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Ecosystem-scale examination of fish communities typically involves creating spatio-temporally explicit relative abundance distribution maps
using data from multiple fishery-independent surveys. However, sampling performance varies by vessel and sampling gear, which may influ-
ence estimated species distribution patterns. Using GAMMs, the effect of different gear–vessel combinations on relative abundance estimates
at length was investigated using European fisheries-independent groundfish survey data. We constructed a modelling framework for evaluat-
ing relative efficiency of multiple gear–vessel combinations. 19 northeast Atlantic surveys for 254 species-length combinations were examined.
Space-time variables explained most of the variation in catches for 181/254 species-length cases, indicating that for many species, models suc-
cessfully characterized distribution patterns when combining data from disparate surveys. Variables controlling for gear efficiency explained
substantial variation in catches for 127/254 species-length data sets. Models that fail to control for gear efficiencies across surveys can mask
changes in the spatial distribution of species. Estimated relative differences in catch efficiencies grouped strongly by gear type, but did not ex-
hibit a clear pattern across species’ functional forms, suggesting difficulty in predicting the potential impact of gear efficiency differences
when combining survey data to assess species’ distributions and highlighting the importance of modelling approaches that can control for
gear differences.

Keywords: catchability, fisheries-independent assessment, gear efficiency, generalized additive mixed model, species distribution modelling,
survey standardization.

Introduction
As ecosystem-based management in the marine environment

advances, fisheries policies increasingly require consideration of

both target and non-target species in assessing the state of fisher-

ies and fishing impacts on marine ecosystems [e.g. the European

Union (EU) Marine Strategy Framework Directive (MSFD; EC,

2008, 2010, 2017), Common Fisheries Policy (EC, 2013), US

Magnuson–Stevens Fishery Conservation and Management Act

(US, 1996, 2006), etc.]. This transition to ecosystem-based man-

agement has led to a need for greater understanding and detailed
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information on the distribution of a broad spectrum of fish spe-

cies across large spatial scales, such as large marine ecosystems or

ecoregions (Kelley and Sherman, 2018).

Fisheries-independent groundfish surveys sample both com-

mercial and non-target fish species, often providing the only data

source available to estimate relative abundances for non-

commercial species (Poos et al., 2013). These surveys tend to be

discrete monitoring programmes, operating at local scales usually

associated with the exclusive economic zones of countries manag-

ing the surveys. To obtain information on fish distributions at

large marine ecosystems scales, therefore, requires integration

across national jurisdictional boundaries and multiple disparate

surveys that may differ in terms of spatial coverage, survey vessel,

season, types of fishing gear, and survey protocols. Amalgamating

such data into a single cohesive analysis is difficult because of po-

tential differences in gear efficiency among different length classes

and species of fish (Fraser et al., 2007; Walker et al., 2017), types

of survey gear, and vessels that vary in their fishing power (Dann

et al., 2005).

Estimates of species’ latent abundance, and hence species-at-

length catchability coefficients, are rarely available in fisheries sur-

vey data. In isolation, each individual survey provides estimates

of species’ relative abundance at sampled locations and can pro-

vide an assessment of the spatial distribution of fish within the

survey domain. Problems may arise, however, when two or more

surveys need to be combined to assess species’ distributions. If

gear efficiencies vary between different surveys, then estimates of

species relative abundance provided by each survey may not be

compatible. Failure to understand, or ignoring, how gear effi-

ciency differs between surveys may lead to incoherent abundance

estimates when merging surveys together to conduct assessments

at large spatial scales. To perform such assessment, therefore,

requires quantification of gear efficiency for different species, dif-

ferent size classes of fish, and different gears.

The traditional approach to estimating gear efficiency is

through paired field experiments, where two vessels fish side by

side and compare catches (Somerton et al., 1999; Zhou et al.,

2014). Such experiments are costly to conduct and are generally

implemented over limited spatial and temporal scales. However,

where different survey domains overlap spatially, there may be

opportunity to utilize species distribution modelling to comple-

ment, or even replace, field-based estimation of gear efficiencies

(e.g. Ono et al., 2018); thereby providing a convenient framework

for handling data from disparate surveys that can be regularly

updated as new survey data become available. Statistical model-

ling of species distributions from large data sets is no longer lim-

ited by insufficient computing capacity. The use of such models

offers an opportunity of overcoming challenges in combining

data across surveys with varying gear efficiencies to enable the ex-

tensive study of marine species distributions across large spatial

scales.

Here, we build from previous gear efficiency modelling efforts

(Zhou et al., 2014; Walker et al., 2017) with an aim to advance

the tools available for combining information across disparate

fisheries surveys towards informing the spatial ecology of marine

species. The spatial scale, the number of species assessed, the in-

teraction between the gear–vessel combinations, and the spatial

and temporal variation inherent within European fisheries sur-

veys presents unique challenges requiring a new approach.

Utilizing generalized additive mixed models (GAMMs); we ana-

lyse the proportion of variance explained by the differences in

gear efficiency and the spatial–temporal variation in abundance

of 135 species, in three length categories, collected in the 19

northeast Atlantic groundfish surveys with 24 different gear–ves-

sel combinations. Here, we focus on bottom trawl gears, namely

otter trawls and beam trawls, as others have previously focused

on combining acoustic measurements with habitat data to gain

inference about the abundance of fish and infer on bottom trawl

gear efficiencies (Kotwicki et al., 2018). Three length categories

were chosen to (i) capture the main intra-specific length-related

catchability differences described in previous studies (Fraser

et al., 2007; Walker et al., 2017), (ii) broadly reflect trophic guilds

in marine fish communities (ICES, 2017), and (iii) reflect the

main size classes of fish either retained in commercial trawls or

that escape through the mesh (Piet et al., 2009). The 24 gear–ves-

sel combinations were chosen to best reflect the perceived differ-

ences in rigging and standard operating procedures carried out

by different countries in their national surveys (Table 1). By un-

derstanding which species in our length categories are affected by

variations among gears and vessels, our primary goal is to develop

a consistent approach for combining groundfish surveys to facili-

tate marine ecosystem monitoring at large spatial scales. Using

the GAMMs to control for differences in gear efficiency among

surveys, we also generate estimates of spatial and temporal trends

of relative abundance for species among different length catego-

ries throughout the northeast Atlantic to inform marine fish

community ecological analyses (covering three ICES marine ecor-

egions/large marine ecosystems: Greater North Sea, Celtic Seas,

and Bay of Biscay and the Iberian Coastal; Spalding et al., 2007).

Finally, we conclude with a discussion of high priority informa-

tion needs to further improve understanding of gear efficiency

within marine fisheries survey data.

Methods
Fisheries surveys
Data for most European groundfish surveys are uploaded and

maintained on the ICES “Database of Trawl Surveys” (DATRAS).

Data for surveys carried out in the Northeast Atlantic were re-

cently subjected to a quality assurance and quality audit (QAQA)

process (Greenstreet and Moriarty 2017a, 2017b; Moriarty et al.,

2017, 2019), to ensure their adequacy to meet monitoring and as-

sessment requirements under the EU MSFD (EC, 2008, 2010,

2017). These standard monitoring programme data products,

along with data for four Spanish surveys, which underwent the

same QAQA process but were not fully uploaded to DATRAS,

were used in this study to obtain maximum spatial and temporal

coverage and include the widest possible range of survey types for

modelling (Table 1). Each survey data product includes the num-

ber of fish caught ðCi;s;l) of a species ðsÞ at length ðlÞ, for each

trawl sample ðiÞ, along with the vessel and fishing gear ðgÞ, tow

location, date, depth, and swept area ðEÞ. The fishing gear ðgÞ,
included information from vessels that were expected to fish dif-

ferently based on their gear configuration information. For exam-

ple, both French and Irish vessels surveying in the Celtic Seas

region use a GOV gear. However, the French surveys use double

sweeps, and the Irish surveys rotate between a standard GOV sur-

vey gear (ICES, 2015) and a double sweep with 16-inch bobbins,

depending on the substrate (Table 1). The fish abundance data

were organized into three broad length categories lcð Þ, small unf-

ished (<23 cm), intermediate transition (23–35 cm), and large

fished (>35 cm). Groundfish surveys record those species and
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lengths caught, zeroes are implied, and so in order to reflect

where a species at length were not caught, data rows for zero

catches were added where species at length were not reported in a

sample. To ensure constant and equivalent distance units, survey

sample latitude–longitude coordinates were converted to eastings

and northings X ; Yð Þ using R package “Rgdal” (Bivand et al.,

2019). Date ðtÞ was incremented in quarterly time bins starting

from quarter 4 (October to December) 2003, which was assigned

time step t ¼ 1, whereas the quarter 1 (January to March) 2004

was assigned time step t ¼ 2, and so on.

Exploring sources of variation in survey abundance at
length data
GAMMs were used to account for non-linear spatial and tempo-

ral trends in fish density while simultaneously estimating gear ef-

ficiency using a modelling framework adapted from Walker et al.

(2017). Survey catches were modelled as counts, with separate

regressions for each species-length bin combination. Many spe-

cies had a preponderance of zero catches. Initial exploration cast-

ing GAMMs for all species within Poisson, negative binomial,

and zero-inflated Poisson frameworks showed that Poisson mod-

els provided a poor fit and failed to accommodate over-

dispersion in catch data. Negative binomial and zero-inflated

Poisson models showed similar fits for non-schooling species, but

schooling species violated the assumption of independence re-

quired by Poisson processes. Consequently, we analysed catches

as negative binomially (NB) distributed GAMMs fit using the

“mgcv” package (Wood 2004, 2011) in the R statistical program-

ming environment (R Core Team, 2017). The full model for a

given species and length category catch data set had the form:

Ci � NBðli; kÞ
with E½Ci� ¼ li ¼ e log ðEiÞþsðXi ;Yi ; tiÞþzgðiÞ ;

(1)

where Ci is the number of fish of a given species in a given length

category caught in the ith sample (fishing event), k is the negative

binomial shape parameter representing the degree of over-disper-

sion, log Eið Þ is the log of swept area for fishing event i, which was

included as an offset to account for varying fishing effort among

trips, sðXi; Yi; tiÞ denotes a multivariate smoothing function to

represent spatio-temporal trends in catch data, and zg ðiÞ are i.i.d.

normally distributed random effects for gear–vessel combinations

associated with fishing events. The space-time smoothing model

component, sðXi; Yi; tiÞ, was specified as a tensor product

smoother for which the associated basis functions were cast as cu-

bic splines with shrinkage [i.e. teðXi; Yi; ti; bs ¼ “cs”Þ in mgcv

formulaic notation], a formulation, which can accommodate data

on different scales (Wood 2004, 2011). Gear–vessel combination

was treated as a random effect, as opposed to a fixed effect, be-

cause variation among catch efficiencies is the primary feature of

interest, and because this approach also aids in model conver-

gence by reducing the number of fitted parameters. The

spatio-temporal smoother describes the underlying estimated dis-

tribution of species across space and time; whereas the random

effect controls for variation among gear efficiency when combin-

ing disparate survey data sets. To facilitate model convergence,

we excluded data on species at length for which any given length

category was sampled by fewer than two gear–vessel combina-

tions or was sampled fewer than 100 times. The full model was

compared to a reduced model that included space-time

covariates, but which did not account for the effect of gear–vessel

combinations (i.e. the gear–vessel combination random effect

was dropped) in order to assess the impact on species distribution

modelling inference when gear is ignored. Comparisons of full

and reduced model fits were assessed using Akaike’s information

criterion (AIC). The full model was further assessed for reliability

using visual tests and a chi-squared goodness of fit test. To sub-

stantiate that our GAMM models can effectively differentiate be-

tween the random gear–vessel effects and the spatial and

temporal variation in the abundance of demersal fish in the

north-east Atlantic region, we performed a simulation–estimation

experiment (Supplementary material S2).

Interpretation of models
To interpret the importance of gear efficiency vs. spatio-temporal

distribution patterns in explaining variation in survey data, we

utilized variance components analysis (Wood 2008, 2011). This

analysis allows us to assess the total amount of variation in our

dependent variable (Ci) that is associated with our random effect

variable [zg ðiÞ] (Garson 2012). This analysis partitions total varia-

tion in the fitted data among the three modelled components:

gear efficiency, spatio-temporal distribution, or unexplained re-

sidual variation. Accordingly, when the gear component consti-

tutes the preponderance of model variation for a given species

and/or length category, we conclude that gear efficiency varies

widely across gears and surveys. In contrast, when location and

time make up the majority of model variability for a given spe-

cies, while the gear component explains very little of the variabil-

ity we conclude that gear efficiency appears to be similar across

different gear–vessel combinations.

A non-metric multidimensional scaling (nMDS) uncon-

strained ordination technique using Euclidean distances was

employed to explore how each species within the assemblages var-

ied with estimates of gear efficiencies among gear–vessel coeffi-

cients and length classes from our models. Species were grouped

by taxonomic order as a proxy for functional forms to examine if

there was a pattern in estimates of gear efficiencies in species

groups with similar morphological or ecological attributes. The

gear–vessel coefficients were conditioned into a matrix, where the

Scottish vessel with a GOV gear type was used as a reference gear,

and the difference was calculated for each other gear–vessel com-

bination. Permutational multivariate analysis of variance

(PERMANOVA) was used to test the differences between the

gear–vessel coefficients derived for each species in each length

class from our full models for similar gear types. A clustering cri-

terion that minimizes the amount of variance within in the gear–

vessel groups was implemented (Ward, 1963). Euclidean distance

was used and the p-value was set to 0.05. The nMDS and

PERMANOVA routines were implemented in R (R Core Team,

2017) using the “vegan” package (Oksanen et al., 2017).

Results
Data for 135 fish species were available from otter trawl surveys

across the northeast Atlantic, whereas beam trawl surveys operate

in a much more limited area within the North and Irish Seas

(Figure 1). The surveys carried out in the Irish Sea have the high-

est degree of spatial and temporal overlap, whereas survey overlap

is more limited in the Bay of Biscay and Iberian Coast region

(Figure 1).
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Greater North Sea

Bay of Biscay 

 & Iberian Coast
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Wider Atlantic

Ocean
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Figure 1. Fisheries-independent survey coverage across the northeast Atlantic. Thick black line shows Oslo/Paris convention boundaries.
Number of surveys operating in each ICES statistical rectangle is depicted by a different colour. See Table 1 for list of surveys.
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Two hundred and fifty-four full GAMMs were fit to 132 spe-

cies in up to three length categories (Figure 2). For fishes in the

smallest size class (<23 cm), the full model was fit to 109 species,

and 23 species had insufficient data based on the criteria de-

scribed in Methods (Exploring sources of variation in survey

abundance at length data). For fishes in the intermediate transi-

tion category (23–35 cm), the full model was fit to 85 species, and

47 species had insufficient data. For the largest size class

(>35 cm), the full model was fit to 60 species, and 72 species had

insufficient data.

In 39/254 models, the unexplained variance was greater than

the explained variance (Figure 2). In 237/254 of the species-

length combinations, the full model, which controlled for differ-

ences in gear–vessel combinations, improved the deviance

explained over the reduced model (Supplementary Table S1.1).

The 250/254 full models had a lower AIC score than the reduced

model. In the cases where the full estimates did not improve in-

ference, the differences in the amounts of deviance explained and

the AIC scores between the full and reduced models were small

(Supplementary Table S1.1).

In 215/254 full models, over 50% of the variation in the data

can be explained, suggesting that this framework is an effective

way of calculating variance in latent species abundance over a

large spatial scale. In 181/254 full models, location X ; Yð Þ and

time tð Þ components of the model explained over 50% of the

variation in the data, suggesting that catch rates are strongly

driven by the spatial–temporal distribution of the species, while

the random effect of fishing gear on a given vessel ðgÞ at a given

length category ðlÞ generally plays a smaller role in explaining var-

iance, which suggests that the behaviour of the fish has a similar

response to all gear types. Indeed, in 51 of these 181 models, the

overall variance explained is >50%, but the variance explained by

gear is <1%. As an example, for common dab (Limanda limanda)

in the <23 cm length class, the random effect of fishing gear on a

given vessel ðgÞ explains 0.007% of the variance, while location

X; Yð Þ and time tð Þ components explained 62.2% of the vari-

ance (Figure 3a and b). In this case, the reduced model, where lo-

cation X ; Yð Þ and time tð Þ components explained 61.1% of the

variance, performed similarly to the full model (Supplementary

Table S1.1).

In 37/254 full models, the overall variance explained is >50%,

and the gear component explains between 1% and 5% of the vari-

ation, suggesting that gear efficiency varies across gears and vessel

combinations but has relatively little influence on catch perfor-

mance. For example, for the thorny skate (Amblyraja radiata) in

the 23–35 cm length class, the random effect of fishing gear ðgÞ
explained 3.7% of the variance, while location X ; Yð Þ and time

tð Þ components of the full model explained 68.7% of the vari-

ance. While the estimated variance component for gear effects

was smaller than the space-time components, the effect of fishing

gear can be seen in the difference in spatial pattern between the

full and reduced models (Figure 3d).

In 127/254 full models, the overall variance explained is

>50%, and the gear component explains more than 5% of the

variation, suggesting that gear efficiency for these species at length

varies substantially across gear and vessel combinations. For ex-

ample, for sole (Solea solea) in the 23–35 cm length class, the ran-

dom effect of fishing gear ðgÞ explained 8.6% of the variance,

while location X ; Yð Þ and time tð Þ components of the full

model explained 46.5% of the variance in the data (Figure 3e and

f). In this case, the output of the full model highlights the

importance of understanding the effect of fishing gear in assessing

the distribution of this species.

To assess the difference in inference gleaned from the full and

reduced models, we further explored the spatial–temporal pattern

of sole (S. solea) in the 23–35 cm category. While the general pat-

tern is similar in the full and reduced models (Figure 4), the re-

duced model suggests the presence of intermediate-sized sole off

of the coasts of Spain and Portugal; whereas the full model sug-

gests that there is no intermediate-sized sole in these areas. When

examined more specifically, we see that for the entire area, the

sole data are 88% zero values, but for the southern part of the

study area, where Spain and Portugal survey, the sole data are

96.5% zero values. Consequently, we can conclude that the re-

duced model is likely to overestimate the abundance in this area

and that this overestimation is likely an artefact of not accounting

for gear.

Aggregating over the entire distribution of sole, there is a

steadier rate of movement in the centre of mass in the population

estimated from the full model, while the movement in the centre

of mass in the population estimated from the reduced model is

more variable (Figure 5a). The centre of mass metric highlights

the eastward movement in the population in the full model,

which is not the case in the reduced model (Figure 5b). The infer-

ence from the simulations suggests that the full model should be

more capable of capturing the direction of movement than the re-

duced model (Supplementary Figure S2.4).

Unsurprisingly, nMDS highlights that the estimated gear coeffi-

cients vary considerably by gear types (Figure 6a; PERMANOVA

test for differences in gears: F ¼ 2:36; R2 ¼ 0:18; p ¼ 0:001).

However, gear coefficients are largely consistent within gear type,

indicating stable catch efficiencies within gear types regardless of

the survey country of origin or vessel. The GOV, beam trawls, and

baca trawls gear–vessels tended to group most closely in their esti-

mated gear coefficients, whereas other gears tended to differ more

widely. The GOV has the highest level of variance and is the most

widely used gear within the region. The beam trawl surveys have a

high level of spatial overlap with the surveys that use the GOV gear

in the North Sea and the rockhopper trawl in the Irish Seas. The

baca trawl has very limited spatial overlap with other gears as it is

used exclusively by the Spanish in the Bay of Biscay and Iberian

Coast region. There is no clear pattern emerging in the estimated

relative difference in catch efficiencies across species functional

form (Figure 6b).

Discussion
Understanding how gear efficiency impacts fishery-independent

survey sampling is required for robust multi-survey species distri-

bution modelling of both commercial and non-commercial spe-

cies and is a key factor in determining absolute abundance

estimates for commercial stocks (Kasatkina and Ivanova, 2009;

Maunder and Piner, 2015). The aim of the analyses presented

here is to provide an overall understanding how species are af-

fected by the rigging of individual vessels to guide future

ecosystem-scale species distribution modelling and examinations

of fish communities. Our models support the derivation of rela-

tive species abundance estimates, and they provide information

on gear efficiency of 24 gear–vessel combinations seasonally for

three length groups chosen to reflect the main intra-specific

length-related differences described in previous catchability stud-

ies (Fraser et al., 2007) in this region. This provides a modelling

workflow to combine data across surveys that control for
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Microchirus variegatus
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Gear−vessel

X,Y,t

Unexplained
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Figure 2. Summary of the proportion of variance explained from full model components for each length category (<23, 23–35, and >35 cm)
and species, grouped in taxonomic order. X, Y, and time (t) variance components are represented by blue bars, gear–vessel components by
orange bars, and unexplained variance by red bars. Black bars indicate insufficient data to fit a model for a given species–size combination,
and white bars indicate model convergence failed. Finally, grey bars indicate a given length size bin is larger than the maximum observed
length of a species.
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potential gear–vessel-specific differences in catchability. The flexi-

ble framework provided here may be adapted to the end-users’

needs; for example, different length categories may be applied to

answer specific ecological questions. We caution; however, that

the gear efficiency coefficients calculated in this analysis were esti-

mated using a 10-year historical time span and are only valid un-

der the conditions for which they are calculated. As such, any

efforts to employ them for correcting individual survey species

Figure 3. (a and b) Common dab (L. limanda) <23 cm, highlighting an example of a species where the reduced and full model perform
similarly as the variance explained by gear is very small (0.007%). (c and d) Thorny skate (A. radiata) 23–35 cm, highlighting an example of a
species with between 1% and 5% variance explained by gear. (e and f) Sole (S. solea) 23–35 cm, highlighting an example of a species with >5%
variance explained by gear. (a, c, and e) Estimated domain-wide species’ abundance trends for the full model, which controls for gear
differences across surveys, vs. the reduced model, which does not control for gears. A large discrepancy between the curves indicates gear
differences across surveys may impact inference about species’ abundance and distributions. (b, d, and f) Differences in predicted species’
relative mean abundance between the full and reduced models. Dark colours represent large discrepancies between the models, indicating
differences in gears across surveys may influence estimated species’ distributions if not accounted for.
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Figure 4. Spatial–temporal pattern in quarter 4 (October to December) for each year of sole (S. solea) 23–35 cm from the reduced model on
the left and the full model on the right. Abundance is depicted as “low” in the first–second quantile, “medium” in the second–third quantile,
and high in the third–fourth quantile.
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catches need to take this into account (Arreguı́n-Sánchez, 1996).

Thus, we strongly suggest employing this flexible modelling

framework, or similar, to estimate gear efficiency coefficients as a

matter of best practice in any study that uses data from multiple

surveys rather than using spatially and temporarily limited paired

comparisons.

In 15% (39/254) of models, the unexplained variance is higher

than the explained variance (Figure 2). Given that it is unlikely

for a species to be randomly distributed in space and time, this

high unexplained variance is likely due to the rareness of the spe-

cies within a given length category (i.e. there are not enough sam-

ples to describe the latent species distribution). Species that are

rarely caught may not be rare in the environment, but instead

may be particularly poorly sampled (i.e. low gear efficiency) in

the survey trawl gear. Sampling of fish in the marine environment

by fishing gear is known to be imperfect (Fraser et al., 2007; Zhou

Figure 5. Summary of difference in inference from the spatial–temporal pattern of sole (S. solea) 23–35 cm from the full and reduced
models. (a) Cumulative movement from the centre of mass from the start of the time series for the full model (blue circles) and the reduced
model (red triangles). (b) Centre of mass of the abundance of the fish from the full model (blue circles) and the reduced model (red
triangles).
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et al., 2014; Walker et al., 2017). This means additional considera-

tions may need to be addressed during sampling and data analy-

sis, such as joint dynamic species distribution modelling

(Thorson et al., 2016). Reliable inference depends on sampling

methods that produce reasonable odds of detection given pres-

ence, where no estimator will be particularly helpful when applied

to data on populations or species that are “invisible” to collection

gear (MacKenzie et al., 2006).

The estimated variance components from our models show

that in 35% of cases (88/254), the location and time components

explained most of the variation in the data, while the gear com-

ponent explained relatively little variation (�5%; Figure 2). This

suggests that in such circumstances, for species, like common

dab, where there is enough spatial–temporal overlap to be confi-

dent in the model results, the spatial–temporal distribution of

these species could be estimated using combined survey data, al-

though the authors recommend always using the modelled out-

puts over the raw survey data. Where the modelled gear

component is especially small, particularly in relation to the loca-

tion and time component, use of raw survey catch data from mul-

tiple surveys provides a reasonably accurate representation of

temporal and spatial variation in species’ abundances (by length

category) at large spatial scales. The common dab (Figure 3a and

b), highlights a circumstance in which little variance can be at-

tributed to gear effects, and we see a consequent small difference

in inference in the temporal and spatial trends between the full

and reduced models. The variance explained by the gear is <1%

while the spatial and temporal components explain 62.2% of the

variance. Thus, this species (by length category) abundance

appears to be less impacted by the effects of gear as the catch rates

are likely driven by the behaviour of the fish. The variation that is

attributable to gear effects is smaller than that attributed to space

and time in most of our GAMM models, but the nature of the

gear effects are not randomly distributed throughout the study

area or throughout the year. They are instead systematically dis-

tributed by seasonal surveys. This regularity in the differences

may impact species distribution inference at large scales.

Simulations (S2a) for species demonstrating substantial move-

ments in distribution attributed 5.7% of model variance to gear,

even when no gear effect was included. This suggests that some of

the variance associated with location and time may be attributed

to gear, but inferences from full and reduced models were similar.

Conversely, when there is a strong gear effect (S2b) then the full

model improves inference of abundance estimates and direction

of population centre of mass movements over the reduced model

(Supplemental Material S2).

Not accounting for gear may lead to incorrect estimates of rel-

ative abundance or species’ distributions. Data analysed here sug-

gest that gear effects on catches across disparate surveys are not

uncommon, whereby in half of our full models (127/254), the

gear component explained more than 5% of the total variation in

survey catches, while overall variance explained is >50%. Our ex-

amination of the distribution of sole provides demonstration of

the potential importance of controlling for gear effects when

attempting to combine data across surveys for some species. The

variance explained by gear, in this case, was 8.6%, while the spa-

tial and temporal components of the model accounted for 46.5%

of the variance. Consequently, we found substantial differences in

relative abundance trends between models, which control for gear

effects compared with reduced models, which ignore gear effects

in combining data across surveys (Figures 3d and e, 4, and 5).

Importantly, failure to control for gear differences across surveys

for this species would mask differences in the spatial distribution

of the stock across commercial fishing areas, as well as mask

ecosystem-scale population shifts to the east (Figure 5). It may be

valid to pool across surveys in assessing species distributions for

many species–size combinations; however, there are differences

evident across gear types and it is not clear a priori for which spe-

cies gear differences matter (Figure 6b). Thus, a sensible workflow

when combining data across surveys may be to implement mod-

els that control for gear type as demonstrated here and then sub-

sequently evaluate whether gear differences account for a

substantial portion of the variation in catches.

Northeast Atlantic waters are currently surveyed by 12 coun-

tries carrying out 19 different surveys designed with individual

goals and objectives and using different vessels and a variety of

gears (Table 1). ICES facilitates survey coordination and collabo-

ration through working groups to make the surveys as compara-

ble as possible. The North Sea bottom trawl surveys have led the

way in terms of minimizing gear efficiency issues caused by differ-

ences in vessels and by ensuring survey overlap and similarity

among gears (ICES, 2015). There is a large body of work ongoing

in ICES survey groups (e.g. Working Group on Beam Trawl

Surveys, International Bottom Trawl Survey Working Group) to

minimize survey variability; however, assessing relative gear effi-

ciency at the scale examined here highlights the need for compar-

ative experiments to help achieve a more coherent understanding

of gear efficiency within fisheries-independent survey data. This is

particularly relevant in the Bay of Biscay, where overlapping or

paired tows between the Spanish Baca Trawl and Portuguese

Norwegian Campelen Trawl and the Spanish Baca Trawl and

French Grande Overture Vertical Trawl would help to improve

inferences of species relative abundance obtained from these dif-

ferent gears (Figure 6a). Analyses herein provide further under-

standing of the differences in gear efficiency between trawl gears

used by different surveys for species sampled across the northeast

Atlantic.

Information on the abundance and distribution of organisms

is a fundamental knowledge need for fisheries management. Data

on predator and prey abundances by different age and size classes

can inform species status assessments as well as provide informa-

tion on the interactions among species and size classes, providing

understanding about the impact of fishing on fish communities

(Fraser et al., 2007; e.g. Large Fish Indicator). This study provides

an approach to facilitate comparability between catches from dif-

ferent surveys and gears, providing a framework to assist in inte-

grating data across countries, regions, and sampling programmes

towards maximizing the use of available information to inform

species’ abundance and spatial distribution assessments.
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Notes on fishing gear exceptions
S ¼ Standard Gear; B ¼ Bobbins used; D ¼ Double Sweeps;

I2¼Ground gear D with 16-inch bobbins; R ¼ Rockhopper.

Grande overture vertical trawl
(1) Scotland uses R.V. Scotia III on five surveys WAScoOT3;

CSScoOT4; CSScoOT1; GNSIntOT3; and GNSIntOT1. For the

west coast surveys (CSScoOT4/CSScoOT1/WAScoOT3) they use

an “S” and “I2” gear to deal with rocky habitat. In North Sea sur-

veys (GNSIntOT3; GNSIntOT1), Scotland uses an “S” and a “B”

exception.

(2) Sweden uses a standard GOV (“S”) on R.V Argos and R.V.

Mimer in both North Sea surveys (GNSIntOT3 and

GNSIntOT1).

(3) Denmark uses an “S” gear and an “R” exception in both

surveys on R.V. Dana II in both North Sea surveys (GNSIntOT3

and GNSIntOT1).

(4) United Kingdom uses a standard GOV (“S”) gear in the

North Sea (GNSIntOT3) on R.V. CEFAS Endeavour.

(5) The Netherlands uses a standard GOV (“S”) gear in the

North Sea (GNSIntOT1) on R.V. Tridens II. R.V. CEFAS

Endeavour was used in quarter 1 by Netherlands when Tridens

broke down.

(6) Norway uses an “S” gear and “D” exception on R.V. G.O.

Sars and R.V. Johan Hjort in the North Sea (GNSIntOT3/

GNSIntOT1). When the R.V Haakon Mosby has been used only a

standard gear is noted.

(7) France uses a GOV gear in the North Sea (GNSFraOT4) on

R.V. Gwen Drez, no exception is noted; however, the gear is

smaller than the standard gear in the North Sea. France uses

Thalassa II on two surveys CS/BBFraOT4 and GNSIntOT1. For

the west coast surveys (CS/BBFraOT4), they use ground gear “D”

while in the North Sea surveys (GNSIntOT1), a standard gear is

used.

(8) Germany uses a standard gear on R.V Walther Herwig III

in the North Sea (GNSIntOT3/GNSIntOT1).

(9) Ireland uses an “S” and “I2” gear for west coast survey

(CSIreOT4) to deal with rocky habitat in line with Scotland on

R.V. Celtic Explorer. Beam Trawl.

(10) The Netherlands uses R.V. Tridens II and R.V Isis in the

GNSNetBT3 survey. Both ships use an 8 m beam with a tickler

but Tridens II has a different set up to Isis.

(11) Germany uses a 7 m Beam trawl with a 5 m tickler chain

on R.V. Solea II during GNSGerBT3.

(12) United Kingdom uses a 4 m Beam trawl during both her

CSEngBT3 and GNSEngBT3 surveys on R.V. Corystes and

CEFAS Endeavour in 2014 and 2015 with the same rigging on

both ships. Rockhopper Trawl.

(13) The Rockhopper Otter Trawl in used by Northern Ireland

in the CSNIrOT4/CSNIrOT1 on R.V. Corystes. Baka Trawl.

(14) Spain uses a Baka trawl on three surveys

(BBIC(s)SpaOT4/BBIC(s)SpaOT1/BBIC(n)SpaOT4) on R.V.

Cornide de Saavedra.

(15) Spain uses a Porcupine Baka trawl on one survey

(WASpaOT3) on R.V. Vizconde de Eza. Norwegian Campelen

Trawl.

(16) Portugal reports B and R gear exceptions on R.V

Noruega.
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