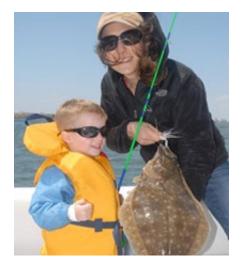
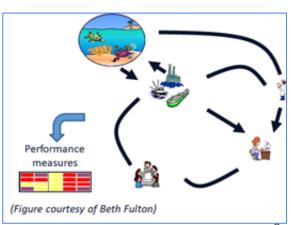


EAFM Recreational Summer Flounder MSE

Summary of Process, Model Overview, and Outcomes

Mid-Atlantic SSC March 8, 2023




Presentation Outline

- Overview of process and MSE development
- Management considerations
- Simulation framework
 - Population dynamics model
 - Recreational demand model
- Key findings
- Broader MSE takeaways

For all model outputs - https://bit.ly/fluke-mse-metrics

For more information about the MSE - https://www.mafmc.org/actions/summer-flounder-mse

MSE Technical Work Group and Core Group Members

Technical Work Group

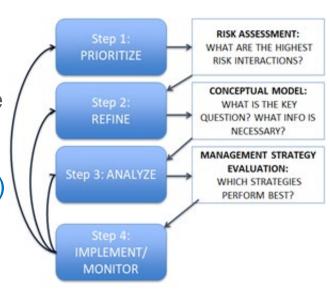
- Andrew Carr-Harris/NEFSC
- Dustin Colson-Leaning/ASMFC
- Jonathan Cummings/Contractor, USFWS
- Kiley Dancy/MAFMC
- Geret DePiper/NEFSC
- Jon Deroba/NEFSC
- Gavin Fay/UMass Dartmouth
- Sarah Gaichas/NEFSC
- Kaili Gregory/Cornell
- Jorge Holzer/U. Maryland
- Emily Keiley/GARFO
- Jeff Kipp/ASMFC
- Doug Lipton/NOAA Fisheries
- Annabelle Stanley/Cornell
- Mark Terceiro/NEFSC
- Mike Wilberg/U. Maryland
- Greg Wojcik/CT DEEP

Core Stakeholder Group

- Leah Barton/Shore
- Rick Bellavance/Charter Boat
- Eleanor Bochenek/Academic
- Neil Delanoy/Party Boat
- John DePersenaire/National Recreational Org.
- Greg DiDomenico/Commercial
- Paul Haertel/Private Boat
- Rich Hittinger/Private Boat
- Mike Oppegaard/Charter Boat
- Michael Plaia/Charter Boat
- Harvey Yenkinson/Private Boat
- Mike Waine/Rec. Secondary Market

Also, significant input from Adam Nowalsky, Justin Davis, Tony DeLernia, and Peter deFur

EAFM to MSE


 Project is part of the Council's implementation of the EAFM guidance document

 Structured and deliberative approach to incorporating ecosystem considerations within the management process

 MSE Goals: 1) Evaluate biological and economic benefits of minimizing rec discards (live and dead) and convert to landings and 2) identify management strategies to realize benefits

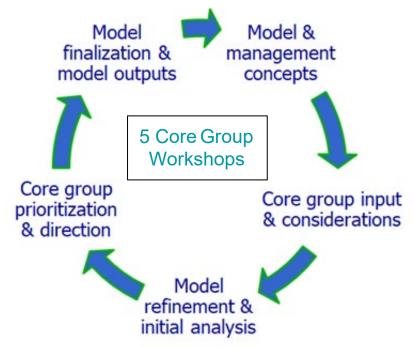
Opportunity to align EAFM work with traditional management process

Different approach and process to evaluate management challenges to address and reduce regulatory discards

Source: Sarah Gaichas,

http://www.mafmc.org/s/3 Habitat in IEAs Gaiches.pdf

MSE Process


Phase 1 - Public Scoping & Engagement

May 2020 - May 2021

AP Kick-Off Webinar -Introduction to MSE process Scoping Feedback Form -Regional Workshops -Targeted, focused input Core Stakeholder Group -Direct input and feedback to technical team

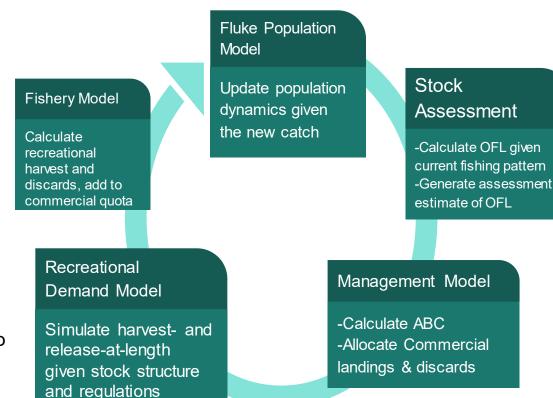
Phase 2 - Management Application& Model Development

June 2021 - June 2022

Management Objectives & Performance Metrics

- Broad objectives identified when agreeing to MSE
- Didn't explicitly provide guidance for other management considerations
- Define what a successful fishery that minimizes discards would look like
 - 1. Improve the quality of the angler experience
 - 2. Maximize the equity of anglers' experience
 - 3. Maximize stock sustainability
 - 4. Maximize the socio-economic sustainability of the fishery
- A set of 17 performance metrics, multiple metrics for each objective
 - Calculated at either the trip, state/region, or coastwide
 - Core group interest in mode specific and other metric options

Management Procedures (aka - strategies, regulations)


Management Procedure#	Procedure Explanation
1 (status quo)	Status Quo - 2019 regulations
2 (minsize-1)	2019 regulations but a 1 inch decrease within each state to a minimum of 16 inches
3 (season)	2019 regulations but season of April 1 - Oct 31 for all states
4 (region)	Modified regions: MA-NY - 5 fish, 18 inch min, May 1 - Sept 31 NJ - 3 fish, 17 inch minimum, May 1 - Sept 31 DE-NC - 3 fish, 16 inch minimum, May 1 - Sept 31
5	1 fish, 14 inch minimum, May 15 - Sept 15
6 (c3@17)	3 fish possession limit, 17 inch minimum size, May 1 - Sept 30
7 (c1@16-19)	Modified slot: 1 fish from 16" - 19", 2 fish 19 inches and greater, May 1 - Sept 31
8 (slot)	True slot limit: 3 fish possession limit between 16 inches and 20 inches, May 1 - Sept 31 7

Coupled modeling approach

- Link extant ecological, fishery, & economic models
 - Less time on development & testing, more time on ensuring representation of working group needs
- Population dynamics & fishery model
 - Population size, status, multiple fishing fleets
- Emulate scientific assessment & management advice
- Length structure of population available to recreational fishery
- Simulate response of recreational fishery to both stock availability and regulations (at various scales).
- Feedback effect of recreational fishing response to regulations into the stock dynamics.

Coupled Modeling Approach: Operating & Management Models

- Age, length, sex-structured summer flounder population dynamics model
- Length-based fishing for commercial and recreational landings & discards
- Conditioned on results of 2021
 Management Track Stock Assessment
- Emulates our current best estimates of stock status productivity
- Assessment/Management Model includes our perception of scientific uncertainty, focuses on recreational fishery dynamics
- Fishery & Population model is similar to our stock assessment BUT allows us to directly include implications of changes in size structure of the removals (say due to changes in size limits)

Coupled Modeling Approach: Recreational Demand Model

Predicts recreational harvest & discards given simulated population size and the management alternatives

 Passed back to the fishery model to update the population dynamics with these removals

Also, calculates expected effects of population size and mgt. alternatives on:

- fishing effort (recreational demand)
- angler satisfaction/welfare
- aggregate trip expenditures → impacts to downstream businesses

Fishery Model

Calculate
recreational
harvest and
discards, add to
commercial quota

Fluke Population Model

Update population dynamics given the new catch

Stock Assessment

-Calculate OFL given current fishing pattern -Generate assessment estimate of OFL

Recreational

Demand Model

Simulate harvest- and release-at-length given stock structure and regulations

Management Model

-Calculate ABC
-Allocate Commercial landings & discards

Recreational demand model (RDM)

Model input

Fluke numbers-at-age

Management measures

Catch-per-trip/catch-at-length distributions

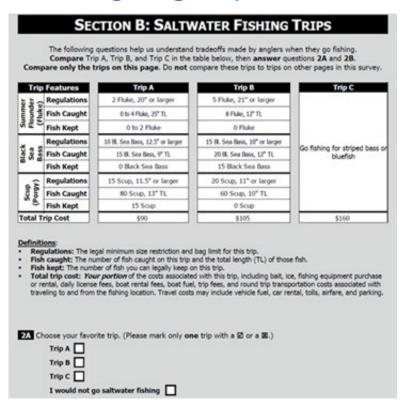
Trip cost distributions

Information about angler preferences for harvesting/releasing fish

Simulate individual trips and their outcomes

Calculate fishing utility as a function of trip costs and expected harvest and discards

Calculate angler welfare, angler effort, and expected harvest/discards

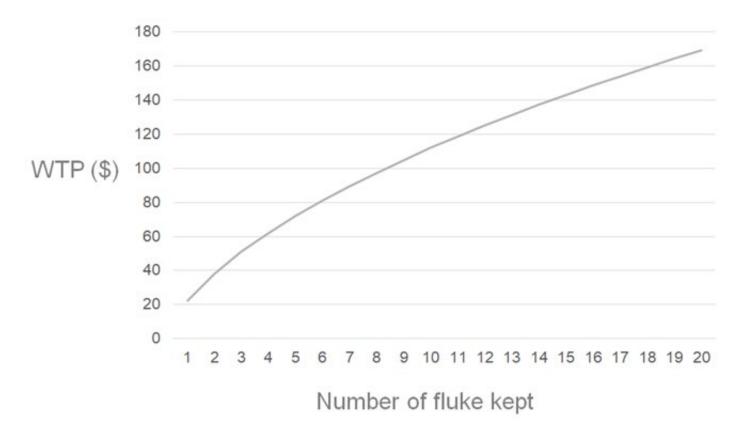

Model output

Sum of individual trip outcomes across state/region:

Recreational harvest and discards

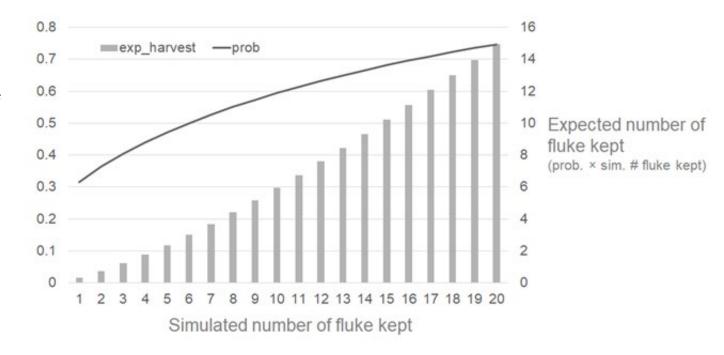
Metrics related to angler satisfaction and success

Estimating angler preferences



Example choice experiment question from 2010 survey

ME-NY


	MIE-N I				
Mean parameters	Estimate	St. Error			
trip cost	-0.012***	0.000			
√SF kept	0.559***	0.063			
√SF released	-0.061	0.046			
√BSB kept	0.275***	0.034			
√BSB released	-0.021	0.024			
√scup kept	0.075***	0.021			
√scup released	-0.010	0.015			
√WF kept					
√WF released					
√RD kept					
√RD released					
do not fish	-2.641***	0.252			
fish for other species	1.429***	0.181			
No. choices	3460				
No. anglers	449				
Pseudo R ²	0.332				
LL	-3203.6				
LL(0)	-4796.6				
AIC	6441.1				
BIC	656	59.2			

Angler willingness-to-pay for keeping fluke

Relationship between simulated fluke keep, recreational demand, and expected keep

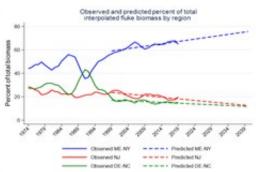
Probability of an angler taking a trip (recreational demand)

RDM output

- Recreational harvest- and discards-at-length
 - → feeds back into the operating model
- Angler welfare (relative to baseline year)
- Aggregate trip expenditures
 - → # trips × average trip costs

Alternative Operating Model Scenarios

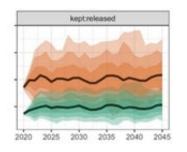
 Two additional scenarios chosen in addition to the 'base' representing key aspects of uncertainty.

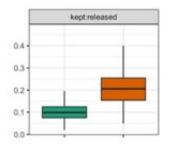

MRIP Bias

- Models initialized & calibrated based on an assumption that the data from MRIP are biased high.
 - e.g. historical recreational removals and effort were not as high

Distribution Shift

 Regional availability of summer flounder to the recreational fishery changes in the future.



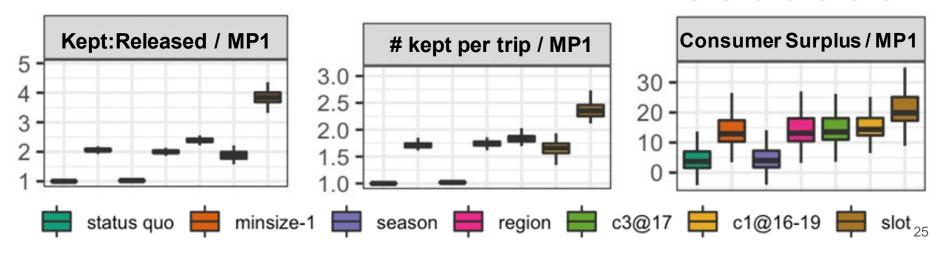


Quick Review: Projections and Outputs

- 100 simulations for each management procedure
- 26-year projection period (13 assessments and management cycles)
- Same management procedure for entire projection
- Metric calculated from final 10 years of projection
- Median values used as point estimate for metric

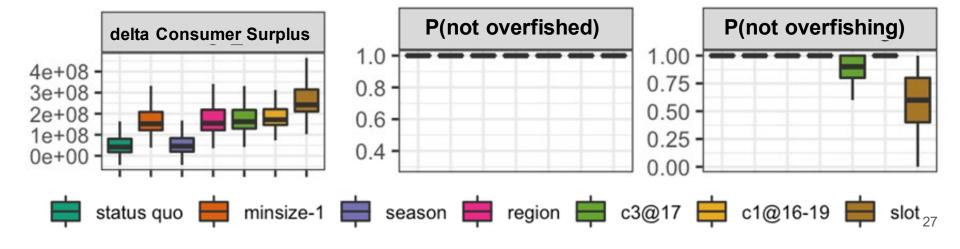
Ex. outputs

Key Takeaways



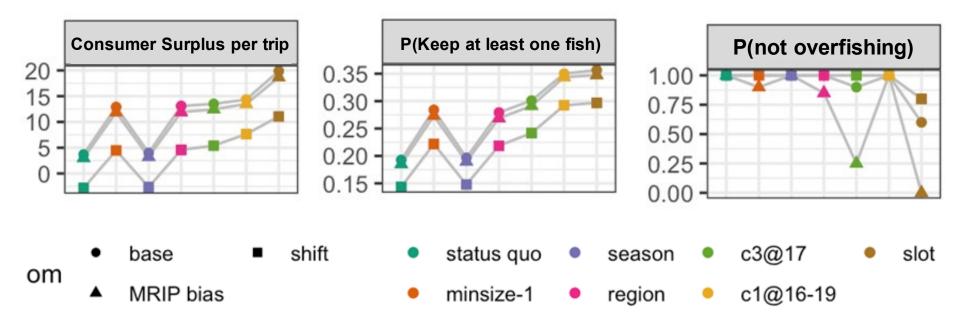
Most management procedures outperformed status quo across the majority of metrics

- Reduce recreational discards
- Provide increased harvest opportunities
- Increase angler welfare
- Greater economic benefits

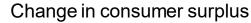

trips / MP1

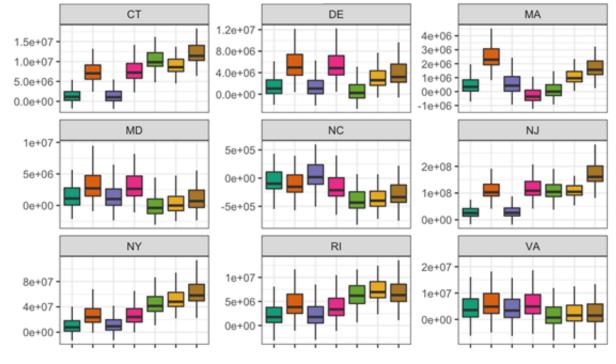
1.05 -

1.00

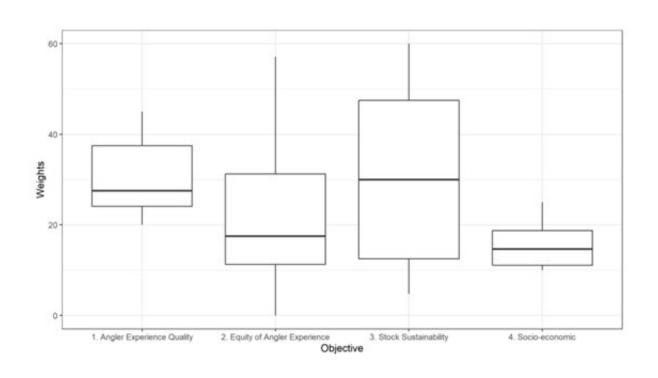

Improved recreational fishery outcome did not come at expense of conservation status.

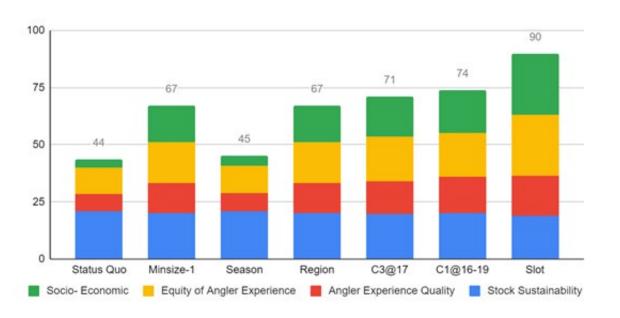
- No management procedure resulted in stock being overfished.
- Most had low risk of overfishing


The relative performance of management procedures remained similar under different operating model scenarios.


 Performance of a given management procedure generally lower than baseline under both MRIP bias and distribution shifts.

Relative performance of a management procedures is variable at state/regional level.


- For states New
 Jersey and north,
 'status quo' and
 'season' performed
 worst compared to
 other management
 procedures -
- 'Status quo' and 'season' options performed better or as well as others for Delaware and south.


status quo imminsize-1 imminsi

To examine tradeoffs among metrics and procedures, core group preferences were captured through weights assigned to the management objectives.

- Stock
 Sustainability &
 Quality of Angler
 Experience
 Quality are higher
 priority.
- Can be used to evaluate future procedures

Based on stakeholder preferences, proposed management procedures are expected to increase stakeholder satisfaction.

- MPs provide 4-106% increase in perceived performance
- Driven by socioeconomics, equity, and experience improvements
- 'Slot' had the highest score across weighting schemes,
 - Robust to range of stakeholder preferences, always ranking best

Broader MSE Results & Takeaways

Core Group Feedback

Positives:

- Valuable for management
 - Supported the science/model conclusions
- Think outside the box
- Learned and thought about recreational fisheries and management differently
- Diverse membership; all encouraged to participate

Negatives:

- Too technical and slow at times
- Some ideas were not pursued and limited discussion and ideas
- Concerns about data sources and therefore uncertainty in results
- Outcomes won't help recreational community

www.harveststrategies.org

Additional applications - other research projects, use for other recreational species, other Council priorities

Questions?

Backup Slides

MSE projection sequence

Fishery Model

Calculate recreational harvest and discards, add to commercial quota

Fluke Population Model

Update population dynamics given the new catch

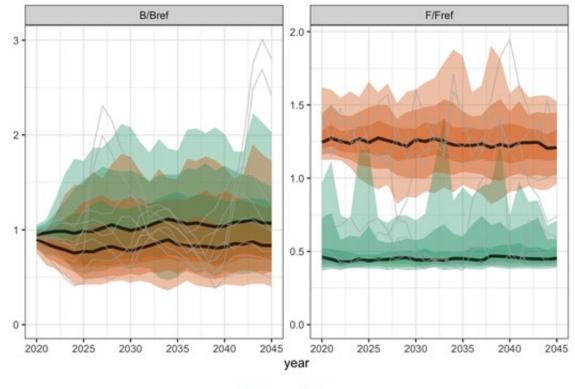
Stock Assessment

-Calculate OFL given current fishing pattern -Generate assessment estimate of OFL

Recreational Demand Model

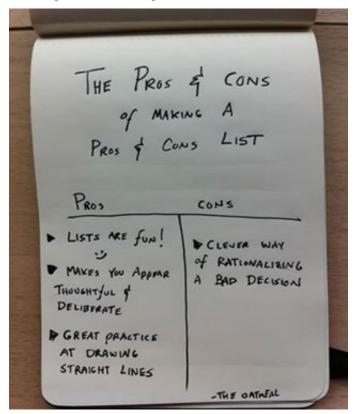
Simulate harvest- and release-at-length given stock structure and regulations

Management Model


-Calculate ABC
-Allocate Commercial landings & discards

The MRIP bias scenario results in high risk of overfishing for the slot limit (MP8) but stock has low probability of being

overfished


 F is higher than FMSY under the slot limit but not egregiously so.

 The stock never really drops below 0.5BMSY during the simulations.

Why consider tradeoffs and stakeholder preferences?

Improve upon Pro vs. Con lists

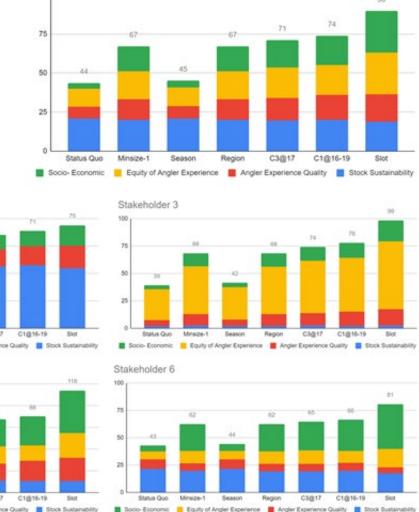
Which employer was chosen?

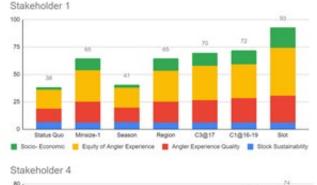
	Employer 1	Employer 2	
Pros	Good location	Rewarding job	
	Opportunity for development	Competitive pay	
	Great team	Parking included	
Cons	Restricted job scope	Long commute	
	Slightly lower pay	Unknown development opportunities	
	Parking costs aren't covered	Small isolated team	

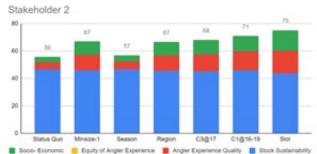
Example trade off based decision

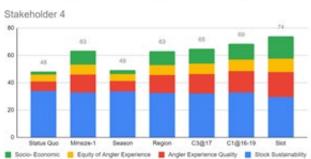
Objective	Metric	Weight	Employer 1	Employer 2
Location	Commute (short, long)			
Development	Opportunity present			
Team	Excitement scale			
Rewarding Scope	Rewarding scale			
Pay	Relative to competitive			
Parking	Covered			
		Total Score		

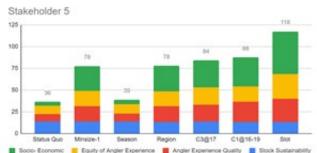
Trade-off Tables


	Angler Experience Quality				Equity of Angler Experience			
	% of trips with a keeper		consumer surplus per trip	% of trips with a trophy	% change chance of retaining a fish	Difference in chance of retaining a fish	% change in retention rate	
Status Quo	3.50	1.14	0.55	2.44	6.07	1.18	3.39	
Minsize-1	7.00	3.68	1.21	1.18	8.95	1.34	6.95	
Season	3.89	1.27	0.58	2.54	6.39	1.00	3.73	
Region	7.00	3.81	1.23	1.16	8.95	1.38	6.78	
C3@17	7.78	4.06	1.26	1.03	9.59	1.29	8.14	
C1@16-19	9.72	3.55	1.32	1.17	11.19	1.21	6.27	
Slot	10.11	5.84	1.72	0.00	11.51	1.25	13.22	
Weight	15.6	8.0	2.8	4.3	12.1	2.4	6.8	


Trade-off Tables


	Stock Sustainability				Socio-Economic			
<u>Options</u>	% chance overfished	% chance overfishing	SSB	# fish released per trip	rec removals	number of trips	aggregate consumer surplus	% change in fishery investment
Status Quo	9.08	3.80	4.03	0.55	1.93	1.82	0.98	0.83
Minsize-1	9.08	3.80	3.36	0.94	1.47	3.11	11.13	1.77
Season	9.08	3.80	4.00	0.51	1.88	2.08	1.30	0.99
Region	9.08	3.80	3.29	0.83	1.42	3.11	11.35	1.78
C3@17	9.08	3.42	3.25	1.13	1.44	3.37	12.07	1.92
C1@16-19	9.08	3.80	3.42	0.77	1.59	3.63	12.93	2.08
Slot	9.08	2.28	2.99	1.57	1.49	4.41	19.47	2.68
Weight	9.1	3.8	9.5	2.8	2.6	6.5	4.9	4.3


Trade-off Figures


- Ranking is robust
- Degree of improvement
 - 'Slot' 34% to 228% increase in satisfaction relative to status quo

