What does a good fisheries resource monitoring plan contain?

DEPARTMENT OF CON

ND ATMOS

NOAA

JATIONA

September 8, 2021 Mid Atlantic Fisheries Management Council Scientific and Statistical Committee

Northeast Fisheries Science Center

Elizabeth T. Methratta, Ph.D. IBSS in support of NOAA NMFS NEFSC

Offshore Wind Development on the NE U.S. Shelf is Imminent

- Interactions with fisheries resource species are expected
- What are the best practices for monitoring and research?

Guidelines for fisheries resource research and monitoring

- 1. Evaluate existing data
- 2. Consult with regional science entities
- 3. Define clear and relevant objectives and hypotheses
- 4. Identify focus species or groups to monitor
- 5. Define measureable thresholds
- 6. Develop a statistical study design to achieve objectives and address hypotheses
- 7. Identify sampling methods
- 8. Apply for state/federal permit authorizations
- 9. Collect data using standardized protocols
- 10. Analyze data collected
- 11. Evaluate the performance of the study plan
- 12. Adjust sampling design/methods as needed to continue to address monitoring objectives
- 13. Store and share data and results

1. Evaluate Existing Data

- Existing data are available data to describe fishery, habitat, and socioeconomic resources within the project area
- Data on existing, future, and/or cumulative stressors within the project area
- e.g.,
 - NMFS bottom trawl survey, shellfish surveys
 - NEAMAP
 - State surveys

www.vims.edu/newsandevents/topstories/arch ives/2011/neamap.php

2. Consult with Regional Scientific Entities

- Consultation with state/federal agencies, researchers, and fishing industry participants
- Discuss
 - \circ relevant species
 - existing, future, or cumulative stressors
 - \circ indicators
 - priority objectives, hypotheses, and questions

3. Define relevant objectives and hypotheses

- Objectives / hypotheses should be concise, appropriate, and testable
- Example
 - What are fish in the wind farm area feeding on?

Species

- Gadus morhua (Atlantic cod)
- Myoxocephalus scorpioides (Sculpin)
- Scomber scombrus (Atlantic mackerel)
- + Trachurus trachurus (Atlantic horse mackerel)
- Trisopterus luscus (Pouting)

Mavraki et al., 2021

4. Identify focus species/ groups/ indicators/ receptors

- Identify research focus (species, habitats, etc.) and appropriate indicators/receptors to monitor
- Some useful characteristics of a good indicators (Methratta and Link, 2007)
 - Occur in the project area
 - Representative of key processes, community, etc.
 - Sensitive to offshore wind development
 - Measurable

5. Define thresholds of change

- Thresholds should be appropriate and measurable
- What is the biological significance of crossing the threshold?
- What are the implications from fisheries, fisheries management, and regulatory perspectives

http://oceantippingpoints.org/our-work/glossary

6. Develop a statistical study design to achieve objectives and address hypotheses

 Design should be based upon the

> question being asked

○ indicators measured

 \circ change thresholds **Before-After-**Gradient (BAG) -Secor et al., 2018 -Methratta, 2020

7. Identify sampling methods

 Method should collect appropriate data to address monitoring objectives

8. State/federal permit authorizations

 Characterize appropriate federal and state permits/authorizations for selected monitoring activities

9. Collect data using standardized protocols

 Data collection methods should use standardized protocols to collect and analyze biological and environmental data that can be integrated with existing survey data

10. Data Analysis Plan

- Use statistical methods and models capable of:
 - achieving
 monitoring
 objectives,
 - testing stated hypotheses, and
 - assessing whether meaningful thresholds have been crossed

^{a)} Porpoise Density Before Pile Driving

Porpoise Density During Pile Driving

11. Evaluate the performance of the study plan

- Is plan achieving its objectives?
- What performance indicators will be used? E.g.:
 - Are indicators representative?
 - Are the sampling technologies consistently able to collect the desired data?
 - Is the sampling design able to detect real effects?

12. Adjust sampling design/methods as needed to continue to address monitoring objectives

 Is statistical design and sample size sufficient to detect effects?

13. Store and share data and results

- Indicate how and where data will be stored and shared
- Standardized databases should be used

www.nyserda.ny.gov/-/media/Files/Programs/offshorewind/21-11-Wildlife-Data-Standardization-and-Sharing-Environmental-Data-Transparency-for-NYS-OSW-Energy.pdf

*Regional Coordination

*Define temporal scales

 Multiple years are needed to assess natural patterns of variation and to disentangle post construction effects from natural variation

Wind Farm Timeline (Years)

Mooney et al, 2020

Take Home Messages

 ROSA's 2021 Research and Monitoring Guidelines set out the elements of a good monitoring plan

 Clearly defined questions and hypotheses are central to a good monitoring plan

 Regional coordination is essential to understanding ecosystem impacts

Thank you!

Elizabeth T. Methratta Email: elizabeth.methratta@noaa.gov

