternative catch limits of 24,000 to $60,000 \mathrm{mt}$.

Alternative Catch (mt)	$\mathbf{0 . 3 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7 5}$
24000	0.0106	0.0198	0.0574	0.1350	0.3602
25000	0.0120	0.0221	0.0630	0.1449	0.3757
26000	0.0134	0.0245	0.0688	0.1548	0.3906
27000	0.0149	0.0271	0.0748	0.1647	0.4052
28000	0.0165	0.0298	0.0808	0.1746	0.4192
29000	0.0181	0.0326	0.0870	0.1843	0.4329
30000	0.0199	0.0356	0.0932	0.1941	0.4462
31000	0.0217	0.0387	0.0995	0.2037	0.4591
32000	0.0237	0.0418	0.1059	0.2132	0.4716
33000	0.0257	0.0451	0.1123	0.2227	0.4837
34000	0.0278	0.0485	0.1187	0.2320	0.4955
35000	0.0299	0.0520	0.1252	0.2412	0.5070
36000	0.0322	0.0555	0.1316	0.2503	0.5181
37000	0.0346	0.0592	0.1381	0.2594	0.5288
38000	0.0370	0.0629	0.1446	0.2683	0.5393
39000	0.0395	0.0667	0.1511	0.2771	0.5495
40000	0.0420	0.0705	0.1575	0.2857	0.5594
41000	0.0447	0.0744	0.1640	0.2943	0.5690
U.s. Department of commerce \mid National	Oceanic and Ammosheric Administration	National Marine Fisheries Senice			

Alternative Catch (mt)	Escapement Threshold				
	0.35	0.4	0.5	0.6	0.75
42000	0.0473	0.0783	0.1704	$P^{*}=0.20$ assuming 2023 $\mathrm{B} / \mathrm{Bmsy}=0.5$	
43000	0.0501	0.0823	0.1768		
44000	0.0529	0.0863	0.1832		
45000	0.0557	0.0904	0.1895		
46000	0.0586	0.0944	0.1958	0.3353	0.6132
47000	0.0616	0.0985	0.2021	0.3432	0.6213
48000 N	0.0646	0.1027	0.2083	0.3509	0.6292
49000	0.0676	0.1068	0.2145	0.3585	0.6368
50000	0.0707	0.1110	0.2206	0.3661	0.6443
51000	0.0738	0.1152	0.2267	0.3735	0.6515
52000	Highest Catch Limit			0.3808	0.6586
53000	consistent with			0.3880	0.6654
54000	Council Risk Policy			0.3951	0.6721
55000	assuming $\mathrm{B}=0.5 \mathrm{~B}_{\mathrm{MsY}}$			0.4021	0.6786
56000	and Escapement			0.4089	0.6850
57000	Threshold is 50\%			0.4157	0.6911
58000	0.0J02	0.140	0.2001	0.4224	0.6971
59000	0.0995	0.1488	0.2739	0.429	0703
60000	0.1028	0.1530	0.2795	0.435	$0-1086$

Probabilities (1997-2022 avg.) of exceeding various F/M thresholds for alternative catch limits of 24,000 to $60,000 \mathrm{mt}$.

Alternative Quota (mt)	F/M Threshold				
	0.33	0.5	0.666	1	1.5
24000	0.2694	0.1906	0.1446	0.0912	0.0510
25000	0.2763	0.1962	0.1494	0.0947	0.0536
26000	0.2830	0.2017	0.1540	0.0983	0.0561
27000	0.2895	0.2070	0.1585	$\mathrm{P}^{*}=0$	
28000	02958	02122	01629	assum	g 2023
29000	Highes	Catch L	mit	B/Bm	$=0.5$
30000	consist	nt with		0.1115	0.005
31000	Counci	Risk Polid	cy	0.1147	0.0680
32000	assum	g B=0.	$\mathrm{B}_{\text {MSY }}$	0.1178	0.0702
33000	and F/M	Thresh	ld is	0.1208	0.0725
34000	0.685	0.2401	$0.18 / 3$	0.1238	0.0746
35000	0.3358	0.2451	0.1910	0.1267	0.0768
36000	0.3410	0.2494	0.1947	0.1295	0.0789
37000	0.3460	0.2536	0.1983	0.1323	0.0809
38000	0.3510	0.2577	0.2019	0.1351	0.0830
39000	0.3559	0.2618	0.2053	0.1378	0.0850
40000	0.3606	0.2657	0.2087	0.1405	0.0870
41000	0.3653	0.2696	0.2121	0.1431	0.0889

Alternative	F/M Threshold				
Quota (mt)	$\mathbf{0 . 3 3}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6 6 6}$	$\mathbf{1}$	$\mathbf{1 . 5}$
42000	0.3698	0.2734	0.2154	0.1457	0.0908
43000	0.3743	0.2772	0.2186	0.1482	0.0927
44000	0.3787	0.2809	0.2218	0.1507	0.0946
45000	0.3830	0.2845	0.2249	0.1531	0.0964
46000	0.3873	0.2880	0.2280	0.1555	0.0982
47000	0.3914	0.2915	0.2310	0.1579	0.1000
48000	0.3955	0.2949	0.2339	0.1602	0.1017
49000	0.3996	0.2983	0.2369	0.1625	0.1035
50000	0.4035	0.3016	0.2397	0.1648	0.1052
51000	0.4074	0.3049	0.2426	0.1670	0.1069
52000	0.4112	0.3081	0.2454	0.1692	0.1085
53000	0.4150	0.3113	0.2481	0.1714	0.1102
54000	0.4187	0.3144	0.2508	0.1735	0.1118
55000	0.4223	0.3175	0.2535	0.1756	0.1134
56000	0.4259	0.3205	0.2561	0.1777	0.1150
57000	0.4294	0.3235	0.2587	0.1798	0.1165
58000	0.4329	0.3264	0.2613	0.1818	0.1181
59000	0.4363	0.3294	0.2638	0.1838	nona
60000	0.4397	0.3322	0.2663	0.1858	0.196 A. A

Conclusions

- Low q and v and high M drive the high stock biomasses in Table 2.
- The extreme B values, >1 million mt , seem highly unlikely but the distribution of median values during 1997-2022 seem reasonable ($70,000-824,000 \mathrm{mt}$).
- Wide fluctuations in biomass and catch levels are common in other squid fisheries (e.g., Falklands and Japan)
- Median biomass estimates during 2011-2022 have ranged 112,000-461,000 mt (Table 2).
- Median escapement percentiles were >0.76 for this same period (Table 3). Exploitation rates were generally low, $<0.01 /$ week (Fig. 11).
- Much higher average availability and catchability rates than are used here would be required to significantly reduce median stock size or escapement.
- Escapement estimates herein do not consider temporal escapement that occurs outside the fishing season.

Conclusions (cont.)

- Probabilities of falling below a Threshold Escapement level were computed for 1997-2022 (2017 and 2020 excluded).

Average probability depends on all of the realized B.O(y) estimates for 1997-2022 Assumes all initial conditions B.O(y) are equally probable.

- Three low median biomass years observed: 1999 ($70,000 \mathrm{mt}$), 2001 ($90,000 \mathrm{mt}$) and 2013 ($113,000 \mathrm{mt}$) (Table 2).

Hypothetical catch limits that would have resulted in a median Escapement rate of 50% are: $28,000 \mathrm{mt}$ (1999), $43,000 \mathrm{mt}$ (2001) and 55,000 (2013) (Table 5).

- Based on probabilities averaged across 1997-2022:

IF $\mathrm{B}_{\mathbf{t}}$ is stationary and $\mathbf{B} / \mathrm{Bmsy}_{\mathbf{1}}$ and Escapement Threshold $=50 \%$ then a catch limit of up to $60,000 \mathrm{mt}$ is possible. (Table 10)
IF B_{t} is stationary and $B / B m s y=0.5$ then the catch limit should not exceed $\mathbf{4 7 , 0 0 0} \mathbf{~ m t ~ (T a b l e ~ 1 0) ~}$ or $\mathbf{3 8 , 0 0 0} \mathbf{~ m t ~ u s i n g ~ t h e ~} \mathbf{F} / \mathbf{M}=\mathbf{0 . 6 6}$ criterion (Table 11).

Questions?

[^0]: Page 14 U.S. Department of Commerce \| National Oceanic and Atmospheric Administration | National Marine Fisheries Service

