# Effects of Survey Uncertainty on Risk of Violating Escapement and F/M Thresholds for Illex Squid: 1997-2021 

Paul Rago<br>Presentation to MAFMC Scientific and Statistical Committee Webinar Meeting March 7, 2023

## Overview

- Review previous methods for estimating escapement and probability of falling below candidate thresholds
- Method for considering additional uncertainty of survey biomass estimates for period 1997-2021
- Compute effects of additional uncertainty
- Side by side comparison for Biomass, F, Escapement and F/M
- Side by side probabilities of violating escapement and F/M ratios for estimates with and without survey uncertainty
- Probabilities that potential quotas from 24,000 to $60,000 \mathrm{mt}$ violate candidate thresholds.


## Review of Model Theory

- Input data
- Time series of catch $\left(C_{t}\right)$, fall survey index $I_{F, t}$, coefficient of uncertainty in fall survey $\left(\mathrm{CV}_{\mathrm{t}}\right)$
- Parameters
- Catchability (q), Availability (v), Natural Mortality (M),
- Simulation Controls
- Upper and Lower bounds for $\mathrm{q}, \mathrm{v}, \mathrm{M}$ and $\mathrm{I}_{\mathrm{F}, \mathrm{t}}$ via selection of confidence interval $\alpha$.
- Number of intervals for each parameters
- Candidate thresholds for Escapement and F/M
- Number and magnitude of alternative quotas to be evaluated


## Finding F

- 1. Expand Fall survey index to total assuming $q$ and $v$

$$
B_{t}=\frac{I_{t}}{q} \frac{A}{a} \frac{1}{v}=\frac{A I_{t}}{q a v}
$$

- 2. Write Bt as function of B.o and $Z \longrightarrow B_{t}=B_{0} e^{-Z t}$
- 3. Baranov catch equation assuming $M$

$$
B_{0}=\frac{C_{t}}{\frac{F}{F+M}\left(1-e^{-(F+M)}\right)}
$$

- 4. Combine Eq. 2 and 3
-5. Plug Eq. 1 into Eq. 4

$$
B_{t} e^{(F+M)}=\frac{C_{t}}{\frac{F}{F+M}\left(1-e^{-(F+M)}\right)}
$$

- 6. Solve for $F$ given assumed levels of $q, v$, $M$ and observations of $I_{t}$ and $C_{t}$ in Eq. 5

$$
\frac{A I_{t}}{q a v} e^{(F+M)}=\frac{C_{t}}{\frac{F}{F+M}\left(1-e^{-(F+M)}\right)}
$$

## Escapement Estimation for OBSERVED Catches

- Find B. 0 and $F$ for each year given $\mathrm{C}(\mathrm{t}), \mathrm{I}(\mathrm{t})$ and assumed $\mathrm{q}, \mathrm{v}, \mathrm{M}$.
- Project terminal population without $B_{t, \text { without fishery }}=B_{0} e^{-M t}$ fishery
- Compute escapement as ratio of observed $B(t)$ over $B(t \mid F=0)$

$$
\text { Escapement }=\frac{B_{t}}{B_{t, \text { without fishery }}}
$$

- Or equivalently

$$
\text { Escapement }=\frac{B_{t}}{B_{t, \text { without fishery }}}=\frac{B_{0} e^{-(F+M)}}{B_{0} e^{-M}}=e^{-F}
$$

- This formulation is useful for evaluating alternative quotas


## Escapement Estimation for ALTERNATIVE Catches

- Find B. 0 and F for each year given observed C(t), I.f(t) and assumed $q, v, M$.
- Assume alternative catch $\mathrm{C}_{\mathrm{H}}$
- Find $\mathrm{F}_{\mathrm{H}}$ associated with alternative catch $\mathrm{C}_{\mathrm{H}}$

$$
B_{0}=\frac{C_{H}}{\frac{F_{H}}{F_{H}+M}\left(1-e^{-\left(F_{H}+M\right)}\right)}
$$

- Compute escapement as ratio of observed $\mathrm{B}(\mathrm{t})$ over $\mathrm{B}(\mathrm{t} \mid \mathrm{F}=0)$

$$
\begin{aligned}
& \text { Escapement }\left(B_{0}, C_{H}\right)=\frac{B_{t}^{\prime}}{B_{t, \text { without fishery }}} \\
& =\frac{B_{0} e^{-\left(F_{H}+M\right)}}{B_{0} e^{-M}}=e^{-F_{H}}
\end{aligned}
$$

Revised methodology includes all of the above steps PLUS uncertainty in the survey derived estimates of minimum biomass.

## Parameterization of model

| 1 | A | B | C | D | E F | G | H | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Par.Name | Min | Max | N | Comment |  |  |  |
| 2 | q | 0.078 | 0.325 | 25 | \# Efficiency |  |  |  |
| 3 | v | 0.37 | 0.73 | 20 | \#Availability |  |  |  |
| 4 | M | 0.01 | 0.13 | 20 | \#Natural Mortality |  |  |  |
| 5 | I.f.alpha | 0.1 | 0.9 | 25 | \# 80\%CI range for e | ob | n |  |
| 6 | F.range | 0.000001 | 5 | ¢ 1 | \# Admissible range of | se | New | ph |

N.q * N.v * N.M * N.I= N.sim

25 * 20 * 20 * 25=250,000 evaluations for
each year (23) times 37 alternative quotas

| Parameter | Range $=$ Max/Min | Distribution |
| :--- | :---: | :--- |
| Catchability | 4 X | Uniform (min, max) |
| Availability | 2 X | Uniform (min, max) |
| Natural Mortality | 13 X | Uniform (min, max) |
| Survey Estimate $(\alpha=0.1)$ <br> $Z_{\alpha}=1.28$ <br> $\left(1+\mathrm{CV}^{*} Z_{\alpha}\right) /\left(1-\mathrm{CV}^{*} Z_{\alpha}\right)$. | Ave 2 X <br> Range <br> $1.2-14 \mathrm{X}$ over <br> years | Normal(mean, SE\| 80\%CI) |

## Stochastic

Escapement Model: Turning 69 numbers into 212,750,000 estimates

| Year | Catch(mt) | $\begin{array}{\|l\|} \hline \text { Spring } \\ \text { Survey } \\ (m t) \end{array}$ | Fall Surve) <br> (mt) | CV Fall Survey |
| :---: | :---: | :---: | :---: | :---: |
| 1997 | 14,358 | 511 | 2,730 | 17 |
| 1998 | 24,154 | 226 | 7,725 | 51 |
| 1999 | 8,482 | 149 | 929 | 16 |
| 2000 | 9,117 | 35 | 3,999 | 22 |
| 2001 | 4,475 | 110 | 1,422 | 15 |
| 2002 | 2,907 | 68 | 2,322 | 20 |
| 2003 | 6,557 | 23 | 10,913 | 68 |
| 2004 | 27,499 | 139 | 2,279 | 12 |
| 2005 | 13,861 | 14 | 3,696 | 46 |
| 2006 | 15,500 | 121 | 14,220 | 34 |
| 2007 | 9,661 | 147 | 7,311 | 8 |
| 2008 | 17,429 | 54 | 5,462 | 18 |
| 2009 | 19,090 | 404 | 5,170 | 20 |
| 2010 | 16,394 | 101 | 2,941 | 22 |
| 2011 | 19,487 | 294 | 2,937 | 18 |
| 2012 | 12,211 | 1,099 | 2,895 | 12 |
| 2013 | 4,107 | 22 | 1,827 | 13 |
| 2014 | 9,342 | NA | 3,592 | 11 |
| 2015 | 2,873 | 217 | 2,795 | 14 |
| 2016 | 7,004 | 2,641 | 3,711 | 26 |
| 2017 | 23,371 | 314 | NA | NA |
| 2018 | 25,524 | 382 | 7,146 | 13 |
| 2019 | 28,495 | 1,901 | 3,310 | 14 |
| 2020 | not used | NA | NA | NA |
| 2021 | 30,714 | NA | 3,531 | 17 |

Integrating over ranges of uncertainty in $\mathrm{q}, \mathrm{v}, \mathrm{M}, \mathrm{I}_{\mathrm{F}, \mathrm{t}}$


## Results

- See Tables 2-8 in report
- General Format of Tables
- Estimates from Last year using original methods
- Estimates for same data, using revised method
- Percentage difference for each parameter
- Average value over columns
- Tables 2, 3, 4, 5 = Estimates of percentiles of Biomass, F, Escapement, $F / M$, respectively for each year
- Tables 6, 7, 8= Probabilities of violating Escapement Thresholds, F/M thresholds and Joint escapement \& F/M thresholds for each quota.

Effects on Initial Biomass (B.O) and total Season Fishing Mortality Percentiles for 1997-2021


## Effects on

Escapement and F/M ratio by percentile for 1997-2021


Figure 3. Empirical relationship between the percent difference in the confidence interval width of initial biomass (B.O) vs the Coefficient of Variation of fall bottom trawl survey.

The $y$-axis is the percentage change in the ratio of the $90 \%$ confidence interval width when the Survey CV is included over the $90 \% \mathrm{Cl}$ width when the Survey CV is NOT included.
\% Difference Cl width Biomass vs CV of Fall


Figure 4. Empirical relationship between the percent difference in the confidence interval width of Escapement (Esc) vs the Coefficient of Variation of fall bottom trawl survey.

The $y$-axis is the percentage change in the ratio of the $90 \%$ confidence interval width when the Survey CV is included over the $90 \% \mathrm{Cl}$ width when the Survey CV is NOT included.


## Effects Survey Uncertainty on Risk of Overfishing for 40,000 mt Quota on Escapement

- In March and July, 2022 the SSC recommended an ABC of $\mathbf{4 0 , 0 0 0} \mathbf{~ m t}$ for 2023. The probability of falling below Escapement thresholds (Table 6) were:

| Escapement <br> Threshold | 0.35 | 0.40 | 0.5 | 0.6 | 0.75 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.0384 | 0.0657 | 0.1519 | 0.2802 | 0.5575 |

The inclusion of uncertainty in survey biomass increased these probabilities to:

| Escapement <br> Threshold | 0.35 | 0.40 | 0.5 | 0.6 | 0.75 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.0437 | 0.0731 | 0.1620 | 0.2912 | 0.5641 |

The ratio of these probabilities is

| Escapement <br> Threshold | 0.35 | 0.40 | 0.5 | 0.6 | 0.75 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 1.1392 | 1.1130 | 1.066 | 1.0392 | 1.0118 |

## Conclusions

- Effects of adding uncertainty in survey biomass is relatively minor and does not significantly affect the basis for quota decisions made in 2022.
- WHY?
- Range of variation considered is relatively small compared to ranges for other parameters, especially M.
- CVs are relatively low except in a few years.
- Effect show up in the tails of the Escapement and F/M distributions. The dispersion of the sampling distributions increases. Medians relatively unaffected.
- Index Uncertainty is normally distributed and symmetric, implies equal \# of increases and decreases
- Less probability mass in the tails relative to uniform distribution

