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Outline of presentation

Overview

Discrete choice model of fishing decisions
▶ random utility modeling
▶ survey data
▶ econometric analysis

Fishery simulation
▶ algorithm overview
▶ input data
▶ model calibration and prediction
▶ model output
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Overview

RDM comprised of two main components:

1 Discrete choice model of fishing decisions

▶ Estimate structural parameters representing the importance of trip
attributes (e.g., harvest, trip cost) on anglers’ decisions to fish

▶ Structural parameters allow us to compute the expected “utility” an
angler would derive from a fishing trip with specified attributes, as well
as several other important trip-level outcomes

2 Fishery simulation

▶ Use structural parameters + best available fishery data to simulate trips
under both current conditions and alternative conditions in which some
aspects are manipulated (e.g., regulations, length dist’n of the stock)

▶ Compute trip-level outcomes under both scenarios and aggregate over
all trips
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Discrete choice

There are many situations in which a decision-maker must choose between
a discrete number of alternatives:

Which mode of travel a commuter takes to get to work

Which car to buy

Which job to take

Whether to commercial fish or not, and if so at which location

Whether to recreational fish or not

Understanding why choices were made is important to those interested in
influencing or evaluating behavior (marketers, managers, etc.)
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Random utility theory (RUT)*

Under RUT, discrete choices are modeled under the assumption of
utility-maximizing behavior

A decision-maker receives some “utility” from each of the alternatives

The amount of utility can depend of characteristics of the alternative,
characteristics of the decision-maker, and unobserved characteristics

The decision-maker chooses the alternative that provides the greatest
overall utility

*More details on random utility theory and modeling can be found in Train (2003) -
Discrete Choice Methods with Simulation. Available free at
https://eml.berkeley.edu/books/choice2.html
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Random utility model specification

From the perspective of the decision-maker:

Decision-maker n faces a choice between J alternatives

Each alternative j provides utility Unj (where j = 1, ..., J)

Decision-maker n chooses alternative i if it provides the greatest
utility over all the alternatives: Uni > Unj ∀ j ̸= i

However, we (the analysts) do not observe Unj

▶ We observe the chosen alternative, some attributes of the alternative,
some attributes of the decision-maker
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Random utility model specification

We decompose the utility the decision-maker derives from each alternative
into two components:

V (xnj): observable component, known as representative utility

ϵnj : unobservable component

Unj = V (xnj) + ϵnj

xnj can include characteristics of the alternatives and the
decision-maker

ϵnj is everything else that affects utility but not included in Vnj
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Random utility model specification

If we specify Vnj as a linear function, total utility is:

Unj = β′xnj + ϵnj (1)

where β′ is a vector of structural parameters that tell us how
observable attributes relate to overall utility; they measure the
marginal utility of the attributes or characteristics

We don’t know with certainty which alternative provides maximum
utility (as utility depends on ϵnj), so we can only make probabilistic
statements about choice

Choice probabilities play an important role in RUT
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Logit choice probabilities

The probability that decision maker n chooses alternative i is:

Pni = Prob(Uni > Unj ∀ j ̸= i)

= Prob(β′xni + ϵni > β′xnj + ϵnj ∀ j ̸= i)

= Prob(ϵnj < β′xni − β′xnj + ϵni ∀ j ̸= i)

...

=
eβ

′xni∑
j e

β′xnj
(2)

Maximum likelihood estimation involves finding the structural
parameters β′ that make the choice probabilities consistent with
observed choices

▶ Pni close to 1 for alternatives that were chosen; Pni close to 0 for
alternatives that were not chosen
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Discrete choice data

Stated preference mail/web survey of recreational anglers licensed in
MA-VA conducted in 2022

▶ Pre-tested to ensure that questions could be interpreted and answered
as intended

▶ 6,000 saltwater fishing licensees sampled; 2,317 completed surveys
returned (38.7%)

▶ Collected demographic and fishing-related information, as well as
stated preference information from a discrete choice experiment (DCE)
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Angler discrete choice experiment (DCE)

Designed to elicit the structural parameters (β′) of anglers’
decision-making process

▶ i.e., the marginal utilities of the most salient features of a recreational
fishing trip: harvest, discards, and costs

Asked survey respondents to choose between three alternatives, each
characterized by attributes and costs that differ across alternatives

▶ Essentially created choice situations that anglers might face
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Angler discrete choice experiment

Attribute levels based on
survey pre-testing, MRIP
data on catch-per-trip,
and recent fishing trip
expenditure data
collected along the East
Coast

Attribute level
combinations and option
groupings selected based
on an efficient
experimental design

30 versions of the survey,
each containing a
different set of 6 choice
questions

Example choice question

NEFSC recreation demand model Discrete choice data 13



Mixed logit model

We estimate a variant of the logit model, the mixed logit model

Overcomes three limitations of the logit model:

▶ Unobserved (or random) preference variation of the population of
decision-makers

▶ Unrestricted substitution patterns

▶ Correlations in unobserved factors over time (better application to
panel data)

To do this it assumes a distribution of coefficients f (β|θ), rather than
use a set of fixed set of coefficients for the population, β

Utility of alternative j under the mixed logit model is:

Unjt = β′
nxnjt + ϵnjt (3)
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Model specification

We specify the utility of the alternatives in the DCE as:

Unjt = β1

√
SF kept + β2

√
BSB kept + β3(

√
SF kept×

√
BSB kept)

+ β4

√
SF released + β5

√
BSB released + β6

√
scup catch + β7trip cost

+ β8opt-out + β9(opt-out× age) + β10(opt-out× avidity) + ϵnjt

Expected to be positive; expected to be negative

“opt-out” = 1 if option 3 was chosen, zero otherwise

“avidity” is the number of fishing trips the respondent took in the
past 12 months
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Utility parameter estimates from mixed logit model

Attribute Mean parameter St. dev. parameter√
SF kept 0.827∗∗∗ 1.267∗∗∗

(0.070) (0.057)√
BSB kept 0.353∗∗∗ 0.129∗∗

(0.048) (0.071)√
SF kept ×

√
BSB kept −0.056∗ 0.196∗∗∗

(0.031) (0.024)
√

SF released 0.065∗∗∗ 0.325∗∗∗
(0.022) (0.050)

√
BSB released 0.074∗∗∗ 0.055

(0.013) (0.034)√
scup catch 0.018∗ 0.024

(0.009) (0.025)

cost −0.012∗∗∗
(0.000)

opt-out alternative:

constant −2.056∗∗∗ 1.977∗∗∗
(0.297) (0.109)

avidity −0.010∗∗
(0.005)

age 0.010∗∗
(0.005)

No. anglers 1,437
No. choices 8,522
LL -7297
McFadden’s pseudo R2 0.221
AIC 14,629

Note: Standard errors in parentheses. Variables under the opt-alternative are interacted with a dummy variable
that takes the value of one if the “Do something other than fishing” alternative is chosen and zero otherwise.
“Avidity” is the number of fishing trips taken in the past year.
∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.010.
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Economic values

What can we do with these estimates?

For one, we can infer angler willingness-to-pay values:

WTP# SF kept =
∂U

∂SF kept
/

∂U

∂trip cost
=

βSF kept + βSF & BSB kept
√
# BSB kept

−2βtrip cost
√
# SF kept

Median willingness-to-pay for increases in harvest of fluke only (left) and black sea bass only (right)
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Economic values

Negative parameter on the
√
SF kept ×

√
BSB kept in the discrete choice

model indicates that fluke and black sea bass are substitute species

▶ The value anglers place on keeping fluke decreases as the number of
black sea bass also kept increases (and vice versa)

Median willingness-to-pay for harvest of the first fluke
caught with increases in black sea bass harvest
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Counterfactual simulation

A more practical benefit of the structural econometric modeling
approach is that it allows us to conduct counterfactual simulations
and assess their effect on overall angler welfare and other attributes in
xnj (e.g., harvest)

We ask: what would choices be under alternative fishery scenarios?

We compare outcomes under a baseline fishery scenario to an
alternative fishery scenario in which some attributes are manipulated
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Simulating individual choices and outcomes

Suppose we have structural parameters β′
n and data xnj for all

alternatives in J (e.g., fishing trip alternative and no-trip alternative)

We use choice probabilities to simulate choices in expectation:

E (Yni ) = Pni =
eβ

′
nxni∑J

j=1 e
β′
nxnj

(4)

where Yni = 1 if n chooses i

The expected value of xni (e.g., harvest) on the choice occasion is the
observed outcome multiplied by the probability that n chooses i:

E (xni ) = xniPni (5)
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Choice probabilities change with changes in attributes
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Simulating changes in individual choices and outcomes

The change in a decision maker’s expected choice due to a change in
choice setting is:

∆E (Yni ) = P1
ni − P0

ni =
eβ

′x1ni∑J1

j=1 e
β′x1nj

− eβ
′x0ni∑J0

j=1 e
β′x0nj

(6)

where superscripts 0 and 1 indicate alternatives in a baseline and
alternative fishery scenarios

While the change in a decision-maker’s expected outcome due to a
change in choice setting is:

∆E (xni ) = x1niP
1
ni − x0niP

0
ni (7)

We must simulate choices under both scenarios!
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Simulating changes in aggregate choices and outcomes

The change in the total number of decision-makers expected to
choose alternative i due to a change in choice setting is:

∆E (Ai ) =
N∑

n=1

P1
ni −

N∑
n=1

P0
ni (8)

Similar intuition behind computing aggregate changes in xni

We must simulate choices under both scenarios!
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Consumer surplus

It is often of interest to measure how a particular market shock (e.g.,
policy, environmental condition) affects the economic well-being of
the affected consumers

▶ What is the monetary value of the harm to anglers caused by degraded
water-quality (perhaps from an oil spill)?

▶ What is the monetary value of the benefit to anglers caused by better
fishing conditions? (e.g., more fish, relaxation of regulations)

The logit model provides an expression for consumer surplus (CS)
that is easy to calculate

▶ An individual’s CS is the utility, in dollar terms, that the individual
receives in the choice occasion

▶ The maximum $ an individual would pay for good with specified
attributes, over and above what was actually paid
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Consumer surplus

If we assume utility is linear in income, then the expected CS that an individual
receives from a given choice scenario is:

E (CSn) =
1

αn
ln(

J∑
j=1

eβ
′xnj ) + C (9)

where αn is the marginal utility of income (−βtrip cost) and C is an unknown
constant

The change in consumer surplus resulting from a change in the choice setting is:

∆E (CSn) =
1

αn
[ln(

J1∑
j=1

eβ
′x1nj )− ln(

J0∑
j=1

eβ
′x0nj )] (10)

where superscripts 0 and 1 denote the choice occasion under the baseline and
alternative scenario

Aggregate (fishery-wide) change in consumer surplus is the sum of ∆E (CSn)
across all decision-makers
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Components of the RDM

So far we have discussed Part 1:

1 Discrete choice model of fishing decisions

▶ Estimate structural parameters representing the importance of trip
attributes (e.g., harvest, trip cost) on anglers’ decisions to fish

▶ Structural parameters allow us to compute the expected “utility” an
angler would derive from a fishing trip with specified attributes, as well
as several other important trip-level outcomes

2 Fishery simulation

▶ Use structural parameters + best available fishery data to simulate trips
under both current conditions and alternative conditions in which some
aspects are manipulated (e.g., regulations, length dist’n of the stock)

▶ Compute trip-level outcomes under both scenarios and aggregate over
all trips
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Components of the RDM

Now for Part 2:

1 Discrete choice model of fishing decisions

▶ Estimate structural parameters representing the importance of trip
attributes (e.g., harvest, trip cost) on anglers’ decisions to fish

▶ Structural parameters allow us to compute the expected “utility” an
angler would derive from a fishing trip with specified attributes, as well
as several other important trip-level outcomes

2 Fishery simulation

▶ Use structural parameters + best available fishery data to simulate trips
under both current conditions and alternative conditions in which some
aspects are manipulated (e.g., regulations, length dist’n of the stock)

▶ Compute trip-level outcomes under both scenarios and aggregate over
all trips
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Fishery simulation

The rest of the RDM entails simulating x0nj and x1nj , i.e, variables that
appeared in the choice experiment and characterize trip-level
outcomes under baseline (Scenario 0) and alternative (Scenario 1)
fishery conditions

Why? Allows us to calculate changes in (or absolute levels of)
demand, harvest/discards, and angler welfare:

∆demand for fishingn = P1
ni − P0

ni =
eβ

′x1ni∑J1

j=1 e
β′x1

nj
− eβ

′x0ni∑J0

j=1 e
β′x0

nj

∆harvest/discardsn = x1niP
1
ni − x0niP

0
ni

∆welfaren = 1
αn
[ln(

∑J1

j=1 e
β′x1nj )− ln(

∑J0

j=1 e
β′x0nj )]
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Fishery simulation

Multi-part algorithm with three main components:

Simulate “choice occasions” under baseline (2022) fishery conditions

Calibration: determine how many choice occasions to simulate, ensure
their outcomes are similar to observed trip outcomes in 2022

Simulate choice occasions under alternative (2024) fishery conditions

▶ Methods and data used to simulate choices occasions differ slightly
between the baseline and alternative

▶ The entire algorithm is repeated 100 times, each time generating new
data to account for statistical uncertainty in input data (MRIP
catch-per-trip and directed fishing effort, projected numbers-at-age)
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Simulating individual choice occasions in the baseline (2022) scenario
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Simulating individual choice occasions in the alternative (2024)
scenario
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Simulating individual choice occasions in the baseline (2022) scenario

1 Draw β′
n from the estimated distribution, and trip cost and angler

demographics from distributions based on recent data collected in the
northeast U.S.

2 Draw target number of fish caught by species from 2022 MRIP-based
catch-per-trip distribution

3 Determine whether each fish caught is kept or released

4 Add a “no-trip” alternative, then compute the utilities (β′
nxnj) and

probabilities of the alternatives using Equation (4)

5 Repeat steps 1-4 30 times per choice occasion, each time drawing from new
MRIP-based distribution of catch-per-trip to reflect sampling uncertainty in
the program’s estimates of catch-per-trip

6 Compute the expected utility as the average utility and probability of the
choice occasion over the 30 repetitions

7 Compute expected harvests and discards of the choice occasion
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Simulating individual choice occasions in the baseline (2022) scenario

1 Draw β′
n from the estimated distribution, and trip cost and angler demographics from

distributions based on recent data collected in the northeast

▶ Total trip costs by state and fishing mode come from NOAA’s 2016-2017 National
Marine Recreational Fishing Expenditures on Fishing Trips Survey, adjusted for
inflation

▶ Angler ages and avidities come from unpublished survey-weighted data from
NOAA’s 2019-2020 National Marine Recreational Fishing Expenditures on Durable
Goods Survey (Sabrina Lovell), four regions (ME-NY, NJ, DE-MD, VA-NC)
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Simulating individual choice occasions in the baseline (2022) scenario

2 Draw target number of fish caught by species from 2022 MRIP-based
catch-per-trip distribution

▶ Catch-per-trip distributions generated at the state-wave-mode level
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Simulating individual choice occasions in the baseline (2022) scenario

3 Determine whether each fish caught is kept or released

▶ For each fish caught, draw a random value p between 0 and 1. If
p > p∗ and bag limit has not been reached, add one to keep. If p < p∗

and/or bag limit has been reached, add one to release

▶ p∗ is determined outside the model and is the proportion of trip-level
catch that was released in 2022, conditional on 2022 catch-per-trip and
bag limits

▶ This step ensures that harvest-per-choice occasion, the key
determinant of utility, accurately reflects baseline conditions
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Simulating individual choice occasions in the baseline (2022) scenario

4 Add a “no-trip” alternative, then compute the utilities and
probabilities of the alternatives using Equation (4):

▶ β′
nx

0
ni and P0

ni =
eβ

′x0ni∑J0

j=1 e
β′x0

nj

5 Repeat steps 1-4 30 times per choice occasion, each time drawing
from new MRIP-based distribution of catch-per-trip to reflect
sampling uncertainty in the program’s estimates of catch-per-trip

6 Compute the expected utility as the average utility and probability of
the choice occasion over the 30 repetitions:

▶ β′x0ni =
∑30

d=1(β
′x0nid )

30 and P0
ni =

∑30
d=1(P

0
nid )

30

7 Compute expected harvests and discards of the choice occasion:

▶ P0
ni × xni
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Model calibration

Before simulating choice occasions in the alternative (2024) scenario,
we must calibrate the model

Calibration involves (a) ensuring simulated baseline-year trip
outcomes reflect observed baseline-year trip outcomes and (b)
choosing the number of choice occasions to simulate

▶ We do (a) in step 3

Together, these steps ensure that the simulated size of the market for
recreational fishing and the quality of the “good” being evaluated
(i.e., trips) reflect observed baseline-year market conditions
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Model calibration

All aggregate model outputs are the sum of output across n individual
choice occasions

▶ How do we determine the number of choice occasions to simulate (N)?

MRIP provides an estimate of the number of times a decision-maker chose

to go fishing in the baseline year,
∑T

t=1 E (Y
MRIP 2022
ti ) (i.e., fishing trips)

We simulate a number of choice occasions such that the sum of their
individual probabilities approximates the MRIP estimate of directed trips for
fluke, sea bass, and scup in the baseline year:

N∑
n=1

P0
ni =

T∑
t=1

E (YMRIP 2022
ti )

N held constant when simulating alternative fishery conditions (Scenario 1),
but individual choice probabilities and their sum will change according to the
change in fishery conditions relative to the baseline
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Model calibration

Additional notes about calibration:

MRIP estimates of directed trips contain sampling uncertainty based
on the stratified random sampling approach used to reach the
population of angler-trips

We incorporate this uncertainty in the model by re-calibrating to a
random draw of directed trips in each of the 100 iterations

▶ For each iteration x , draw a random number of total directed trips
from the MRIP-based truncated normal distribution of directed trips
T ∼ G (µ, σ, a, b), where µ and σ are the mean and standard deviation
and a = 0 and b = ∞ are the truncation intervals

▶ Select Nx choice occasions such that
∑Nx

n=1 P
0
ni = T
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Directed trips

Distribution of directed trips generated at the state, month, mode, and
kind-of-day level then divided by the number of days within these strata in
2022 to get trips-per-day in 2022

MRIP estimates of total directed trips by
month and kind-of-day, NJ private boat

mode 2022

Model draws of directed trips per day by
month and kind-of-day, NJ private boat

mode 2022
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Calibration statistics - 2022 New Jersey harvest (numbers)

Species Mode MRIP data Model % difference

BSB for-hire 90,311 90,269 0.052
(17,639) (17,678) (1.389)

BSB private boat 1,417,877 1,418,313 -0.029
(179,490) (180,073) (0.916)

BSB shore 0 0

SCUP for-hire 65,943 66,015 -0.097
(16,653) (16,662) (1.043)

SCUP private boat 144,547 144,543 0.018
(19,504) (19,777) (1.095)

SCUP shore 0 0

SF for-hire 47,886 47,907 -0.046
(7,524) (7,534) (0.857)

SF private boat 1,284,445 1,285,438 -0.072
(106,731) (108,297) (0.925)

SF shore 243,533 243,618 -0.046
(41,148) (41,221) (1.382)

Note: Means with standard deviations below in parenthesis. MRIP
statistics describe the product of directed trips and mean harvest-per-
trip over 100 random draws from the estimated distributions of directed
trips and harvest-per-trip. Model statistics describe the results of 100
iterations of the model. Percent difference is computed as [(MRIP-
model)/MRIP]×100.
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Calibration statistics - 2022 New Jersey total catch (numbers)

Species Mode MRIP data Model % difference

BSB for-hire 575,068 576,120 -0.188
(109,392) (109,520) (0.734)

BSB private boat 10,082,888 10,100,000 -0.293
(977,873) (974,356) (0.597)

BSB shore 1,529,022 1,530,386 -0.105
(232,338) (231,529) (1.045)

SCUP for-hire 127,516 127,646 -0.117
(34,485) (34,400) (0.953)

SCUP private boat 289,921 290,018 -0.028
(32,674) (33,068) (1.506)

SCUP shore 0 0

SF for-hire 257,679 258,184 -0.203
(41,914) (41,885) (0.409)

SF private boat 9,321,574 9,345,688 -0.253
(737,855) (746,681) (0.439)

SF shore 3,911,835 3,915,086 -0.074
(448,416) (452,354) (0.544)

Note: Means with standard deviations below in parenthesis. MRIP statis-
tics describe the product of directed trips and mean catch-per-trip over
100 random draws from the estimated distributions of directed trips and
catch-per-trip. Model statistics describe the results of 100 iterations of the
model. Percent difference is computed as [(MRIP-model)/MRIP]×100.
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Simulating choice occasions in the alternative (2024) scenario

After generating baseline trip-level outcomes (x0ni ) and calibrating, we
generate trip-level outcomes in the alternative 2024 scenario (x1ni )

What differs in the alternative 2024 scenario that affect x1ni?

▶ Catch-per-trip

▶ Catch-at-length

▶ Regulations
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Catch-per-trip in 2024

As we did to compute baseline scenario trip outcomes, we need to
generate catch-per-trip distributions for the alternative (2024)
scenario

After consulting with the TC/MC, we will compute 2024
catch-per-trip by state-wave-mode using the average of the most
recent two years of MRIP data

▶ 2023 and 2022 MRIP data for wave 2, 3, and 4

▶ 2022 and 2021 MRIP data for wave 5 and 6
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Catch-at-length in 2024

To allow for counterfactual simulation of alternative size limits, we
need to determine the lengths of fish caught in 2024

Therefore, unlike what we did to compute 2022 harvest- and
release-per-choice occasion, we:

▶ Draw a length from the catch-at-length distribution for each fish
caught

▶ Check the length of the fish against the size limit

▶ Allocate as harvested if within the size limit and under the bag limit, or
discarded if not

Requires generating a catch-at-length distribution for 2024
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Computing 2024 catch-at-length

Use MRIP and volunteer angler survey (VAS) data from 2022 to
compute 2024 catch-at-length

Data aggregated to the region level and for all modes combined to
account for regional differences in catch sizes and small sample sizes

▶ Fluke and sea bass data aggregated to three regions: North (MA-NY),
NJ, South (DE-NC)

▶ Scup data aggregated to two regions: North (MA-NY), South (NJ-NC)

NEFSC recreation demand model Fishery simulation - alternative 2024 fishery conditions 46



Computing 2024 catch-at-length

Catch-at-length distributions are computed as follows:

a Generate proportions harvested-at-length in 2022 (MRIP)

b Generate proportions released-at-length in 2022 (MRIP & VAS)

c Multiply (a) by total harvest in 2022 to get #’s harvested-at-length

d Multiply (b) by total release in 2022 to get #’s released-at-length

e Add (c) to (d) to get total catch-at-length (Cl)

f Fit (e) to gamma distribution
g Adjust fitted catch-at-length distribution to account for projected

2024 length distribution of the fish stock
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Fluke release size data

Number of measured released fluke by state and data source

source MA RI CT NY NJ DE MD VA NC

ALS VAS 3 43 10 736 1302 0 0 0 0

CT VAS 0 0 696 0 0 0 0 0 0

MA VAS 31 0 0 0 0 0 0 0 0

NJ VAS 0 0 0 0 406 0 0 0 0

RI VAS 0 25 0 0 0 0 0 0 0

MRIP 1 269 92 471 262 225 303 17 0

Total 35 337 798 1207 1970 225 303 17 0

Region total 2377 1970 545
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Black sea bass release size data

Number of measured released black sea bass by state and data source

source MA RI CT NY NJ DE MD VA NC

ALS VAS 12 26 14 98 108 0 0 0 0

CT VAS 0 0 2469 0 0 0 0 0 0

MA VAS 166 0 0 0 0 0 0 0 0

NJ VAS 0 0 0 0 177 0 0 0 0

RI VAS 0 158 0 0 0 0 0 0 0

MRIP 725 962 704 545 166 466 1014 2618 0

Total 903 1146 3187 643 451 466 1014 2618 0

Region total 5879 451 4098
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Scup release size data

Number of measured released scup by state and data source

source MA RI CT NY NJ DE MD VA NC

ALS VAS 1 4 0 8 5 0 0 0 0

CT VAS 0 0 2136 0 0 0 0 0 0

MA VAS 95 0 0 0 0 0 0 0 0

RI VAS 0 246 0 0 0 0 0 0 0

MRIP 867 134 420 432 49 5 0 6 0

Total 963 384 2556 440 54 5 0 6 0

Region total 4343 65
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Harvest & release proportions-at-length (fluke)

a Generate proportions harvested-at-length in 2022 (MRIP)

b Generate proportions released-at-length in 2022 (MRIP & VAS)

Fluke harvest- and release-at-length proportions MA-NY, 2022
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Harvest & release proportions-at-length (black sea bass)

a Generate proportions harvested-at-length in 2022 (MRIP)

b Generate proportions released-at-length in 2022 (MRIP & VAS)

Black sea bass harvest- and release-at-length proportions MA-NY, 2022
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Harvest & release proportions-at-length (scup)

a Generate proportions harvested-at-length in 2022 (MRIP)

b Generate proportions released-at-length in 2022 (MRIP & VAS)

Scup harvest- and release-at-length proportions MA-NY, 2022
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Proportions catch-at-length (fluke)
c Multiply (a) by total harvest in 2022 to get #’s harvested-at-length

d Multiply (b) by total release in 2022 to get #’s released-at-length

e Add (c) to (d) to get total catch-at-length (Cl )

f Fit (e) to gamma distribution

Fluke raw and fitted catch-at-length proportions MA-NY, 2022NEFSC recreation demand model Fishery simulation - alternative 2024 fishery conditions 54



Proportions catch-at-length (black sea bass)
c Multiply (a) by total harvest in 2022 to get #’s harvested-at-length

d Multiply (b) by total release in 2022 to get #’s released-at-length

e Add (c) to (d) to get total catch-at-length (Cl )

f Fit (e) to gamma distribution

Black sea bass raw and fitted catch-at-length proportions MA-NY, 2022NEFSC recreation demand model Fishery simulation - alternative 2024 fishery conditions 55



Proportions catch-at-length (scup)
c Multiply (a) by total harvest in 2022 to get #’s harvested-at-length

d Multiply (b) by total release in 2022 to get #’s released-at-length

e Add (c) to (d) to get total catch-at-length (Cl )

f Fit (e) to gamma distribution

Scup raw and fitted catch-at-length proportions MA-NY, 2022NEFSC recreation demand model Fishery simulation - alternative 2024 fishery conditions 56



Fitted proportions fluke catch-at-length 2022 by region
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Fitted proportions black sea bass catch-at-length 2022 by region
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Fitted proportions scup catch-at-length 2022 by region
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Accounting for the projected length distribution of the stock

We assume angler selectivity of length-l fish depends on the
availability of length-l fish in the ocean

2024 catch-at-length is adjusted to reflect the projected 2024 length
distribution of the fish stock

Example: more larger fish in the ocean in 2024 relative to the baseline
year → more larger fish caught by anglers in 2024
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Accounting for the projected length distribution of the stock

First we compute recreational selectivity-at-length in 2022, i.e.,
proportion of length-l fish in the ocean that were caught:

ql =
Cl,2022

Nl,2022

where Cl ,2022 is total catch of length-l fish and Nl ,2022 is the number
of length-l fish in the ocean in 2022

To obtain Nl ,2022, we translate projected numbers-at-age in 2022
(Na,2022) from ages to lengths using age length keys

▶ 1,000 draws of ASAP MCMC year t + 1 Na,2022 for fluke and scup from
Mark Terceiro (NEFSC), black sea bass data not yet available
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Fluke numbers-at-age 2022 (Na,2022)
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Fluke age-length keys

NEFSC trawl survey data from 2013-2022 used to translate ages to lengths
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Fluke numbers-at-length 2022 (Nl ,2022)
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Fluke recreational selectivity (ql =
Cl,2022

Nl,2022
)

One draw of Cl ,2022 and 1,000 draws of Nl ,2022 gives us 1,000 draws of ql
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Fluke Cl ,2022, Nl ,2022, and ql , northern region
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Accounting for the projected length distribution of the stock

With ql computed for the baseline year by region/species, we can
calculate C̃l for any stock structure Ñl :

C̃l = ql Ñl

The projected population-adjusted probability of catching a length-l
fish in 2024 is then:

Prob[Cl , length = l ] = C̃l∑L
l C̃l

=
qlNl,2024∑L
l qlNl,2024

where Nl ,2024 for fluke and scup are the AGEPRO projection numbers
from Mark Terceiro (black sea bass projections not yet available)

For each of the 100 iterations of the model, draw without
replacement a random Nl ,2024 and compute Prob[Cl , length = l ]
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Five random draws of projected 2024 fluke numbers-at-length (Nl ,2024)
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Five random draws of projected 2024 fluke catch-at-length probability
distribution (Prob[Cl , length = l ]), northern region
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Accounting for mismatch between observed and simulated harvest

One final adjustment to account for discrepancies between
catch-at-length-based versus MRIP-based estimate of the proportion of fish
above and below the minimum size limit

Recap: to simulate harvest and release-per-choice occasion in the baseline
2022 scenario, we determine a value p∗ for each state, mode, and species

▶ p∗ is the proportion of trip-level catch that was released in 2022,
conditional on 2022 MRIP catch-per-trip and bag limits

▶ 1− p∗ is the proportion of trip-level catch that was harvested in 2022,
conditional on 2022 MRIP catch-per-trip and bag limits

▶ Simulated trip-level catch in baseline scenario is deemed harvested or
released based on p∗

However, to simulate harvest and release-per-choice occasion in the
alternative 2024 scenario, we draw fish lengths from the catch-at-length
distribution and check them against the size limit
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Accounting for mismatch between observed and simulated harvest

In most cases, the proportion of legal-sized fish based on the 2022 catch-at-length
distribution differs from 1− p∗

▶ Example: 1− p∗ for fluke among shore trips in NJ = 7.3%, meaning we observed
that 7.3% of trip-level catch in 2022 was harvested. We assume that these fish are
of legal-size.

▶ However, Prob[Cl , length ≥ 17”] from 2022 catch-at-length distribution is 17.7%
(shown below)
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Accounting for mismatch between observed and simulated harvest

Were we to simulate choice occasions in the baseline and alternative
scenario holding everything constant and not account for these
discrepancies, then harvest, fishing effort, and angler welfare would
erroneously differ between scenarios

We account for the mismatch when simulating trip-level harvest/release in
2024 by re-allocating a proportion of harvested fish as releases, or vice
versa, depending on the direction of the mismatch

In the previous example, a portion of legal-sized, “harvested” fish must be
re-allocated as releases when simulating 2024 trip-level outcomes for NJ
shore mode under a 17” min. size limit

We assume harvest/release re-allocation proportions remain constant under
different min. size limits
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Accounting for mismatch between observed and simulated harvest

Two potential reasons why mismatches occur:

▶ Angler harvest/release behavior: voluntary release of legal-sized fish
and harvest of sub-legal-sized fish

▶ Running the RDM at the fishing mode-level, at which catch length data
become sparse and so we aggregate catch-at-length data for all modes

Re-allocation procedure accounts for both
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Converting harvest and release numbers to weights

After simulating numbers of harvest and releases under the alternative
scenario, we must convert numbers to weights

We use length-weight equations derived from various sources:

▶ Fluke l-w equation from Mark Terceiro, 2015-2019 both sexes combined

▶ Black sea bass l-w equation from Kiersten Curti, 2012-2021 both sexes
combined by region (NY north, NJ south) and semester (Jan.-May,
June-Dec.)

▶ Scup l-w equation from Wigley et al. (2003)*, 1992-1999 both sexes
combined by season (autumn, winter/spring)

*Susan E. Wigley, Holly M. McBride, and Nancy J. McHugh. 2003. ”Length-Weight Relationships for 74 Fish
Species Collected during NEFSC Research Vessel Bottom Trawl Surveys, 1992-99”. NOAA Technical
Memorandum NMFS-NE-171.
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Wrapping up

Model users can adjust 2024 bag and size limits for each state and
mode at the daily level

Outcomes of individual choice occasions (harvest, discards, trips,
welfare) summed across states/regions

RDM is run 100 times, each time drawing from a new distribution of
directed trips, catch-per-trip, and population numbers-at-length (for
fluke and scup) → results in 100 outcomes

▶ Final output will include median values of the 100 outcomes and
confidence intervals based on percentiles of the distribution, which
capture the various sources of uncertainty baked into the model
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Current status of the 2024 RDM

In the process of finalizing and pre-testing the simulation model using
NJ as a prototype

Working with folks at Azure cloud computing to create user-interface
and allow for parallel processing, which will dramatically reduce
computing time

▶ Current run time for NJ ≈ 1.5 hours for 100 iterations
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Conclusion

Structural econometric model provides key information about what
drives anglers to fish

Allows for a tractable assessment of the effect of counterfactual
regulations on fishery outcomes

Unlike previous approaches for predicting harvest, the RDM accounts
for angler behavioral responses and allows for consideration of both
biological and economic outcomes in management decisions
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Questions?
andrew.carr-harris@noaa.gov
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