Block Island Monitoring Experience: Changes in Fish Densities \& Recreational Fishing

Drew Carey, Dara Wilber, and Lorraine Brown
SSC Workshop September 2021

Block Island Wind Farm

\square
WTG
Hard Bottom Survey Areas Lobster Trawl Survey Areas

Fish Trawl Survey Areas
Recreational Boating Survey Areas

Recreational observations

- Unique opportunity to observe vessel activities
- Results distinct from participant-observation or snowball sampling interview approach
- Based on line of sight from high vantage point

Could be modified for drone or aerial surveys with ground truth

Narrative from interviews: 'lots more fish at wind farm'

Lessons learned from Recreational boating and hard bottom surveys

- Direct observation of vessel activities can provide a reality check on perceptions
- Recreational fishing far more prevalent than sailing, but sailing received more attention from regulators initially
- We added prey assessment as a result
- Indirect effects on habitats and usage should be considered
- Biological sampling design can be informed by vessel activity assessment
- Habitats adjacent to wind farm may be just as important for activities and biological effects

Demersal Trawl Survey

- Conducted on commercial trawler from Pt. Judith
- Otter trawl consistent with other regional studies
- 20 minute tows, once a month
- Three Study Blocks
- Reference South - 2 tows
- Reference East - 2 tows
- Area of Potential Effect - 2 tows
- Seven Years of Surveys
- 2 years before construction
- 2 years during construction
- 3 years after construction

Lobster Trap Survey

- Commercial lobster boats from Pt. Judith and Newport
- Design consistent with other regional studies
- 5 night soak, twice a month
- Vented and ventless traps
- Four Study Blocks
- 2 Near Field
- 2 Far Field
- Seven Years of Surveys:

May - October 2013-2019

- 2 years before construction
- 2 years during construction
- 3 years after construction

Block Island Wind Farm Trawl Survey Sampling October 2012 - September 2019

- 497 tows (using regional sampling protocol)
- >750,000 fish and invertebrates collected
- Nine species account for 90% of all individuals
- Numerical dominants:

Butterfish
Little skate
Scup
Winter skate
Longfin squid

NSPIRE

Fish Catch Models

CPUE (mean monthly catch/tow) modeled with GLM (negative binomial distribution with log-link)

- Each species model considered:
- Fixed factors for block, period, season (+ interactions)
- Environmental covariates (temperature, DO, depth)
- Linear contrasts used to calculate:
- temporal differences by area (APE, REFE, REFS)
- spatial differences by time period
- spatial-temporal interaction (APE vs REFE, APE vs REFS)
- Results presented as estimated change, with 90% confidence intervals to illustrate magnitude.

Fish Catch Model - Results
 Black sea bass - Baseline vs Operation

\square
WTG
Hard Bottom Survey Areas Lobster Trawl Survey Areas

Fish Trawl Survey Areas
Recreational Boating Survey Areas

Artificial Reefs

- All foundation types introduce hard substrata (surfaces) into the ocean
- Intertidal surfaces are not typically found offshore, so vertical 'island' from sea surface to seafloor
- Materials used and complexity of structure affects 'epifaunal growth' - plants and animals that attach
- Attached epiflora use nutrients and create 'biomass' (primary productivity)

- Attached epifauna feed on phyto- and zooplankton in water column, create biomass and discharge waste
- Presence of epifloral and epifauna attract fish and mobile epifauna (crabs, lobsters, small crustacea)
- Presence of structure attracts finfish that use structure as refuge
- Complexity of structure might provide more refuge and variety of use
- Growth and feeding activities increase local biomass (secondary productivity) that spreads to seafloor

Video available at Dominion Coastal Virginia OffshoreWind

Fish Catch Model - Results Windowpane - Baseline vs Operation

Proportional Change over Time by Block			Temporal-Spatial Interaction	
APE	REFE	REFS	REFE vs APE	REFS vs APE
$\begin{gathered} -24 \% \\ {[-48 \%,+11 \%]} \end{gathered}$	$\begin{gathered} -63 \% \\ {[-75 \%,-46 \%]} \end{gathered}$	$\begin{gathered} +4 \% \\ {[-26 \%,+48 \%]} \end{gathered}$	$\begin{gathered} -52 \% \\ {[-72 \%,-18 \%]} \end{gathered}$	$\begin{gathered} +36 \% \\ {[-18 \%,+127 \%]} \end{gathered}$
			\square Baseline \square Operation	

Fish Condition Index - Baseline v Operation

Condition index values = residuals from a $\log ($ Weight $)-\log ($ Length $)$ regression

- Standard 2-factor ANOVA (Block x Period)
- Silver hake, summer flounder, winter flounder

- These 3 species showed highly significant ($p \ll 0.001$) decreases in condition values from Baseline to Operation (averaged across areas)
- Silver hake condition increased at APE, decreased at reference (interaction $p=$ 0.016).

Stomach Content Analysis

Silver hake (BACI)

PERMANOVA was used to determine whether the taxonomic composition of prey assemblages differed by the BACl contrast or by either the time period or area, followed by SIMPER analysis to identify which prey items were most responsible for observed differences.

Prey Accumulation Curves

Lessons learned

- Study design should balance fishing community interests and science interests
- Conduct power analysis to determine sampling effort to detect target effect size
- At BIWF, a 65\% difference in catch rates between reference sites is the minimum effect size
- Site-specific designs and results

Apply to future

- Engage as broadly as possible to ensure design meets information needs
- Manage expectations: small changes may not be meaningful
- Access to regional data is necessary to interpret sitespecific data
- Regional funding and cooperation would leverage efforts to address causality as well as cumulative effects

Acknowledgements

Rodman Sykes and the crew of the F/V Virginia Marise Dave Buetel
RI CRMC Fisheries Advisory Board, RI DEM Bill McElroy, Lanny Dellinger Brian Jenkins Lorraine Brown-Read Jill Johnen, Ellen Bellagamba Fucile Zach McKelvey, Jeanine Boyle Deepwater Wind Block Island LLC

Contrasts Express Proportional Change

Proportional Change over Time by Block			Temporal-Spatial Interaction	
APE	REFE	REFS	REFE vs APE	REFS vs APE
$\begin{gathered} +100 \% \\ {[+50 \%,+150 \%]} \end{gathered}$	$\begin{gathered} +200 \% \\ {[+40 \%,+500 \%]} \end{gathered}$	$\begin{gathered} +10 \% \\ {[-50 \%,+120 \%]} \end{gathered}$	$\begin{gathered} +100 \% \\ {[+80 \%,+250 \%]} \end{gathered}$	$\begin{gathered} -90 \% \\ {[-95 \%,+40 \%]} \end{gathered}$

Temporal change: +100\% [+50\%, +150\%]

- CPUE during Operation period was 100\% larger (2x) than CPUE during Baseline, with 90\% CI [1.5x, 2.5x]

Temporal-Spatial Interaction:

- REFE Temporal change was $+100 \%$ ($2 x$) APE temporal change
- REFS Temporal change was -90\% (0.1x) APE temporal change
90% Cls that do not contain 0 are statistically significant ($\alpha=0.10$)

