Northern shortfin squid fishery footprint on the Northeast US continental shelf [9]

Brooke L. Wright, Andrew W. Jones, Anna M. Mercer, John P. Manderson

MAFMC Scientific and Statistical Committee Meeting
12 May 2020

Acknowledgements

- Sara Murray, James Gartland, Rebecca Peters, Kim McKown, Matt Camisa, and Linda Barry provided inshore survey data.
- Ben Galuardi provided Vessel Trip Report data.
- Tyler Pavlowich and Rich Bell provided assistance with coding.
- Meghan Lapp offered useful suggestions on an early version of the introductory text.
- Working Group members and Charles Adams reviewed the working paper and made helpful suggestions.

Overview

- Short Term Task: Conduct analyses that describe the proportion of Illex habitat fished in any given year and consider related implications for potential overfishing (or lack thereof).
- Approach:
- Estimate the area accessed by the fishery each year based on presence/absence of fishing vessels by 5 minute squares.
- Estimate the geographic range of shortfin squid in US waters each year based on spatial models (VAST).
- Calculate the proportion of habitat overlapped by fishing effort as an order of magnitude estimate for a proxy for fishing mortality (F).

Data

- Presence/absence of Illex
- Fall surveys
- NEFSC 2000-2018
- NEAMAP 2007-2019
- ME/NH 2000-2019
- Filtered for daytime tows
- Defined as 06:00-18:59 EST
- Presence of fishing effort
- Vessel Trip Reports 2000-2019
- Aggregated to 5 min square

NOAA
FISHERIES

Methods

- VAST - Vector Autoregressive Spatio-Temporal model (Thorson 2019)
- GLMM specifically designed for fishery applications
- Combining multiple surveys
- Integrating across space for abundance indices
- Distinguishes between density and catchability covariates
- Configuration
- 100 knots
- 25 km prediction grid
- Year effect - fixed
- Spatio-temporal effects - random
- Vessel effect - random
- Binomial distribution with logit link

Methods

- Convert prediction points to polygons of probability of occurrence bins
- Less than 20\% probability of Illex
- 20 - 39\%
- 40 - 59%
- 60 - 79\%
- 80% or greater
- Convert fishing effort raster files to polygons
- Intersect effort polygons with habitat polygons (based on at least 40,60 , or 80% probability of occurrence).

Results (2000-2009)

Results (2010-2019)

NOAA FISHERIES

Results

Habitat Area

Illex availability to fishery

NOAA
FISHERIES

Results Summary

- Illex habitat area ranged from $28,515 \mathrm{~km}^{2}$ to $153,117 \mathrm{~km}^{2}$ across years using the 80% probability threshold.
- Proportion of habitat available to the fishery (Table 3)
- minimum of 0.9% in 2002 (based on the lowest threshold for habitat)
- maximum of 9.6% in 2001 and 2017 (based on the highest threshold for habitat)

Discussion

- Habitat is consistent with expectations despite the model being uninformed by environmental variables.
- The actual proportion of habitat exposed to fishing is likely substantially smaller than our conservative estimate (~ 1 to 10\%).
- Fishing effort is aggregated to coarse scale
- Illex occupy deeper waters than are available to the surveys and areas to the north and south of the area we considered.
- Our findings support the MAFMC SSC's conclusion that the northern shortfin squid has been lightly exploited because a small portion of the species range falls within the area where the US fishery operates.

