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A B S T R A C T   

Over the past decade, substantial progress has been made in projecting and predicting the spatial distribution of 
many marine species at seasonal to multidecadal time scales. However, managers and fishers often need to make 
decisions at much shorter time scales. Subseasonal environmental forecasts, which generate predictions over one 
to several weeks, can now be combined with species-specific habitat preference data to create ecological fore-
casts that could facilitate dynamic spatial management. The development of such predictive tools could aid in 
identifying optimal times and areas for fishers to maximize target catch and avoid nontarget catch. Nontarget 
catch, or bycatch, can have numerous and potentially severe economic and ecological consequences. Here, we 
focus on a population of anadromous fish known collectively as river herring (alewife and blueback herring), as 
they are species of concern and are heavily impacted by bycatch. Using bottom trawl survey data from the 
Northeast US and subseasonal forecasts of sea surface temperature, we constructed a bycatch risk model to 
generate probabilistic predictions of river herring distributions in regions frequented by the US mid-water trawl 
fishery. Assessments of model skill showed that our ecological model performed well in predicting the distri-
bution of river herring and that subseasonal forecasts were effective at 1-week timeframes. There was a clear 
seasonal effect on forecasted bycatch risk throughout the Northeast US, with particularly high risk in winter and 
spring months. Importantly, variability in risk was detectable at the weekly timescale and our model identified 
specific areas and times that fishers should avoid in order to decrease their likelihood of bycatch. The bycatch 
risk forecast developed in this study is a significant advance from near-real time forecasts and the foundation to 
build forecast systems by combining species co-occurrence models with subseasonal forecasts. As these sub-
seasonal forecasts are available globally, this approach could be adapted to facilitate the management of other 
natural resource conflicts around the world.   

1. Introduction 

At the turn of the century, there was a call for ecological forecasts 
that could help to anticipate and respond to intensifying anthropogenic 
pressures (Clark et al. 2001). Ecological forecasts were defined at this 
time as the “process of predicting the state of ecosystems, ecosystem 
services, and natural capital, with fully specified uncertainties …” and 
relied on scenario planning rather than probabilistic predictions. Since 
that time, many decadal to multidecadal scale projections for living 
marine resources have been developed (Payne et al. 2017, Tommasi 

et al. 2017, Payne et al. 2022). However, natural resource managers and 
stakeholders typically need to make decisions at much shorter temporal 
scales (i.e., daily to multiple months) and only recently have seasonal 
forecasts been attempted (Brodie et al. 2017, Eveson et al. 2021, Tom-
masi et al. 2017). In marine resource management, several studies have 
highlighted the utility of near real-time forecasts that use current or 
recent environmental data that must be updated daily or monthly 
(Howell et al. 2008, Eveson et al. 2015, Hazen et al. 2017). While these 
applications have proven useful, subseasonal forecasts that can predict 
environmental conditions on the order of weeks to months could provide 
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an optimal lead time to inform stakeholders and facilitate planning at 
these scales to optimize resource use (Dietze et al. 2018). 

The dynamic nature of the marine environment triggers rapid species 
responses such that ecological forecasting has tremendous potential to 
transform marine spatial planning (Hobday et al. 2011, Hobday et al., 
2016, Hazen et al. 2017, Turner et al. 2017b, Thorne et al. 2019). While 
marine spatial planning is an ancient practice (Lepofsky and Caldwell 
2013, Filous et al. 2021), the increasing pressure on marine resource use 
necessitates innovative approaches to refine the spatial and temporal 
management of marine resource use. Dynamic (marine) spatial man-
agement, defined as ‘management that changes rapidly in space and 
time in response to the shifting nature of the ocean and its users…’, can 
better account for shifts in productive habitat and species distributions 
while maintaining a balance between economic and conservation ob-
jectives (Maxwell et al. 2015). The recent improvement of subseasonal 
forecasting products offers a unique opportunity to inform dynamic 
spatial management by anticipating future conservation issues (Dietze 
et al. 2018, Mariotti et al. 2020), particularly at temporal scales relevant 
for managers. For example, advanced climate models, such as the North 
American Multi-Model Ensemble (Kirtman et al. 2014) and the Sub-
seasonal to Seasonal (S2S) Prediction research project (Vitart et al. 
2017) can now integrate remotely sensed oceanographic data to 
improve forecasts at the scale of weeks to months. These forecasting 
products have previously been applied to streamflow forecasting and 
flood predictions (White et al. 2015), precipitation (de Andrade et al. 
2019, Gibson et al. 2021), malaria epidemic forecasting (Landman et al. 
2020), and understanding the influence of large-scale, recurring climate 
patterns on extreme weather phenomena (Vitart et al. 2017). The 
application of subseasonal forecasts to ecological modeling is still in its 
infancy, but there have been significant advances in ecological forecasts 
of individual species that could potentially provide managers and 
stakeholders with decision support tools weeks in advance instead of 
seasonal or annual timeframes (Jacox et al. 2020, Stepanuk et al. 2022). 
Most of these applications are for individual species, but complex con-
servation challenges arise from the conflict between multiple dynamic 
processes including the temporary associations between mobile species. 

One such quintessential conservation issue that may benefit from 
subseasonal forecasts is fisheries bycatch, the incidental catch of 
nontarget species when they co-occur with target species. Bycatch is a 
persistent global management challenge that affects a wide range of taxa 
and requires a balance of conservation and resource use (Sims et al. 
2008). Bycatch can potentially negatively impact populations of non- 
target species and can increase costs to fishers, decrease yield, or even 
force the closure of a productive fishery if bycatch of non-target species 
exceeds seasonal or annual limits (O’Keefe et al. 2014, Pons et al. 2022). 
Recent studies estimate that bycatch and subsequent discards from 
fisheries globally amounts to approximately 9.1 million tons annually 
and can irrevocably alter ecosystem structure and processes (Gilman 
et al. 2020). While varying in degrees of effectiveness, bycatch mitiga-
tion strategies include gear restrictions or modifications (Graham et al. 
2007, Afonso et al. 2011), deployment of visual or acoustic deterrents 
(Maree et al. 2014), static closed areas (Smith et al. 2021) and 
community-based initiatives that engage fishers and their families to 
facilitate solutions based on local knowledge (Peckham et al. 2007). 
Bycatch mitigation strategies have also included dynamic spatial man-
agement measures that close specific areas on a monthly or seasonal 
timescale, often referred to as time-area closures (Dunn et al. 2016). In 
evaluating static vs. dynamic management measures and the impact on 
fisheries, previous literature has demonstrated that dynamic closures 
can be 2–10 times smaller while still providing adequate protection to 
threatened species (Hazen et al. 2018, Smith et al. 2021) and can reduce 
bycatch by over 50% with minimal disruption or loss to target catches 
(Pons et al. 2022). As more targeted closures are implemented alongside 
technological improvements in the collection of environmental data, 
dynamic management applications can replace static frameworks to 
improve the sustainability of fisheries (Lewison et al. 2015, Dunn et al. 

2016). 
Here, we assess whether producing subseasonal forecasts to antici-

pate future risk of bycatch could provide a means of reducing bycatch of 
river herring, an anadromous species complex consisting of alewife 
(Alosa pseudoharengus) and blueback herring (Alosa aestivalis), both 
currently considered species of concern in the US. Both species of river 
herring were petitioned under the Endangered Species Act in 2011 
because of severe declines in their abundance coastwide (Limburg and 
Waldman 2009), but in 2013, the National Oceanic and Atmospheric 
Administration (NOAA) concluded that a listing of either threatened or 
endangered was not warranted (NMFS 2019). Instead, an aggressive 
conservation plan to boost populations was initiated. Despite greater 
awareness and many dam removals opening freshwater habitat for these 
anadromous species to spawn, many stocks have not rebounded, espe-
cially those in the southern part of their distributional range. Previous 
research has suggested that bycatch in the Atlantic herring (Clupea 
harengus) and Atlantic mackerel (Scomber scombrus) midwater trawl 
fishery could be impacting the recovery of river herring (Palkovacs et al. 
2014, Hasselman et al. 2016), although harvest rates of Atlantic herring 
have substantially declined in recent years (i.e., 2019–2021) alongside 
bycatch rates as reported by the NOAA Greater Atlantic Regional Fish-
eries Office (GARFO 2023). While the Atlantic herring and Atlantic 
mackerel fisheries are extremely valuable to the US economy, with 
commercial landings per year jointly averaging about $10 million in 
profits (NMFS 2019), bycatch of river herring has previously shut down 
trawl fisheries in Southern New England in winter and in the Cape Cod 
region in autumn (GARFO 2023). Quotas of river herring bycatch are 
provided to trawlers each year to limit this incidental catch (Hare et al. 
2021), although their effectiveness is often debated, likely due to mis-
reporting or improperly set catch limits (O’Keefe et al. 2013). 

In response to this conservation concern, prohibiting fishing in 
bycatch hotspots has been proposed, but such large closures could have 
major economic repercussions for fishers. As such, voluntary bycatch 
reduction programs have been attempted (Bethoney 2012, Bethoney 
et al. 2017) where bycatch events were communicated amongst fishers. 
This program coincided with a 60% decrease in total bycatch and 20% 
decrease in the bycatch ratio (Bethoney et al. 2017). However, success 
varied greatly in space and it is unclear whether these efforts contrib-
uted significantly to increases in the river herring population. Recent 
work has also demonstrated that species distributions models can pre-
dict where river herring will likely overlap with some fishery target 
species based on environmental conditions (Turner et al. 2016) and how 
ocean forecasts 0–2 days into the future can be utilized to predict river 
herring distributions and potential overlap with target species (Turner 
et al. 2017a). A subsequent study also illustrated how the accuracy of 
forecast models can be evaluated with fishery-dependent data in a 
cooperative research framework (Turner et al. 2017b). Therefore, the 
purpose of this work was to build on these important bycatch avoidance 
studies by developing an ecological forecast model that combines spe-
cies distribution modeling with subseasonal forecasting products that 
target 1–2 weeks into the future to coincide with operational timescales. 

Here, we take a habitat modeling approach to estimate bycatch risk 
combined with state-of-the-art subseasonal forecast products to make 
spatially and temporally explicit predictions of bycatch risk for river 
herring. We developed a bycatch forecast for the Northeast US region to: 
1) identify areas of high bycatch risk in areas that the midwater trawl 
fisheries target Atlantic herring and Atlantic mackerel; 2) incorporate 
uncertainty into models of bycatch risk to provide realistic measures of 
confidence in model predictions; 3) evaluate application of subseasonal 
forecasts of sea surface temperature (SST) to the bycatch risk model; and 
4) assess changes to forecasted bycatch risk in space and time. The 
predictive forecast that we develop could inform decision making for 
fishers by highlighting areas to avoid in order to decrease the likelihood 
of bycatch and contribute to the development of a proactive tool to 
support existing dynamic management strategies. 
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2. Methods 

2.1. Study area and data collection 

Bottom trawl survey data were obtained from the NOAA Northeast 
Fisheries Science Center (NEFSC). These surveys have been conducted in 
federal waters along the Northeast US coast since 1963, and as such this 
dataset provides information on fish and macroinvertebrate abundance 
and distribution using a stratified random sampling design. At each 
survey station, the weight and number of individuals are recorded by 
species along with spatial coordinates, date and time of trawl, and 
temperature, salinity, and depth (Politis et al. 2014). While sampling is 
conducted from North Carolina to the US/Canadian border, representing 
a large portion of the marine river herring distribution, we constrained 
our analysis to four subregions that were consistently sampled over the 
time series similar to previous research on river herring bycatch (Turner 
et al. 2016). All analyses were performed at the individual trawl scale, 
which resulted in approximately 600,000 individual trawls. Addition-
ally, we removed any trawls that occurred during the summer months, 
due a lack of sampling consistency across years. These exclusions 
amounted to approximately 15% of the data, or 85,000 trawls over 58 
years (1963–2020), with 512,345 trawls remaining. 

2.2. Environmental variables 

To develop predictions of fish distributions, we modeled the co- 
occurrence of bycaught and target fish species related to environ-
mental covariates. We obtained SST and depth data recorded in-situ via 
CTD casts at every trawl station within 5 m from the bottom (Politis et al. 
2014). These variables have been included in previous modeling efforts 
to identify relationships between river herring distribution and habitat 
features (Turner et al. 2016). We were limited to covariates that are 
currently able to be forecasted and thus had to eliminate variables often 
used in fisheries models, such as bottom temperature and primary 
productivity. 

We identified three additional environmental static variables that 
have known or plausible roles in river herring distribution: distance to 
freshwater bays, seafloor slope and curvature (Hare et al. 2021, Ap-
pendix S1: Table A1). Bathymetric features, such as slope and curvature, 
are known to have an impact on ocean dynamics and are often attributed 
to areas of increased productivity and demersal fish abundance (Leitner 
et al. 2021). A spatial layer for the distance to bays (in meters) was 
derived from GPS coordinates of ocean-accessible freshwater bays along 
the Northeast US coastline and the Euclidean distance tool in ArcGIS. 
Bathymetric slope and curvature data layers were derived from a ba-
thymetry layer with a grid spacing of 15 arc-seconds (GEBCO Compi-
lation Group, 2021) and calculated with Benthic Terrain Modeler in 
ArcGIS (Walbridge et al. 2018). 

2.3. Model development 

To ensure accurate predictions, all continuous variables were first 
assessed for collinearity using a Pearson correlation coefficient. A 
collinearity threshold value of 0.7 was applied to reject the use of two or 
more highly correlated variables in the same model (Dormann et al. 
2013). Individual observations were identified as outliers and removed 
from subsequent analyses if any explanatory or response variables fell 
more than two standard deviations away from their mean; these 
amounted to less than 3% of the dataset. Generalized additive models 
(GAMs) were then used to establish relationships between fish distri-
butions and the environmental variables. GAMs are particularly useful 
in ecological studies because they can model non-linear relationships 
between the response and predictor variables and allow for different 
assumptions about distribution of the data (Yee and Mitchell 1991, 
Guisan et al. 2002). GAMs were fit in R Statistical software (Version 
4.0.3, R Core Team 2020) using the ‘mgcv’ package (Wood 2017). The 

dataset was first filtered to only include those trawls where a target 
species (Atlantic herring or Atlantic mackerel) was present, which 
resulted in 34,610 trawls available for model fitting. Then, a separate 
presence or absence variable was created for bycatch, resulting in a 
value of 1 if either or both species of river herring were recorded in the 
trawl or a value of 0 if neither species was recorded. To predict bycatch 
risk for each target species, we fit a presence/absence GAM with a 
binomial error distribution, a maximum of 5 knots to avoid overfitting, 
and using restricted maximum likelihood (REML). Hereafter, we refer to 
this component of the analysis as the ‘predicted risk’ model. We focus 
the results on the Atlantic herring/bycatch risk model, with further 
detail and figures for the Atlantic mackerel/bycatch risk model available 
in Appendix S1. 

Cubic regression spline functions were used for each environmental 
covariate included in the GAMs. Subregion of the study area (Gulf of 
Maine (GOM), Georges Bank (GB), Southern New England (SNE), and 
the Mid-Atlantic Bight (MAB)) and season were incorporated as factor 
variables in order to account for seasonal and spatial variability. For 
each GAM, we checked the basis dimension values for each smooth term 
to ensure the correct number of knots were present by comparing the 
estimated degrees of freedom (edf) to the number of knots used in 
modeling and the associated p-value (Wood 2017). Pairwise concurvity 
was also analyzed to ensure close relationships did not exist between the 
smooth terms. We selected the model with the lowest Akaike’s Infor-
mation Criterion (AIC) value to use in forecasts. 

2.4. Model evaluation 

To evaluate whether model performance varied between years, we 
used a k-folds cross validation approach by partitioning the dataset by 
year, resulting in 58 folds. Each fold (i.e., year of data available in the 
bottom trawl survey) was withheld from the model and then assessed 
using deviance explained, adjusted R2, and area under the curve (AUC) 
of the receiver operating characteristic (ROC) plot. AUC measures the 
model’s ability to distinguish between classes (i.e., bycatch presence and 
absence), where values are scaled between 0 and 1, with a value 1 
representing a perfect fit, values 0.8 or higher signifying a good fit, and 
values 0.7–0.8 representing an acceptable fit (Mandrekar 2010). AUC 
values were plotted for each year of available data and for each pre-
dicted risk model (Appendix S1: Figure A2) to assess temporal vari-
ability in model performance. We also generated calibration metrics and 
plots using the ‘sdm’ package in R to assess agreement between the 
observations and probabilistic predictions for each bycatch risk model. 
A well-calibrated model has a resulting value of 1 (Vaughan and 
Ormerod 2005). Overall model accuracy was then examined using 
confusion matrices that quantify the proportions of correctly and 
incorrectly classified bycatch presence. We selected the optimum 
probability threshold to generate each confusion matrix, where the 
sensitivity (the percentage of observed positives correctly predicted) 
equaled the specificity (the percentage of observed negatives correctly 
predicted) for each model. 

To evaluate the predicted risk models spatially, we converted all 
modeled environmental variables (i.e., in-situ SST, in-situ depth, dis-
tance to bays, curvature, slope) into grids at a 0.2 decimal degree res-
olution to match the forecasting analysis (described below), thereby 
creating predictive surfaces of bycatch risk. Considering the seasonal 
variation in risk relative to the target species, we evaluated Northern 
Hemisphere spring (March-May; all years) and fall (September- 
November; all years) separately by holding each season (incorporated as 
a factor) constant when generating spatial predictions. We then quan-
tified the model uncertainty or confidence in the resulting probability 
estimates using the coefficient of variation (CV), which is the ratio of the 
standard error to the predicted value per observation, and mapped un-
certainty alongside the predictions for spring and fall. We also examined 
regional variation in predicted risk model uncertainty (Appendix S1: 
Figure A4) and utilized this spatial distribution of error to focus the 
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forecasting analysis only in areas of high model confidence. 

2.5. Application and assessment of subseasonal reforecasts to predicted 
risk models 

The Subseasonal Experiment (SubX), a NOAA Climate Testbed 
project, produces climate forecasts from 6 global ensemble models with 
the goal of providing operational real-time forecast targeting the week 
1–4 outlook, quantifying subseasonal predictions in the state-of-the-art 
modeling systems, and exploring the sources of subseasonal predict-

ability (Pegion et al. 2019, Stepanuk et al. 2022). SST forecasts are 
provided by all six SubX models: NCEP-GEFS (National Centers for 
Environmental Prediction Environmental Modeling Center Global 
Ensemble Forecast System), NASA-GEOS5 (National Aeronautics and 
Space Administration Global Modeling and Assimilation Office Goddard 
Earth Observing System), Navy-ESPC (Naval Research Laboratory Navy 
Earth System Prediction Capability), RSMAS-CCSM4 (Community 
Climate System Model version 4 run at the University of Miami Rose-
nstiel School for Marine and Atmospheric Science); ESRL-FIM (Earth 
System Research Laboratory Flow-Following Icosahedral Model) and 
NCAR-CESM1 (National Center for Atmospheric Research Community 
Earth System Model Version 1). The SubX models are initialized once to 
four times a week with a minimum forecast lead time of 35 days. Details 
of each model configuration are documented in Pegion et al. (2019). In 
this study, we focus on developing forecasts with a 1-week lead time (the 
average of forecast lead day 1 to day 7, Stepanuk et al. 2022); as river 
herring and Atlantic herring demonstrate strong relationships to SST 
(Turner et al. 2016), a 1-week lead time could be beneficial to fishers by 
highlighting areas to avoid due to high probability of bycatch. We uti-
lized the retrospective forecasts (also called reforecasts) for SST, which 
are available from 1999 to 2015 (17 years). Instead of using direct 
forecasts of SST output from the models, we apply a bias correction to 
remove the systematic model biases: 

SSTbc(y, t, τ) = [SSTf (y, t, τ) − SSTfclim (t, τ)] + SSTobs clim(t, τ)

where SSTbc(y, t, τ) indicates the bias-corrected SST for forecast year 

Table 1 
Summarized GAM results for each bycatch risk model averaged from the 58- 
folds cross validation to capture temporal variability across all years of data 
(1963–2020).  

Performance Metrics Atlantic herring/River 
herring 

Atlantic mackerel/River 
herring 

Proportion of deviance 
explained 

18.7 20.3 

R-squared 0.24 0.25 
AIC 7757 3615 
AUC 0.78 0.79 
Sensitivity 0.71 0.73 
Specificity 0.69 0.72 
Correct positives (%) 44 42 
False negatives (%) 12 11 
Correct negatives (%) 26 31 
False positives (%) 18 16  

Fig. 1. A) Fall spatial predictions and B) associated model uncertainty (displayed using the coefficient of variation) for the Atlantic herring/bycatch risk model across 
all years of data. 
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(y), initialized day (t), and forecast lead time (τ). The original SST 
forecast output (SSTf (y, t, τ)) is subtracted by the 17-year forecast daily 
climatology (SSTfclim (t, τ)) to remove the mean bias, and then the 
observed 17-year daily climatology (SSTobs clim(t, τ)) is added. The 
multi-model ensemble mean (MME) is calculated for the days when 
more than 4 models overlap on the same initialized date. The forecasted 
surface temperature is evaluated against the skin temperature from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA- 
Interim (Dee et al. 2011) as they provide high spatial and temporal 
resolution. Reanalysis data is often regarded as ‘observation’. 

Evaluation of the predicted risk model highlighted the Gulf of Maine 
in summer and Southern New England in winter and spring as the re-
gions with highest potential risk of bycatch (described in Results), 
similar to previous studies (Cournane et al. 2013, Hasselman et al. 
2016). For these 2 regions, we therefore generated new spatial pre-
dictions of bycatch risk specific for Atlantic herring fishers using the 
bias-corrected SST reforecasts in place of the in-situ SST used to develop 
the model. This resulted in weekly forecasts of bycatch risk at a 1-week 
lead time for all years of available reforecast data (1999–2015). Here-
after, we refer to these models as the ‘forecasted risk’. This process was 
then replicated for all 6 forecast models available from SubX to deter-
mine if seasonal or spatial (Gulf of Maine vs. Southern New England) 
variation exists in how each forecast model predicts risk of bycatch. 
Finally, as previous research identified the multi-model ensemble mean 
(MME) as more skillful than any individual model alone as the model 
errors from individual forecasts are cancelled out (Pegion et al. 2019), 
we selected this MME forecasted risk model to generate example spatial 
outputs for Southern New England and the Gulf of Maine to visualize 

change in risk on a weekly scale. 

3. Results 

3.1. Predicted risk model evaluation 

The predicted risk model with the lowest AIC value included 
smoothing functions of SST, bathymetric curvature, distance to fresh-
water bays, with region and season incorporated as factor variables. 
GAM plots demonstrate that high bycatch risk is generally associated 
with cooler SST (especially in the 4-8◦C range), minimal seafloor cur-
vature, and close proximity to freshwater bays (Appendix S1: 
Figure A1). Winter and spring had elevated bycatch risk, with minimal 
risk occurring in the fall months. Spatially, the Gulf of Maine had the 
highest bycatch risk potential, followed by Southern New England. Re-
sults from the 58-folds cross validation showed the predicted risk model 
had an acceptable fit, with a mean AUC of the receiver operator curve at 
0.78 across all years of data (Appendix S1: Figure A2). AUC values were 
either acceptable or excellent for the years that coincide with the fore-
casting analysis (1999–2015). Low performing years were concentrated 
between 1968 and 1986 (Appendix S1: Figure A2). The calibration test 
produced a value of 0.91, reflecting strong agreement between the ob-
servations and model predictions (Appendix S1: Figure A3). The mean 
proportion of deviance explained was 18.7% across the 58-folds 
(Table 1). The mean proportion of correct positives was 44% using the 
optimum probability threshold (where model sensitivity equals speci-
ficity), while mean proportion of correct negatives was 26% (Table 1). 

There were significant seasonal differences in the spatial pattern of 

Fig. 1. (continued). 
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predicted risk of Atlantic herring and river herring bycatch (Figs. 1 & 2). 
There was an elevated risk (i.e., greater than 60% predicted probability) 
directly along the coastline of the Southern New England and Mid- 
Atlantic Bight regions during the fall months, that lessened further up 
towards the Gulf of Maine during that time (Fig. 1A). Bycatch risk also 
steadily declined to less than 15% further offshore (Fig. 1A). Bycatch 
risk for the spring months, however, was high (i.e., >60%) for the en-
tirety of Southern New England and the Gulf of Maine, including coastal 
and offshore waters (Fig. 2A). Very low risk (i.e., <less than 20%) was 
only observed in the Georges Bank region for spring (Fig. 2A). The 
associated model uncertainty, displayed using the CV, revealed higher 
confidence in the probability estimates in the spring (Fig. 2B & Appendix 
S1: Figure A4). Model uncertainty was patchy throughout all regions 
during the fall, with higher model uncertainty throughout Southern New 
England and along the edges of the study area (Fig. 1B & Appendix S1: 
Figure A4). Georges Bank contained the highest degrees of uncertainty 
in predictions in fall and spring (Figs. 1 & 2). The lowest model uncer-
tainty occurred in the Gulf of Maine in spring. 

3.2. Forecasting bycatch risk 

An assessment of SubX model skill demonstrated that forecasts were 
effective at 1-week leadtimes and therefore valuable for this application 

(Fig. 3). All 6 SubX models showed close agreement in predicting 
probability of bycatch for Atlantic herring fishers, regardless of the 
season or region of the study area being considered (Figs. 4 & 5). While 
there were some temporal gaps in the MME, which requires the overlap 
of 4 individual models on the same initialization date, this model also 
aligned closely with the other 6 models. Forecasts for both regions were 
seasonally variable with the highest forecasted risk in the spring months 
(Figs. 4 & 5). Forecasted risk peaked in the Gulf of Maine between the 
2nd and 4th week of April, with the exception of 2012 which demon-
strated higher risk earlier in the year (Fig. 4). Gulf of Maine forecasted 
risk also increased steadily during the fall months and into winter (i.e., 
from 30% in early September to above 70% by mid-January; Fig. 4). Our 
results suggest that vessels targeting Atlantic herring in the Southern 
New England region have a more than 70% probability of encountering 
bycatch from January into early April, with bycatch risk decreasing to 
below 50% closer to summer (Fig. 5). Overall risk was lower (less 
than50%) in the fall months yet showed a steady increase between 
September and December, similar to the Gulf of Maine (Fig. 5). 

Example spatial outputs of forecasted risk using the MME demon-
strate that variability was detectable at the weekly stage, and that it was 
possible to distinguish specific areas and weeks where Atlantic herring 
fishers have a high probability of encountering bycatch (Figs. 6 & 7). 
The weekly forecast plots beginning in late October of 2008 and 2014 for 

Fig. 2. A) Spring spatial predictions and B) associated model uncertainty (displayed using the coefficient of variation) for the Atlantic herring/bycatch risk model 
across all years of data. 
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the Gulf of Maine highlighted the increasing bycatch presence along the 
shoreline (Fig. 6). Winter in the Southern New England region is known 
for high probability of bycatch, as demonstrated in the forecasted risk 
plots for February of 2004 and 2010, which shows consistently high 
predicted values (i.e., >50%) for much of the region (Fig. 7). However, 
these plots also reveal increasing risk forecasted in each week 
throughout February, especially off the coast of Long Island, New York. 
Throughout both regions, the latter years (i.e., 2014 in Figure 6 and 
2010 in Fig. 7) appear predisposed to higher bycatch risk earlier in the 
year. 

4. Discussion 

To our knowledge, this is the first study to integrate a species co- 
occurrence model with oceanographic forecasts to generate a sub-
seasonal ecological forecast. Previous studies have integrated habitat 
models with near real-time satellite ocean data on individual species 
(Howell et al. 2008, Hazen et al. 2017) or made ecological forecasts at 
the scale of months to decades (Payne et al. 2017). Our model was 
developed at a timescale relevant to inform fisheries management, a 
significant advance since the call to develop ecological forecast models 
was invoked 20 years ago (Clark et al. 2001). If integrated into a po-
tential decision support tool for fishers, this model could be updated 
weekly based on environmental conditions and adapted to the target/ 
bycatch species of interest. This could allow commercial fishers to 

identify areas to avoid in order to decrease the likelihood of bycatch in a 
highly variable environment or allow managers to close certain areas for 
short periods of time, providing a 1-week lag time for preparation. 

The key novelty provided by this analysis is the feasibility of skill-
fully forecasting river herring distributions with a 1-week lead time in 
regions where we know bycatch has the potential to close the target 
fishery. The use of environmental forecasts in species distribution 
modeling, rather than relying on near-real-time conditions, has 
increased significantly over the past decade as managers seek to better 
anticipate how such broad changes will reshape ecosystems (Spillman 
and Hobday 2014, Turner et al. 2017a, Tulloch et al. 2020). For 
example, seasonal forecasts have been applied to monitoring coral 
bleaching (Spillman 2011), determining habitat preferences for south-
ern bluefin tuna (Eveson et al. 2015), and tracking the migration and 
distribution of Pacific sardines (Kaplan et al. 2016). For fisheries man-
agement in particular, finer-scale ecological predictions are more suited 
to minimize risks and prevent economic losses than seasonal or annual 
forecasts that cannot capture the daily or weekly dynamics of a system. 
Subseasonal forecasts, like SubX, that operate at the weekly scale, can be 
a powerful tool when integrated with distribution models to provide 
early warning signals to fishery managers. However, this weekly scale 
may not adequately capture some environmental conditions that could 
have a significant impact on species distributions and therefore the 
potential for bycatch. While the daily forecast scale can be more appli-
cable to commercial fleet dynamics, previous research has demonstrated 

Fig. 2. (continued). 
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that substantial heterogeneity exists at this scale specific to species 
distributions, which could significantly increase model uncertainty 
(Turner et al. 2017a, 2017b). The trade-offs associated with forecasting 
at these shorter timeframes should be strongly considered so the model 
output matches the decision context. 

Previous studies and published reports from independent observer 
data have identified winter in Southern New England and fall in Cape 
Cod (Gulf of Maine) as likely high bycatch risk (Hare et al. 2021, GARFO 
2016). Similar spatiotemporal variation in predicted risk is generated 
from our model and seasonally explicit spatial outputs. This context is 

particularly significant when considering bycatch mitigation strategies, 
or restricting area use for trawlers, as different areas of the fishery are 
more impactful on river herring populations than others (Bethoney et al. 
2014). Bycatch in Southern New England, for example, is likely con-
strained to only a few river herring stocks and more immature size 
classes relative to the Gulf of Maine, providing further justification for 
quotas to potentially reduce juvenile bycatch mortality (Bethoney et al. 
2014). Accurately identifying regional and seasonal changes to risk is an 
important step in the development of a tool to predict in detail where 
bycatch is most likely to occur in the future (Turner et al. 2017a, 2017b). 

Fig. 3. SST forecast skill measured by anomaly correlation coefficient (ACC) as a function of forecast week 1 to week 3 for (a) NCEP-GEFS, (b) NASA-GEOS4, (c) 
NCAR-CESM1, (d) RSMAS-CCSM4, (e)ESRL-FIM and (f) Navy-NESM. 
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Future work could also validate the predicted risk models alongside data 
from the Bycatch Avoidance Program (Bethoney, 2012), with the aim of 
incorporating the forecasted risk outputs into the program and future 
development of a predictive tool (Turner et al. 2017b). Our forecasted 
risk model provides both a seasonal outlook on risk for Atlantic herring 
fishers as well as examples of selected weeks that coincide with known 
bycatch potential. 

It is increasingly apparent that static management approaches are no 
longer sufficient as large area closures can cause significant economic 
hardship to stakeholders (Dunn et al. 2016) and static closed areas may 
not achieve management goals in light of well-documented species 
range shifts, reduced recruitment, and increased mortality in response to 
large-scale warming (Nye et al. 2009, Pershing et al. 2015). Addition-
ally, as a consequence of shifting species and habitats, models that can 
effectively use environmental drivers of species overlap or co- 
occurrence are increasingly important, particularly when spatial or 
temporal overlap involves commercially harvested species (Turner et al. 
2016). Previous research has modeled co-occurrence of marine fish by 
multiplying probabilities from single species distribution models 
(Turner et al. 2016) or through a Bayesian joint modeling framework 
(Roberts et al. 2022). Our target/bycatch overlap approach provides an 
effective method for identifying common spatial habitats relative to 
environmental attributes rather than independently modeling each 
target and bycatch species, although it is parametrized to only model 
where a target species is present. As bycatch reduction plans are 
becoming integral to fisheries management, this approach can be easily 
modified to the target/bycatch species of interest at a spatiotemporal 

scale relevant to anticipate such interactions and adjust operations 
accordingly. 

The development of species distribution models naturally will 
include elements of uncertainty. However, due to the complexity asso-
ciated with identifying and interpreting said uncertainty, it is often 
barely acknowledged or ignored entirely when model results are re-
ported (Beale and Lennon 2012). When practical applications of ana-
lyses are addressed, such as the management of marine resources or the 
impact on a fishing community, uncertainty must be considered. By 
reporting the model uncertainty alongside the parameter estimates for 
bycatch risk, we can identify areas of high confidence versus areas of 
lower interpretability. For example, we found very low uncertainty 
associated with the probability estimates in the spring compared to the 
fall (Fig. 1B and 2B). This assessment of model error, for both the 
bycatch risk and SubX SST models, highlights the dynamic nature of the 
Gulf Stream region and thus the potential for some grid cells to have 
lower predictability relative to bycatch risk. With ongoing population 
assessments of river and Atlantic herring in the Northeast US and con-
cerns over depleting stocks (Hare et al. 2021), it is necessary to improve 
these predictions and associated uncertainty as a step towards 
ecosystem-based management. 

Our forecasting approach could be used in tandem with existing 
strategies, such as dam removal and restoration of key habitat, as well as 
the practical knowledge of fishermen, to mitigate bycatch of river her-
ring, which would contribute both to restoring stocks of river herring 
and to keeping Atlantic herring fisheries below bycatch thresholds. At 
the time of publication, Atlantic herring were at very low abundance in 

Fig. 4. Predicted probability of bycatch for vessels targeting Atlantic herring in the Gulf of Maine region. Predicted values generated separately for all 6 SubX models 
and a multi-model ensemble mean (MME). 
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the US, such that bycatch of river herring was not as much of a concern 
for river herring recovery as in the past. However, river herring are 
subject to bycatch in other trawl and gillnet fisheries and bycatch 
reduction is a key component to the conservation of river herring 
(Kritzer et al. 2022, Hare et al. 2021). Our modeling approach can be 
improved and implemented as Atlantic herring recover and can be 
applied to other species. Area-specific regulations remain in place to 
both limit the amount of river herring allowed in trawls prior to the 
closure of a fishery and prohibit vessels within a certain distance from 
the shoreline (Hasselman et al. 2016). In addition to these regulations, 
voluntary bycatch avoidance programs have demonstrated positive 
impacts in fleet behavior that contributes to decreased bycatch (Betho-
ney et al. 2017). There are multiple ways the bycatch risk forecast could 
assist managers in optimizing existing strategies and planning proced-
ures. A pressing challenge in fisheries is navigating specific months 
where target and bycatch species co-occur extensively (Hastings et al. 
2017). Use of this forecast can better position vessels in these months by 
identifying in advance specific weeks that are more conducive to 
maximizing target catch while minimizing bycatch. As our model does 
not arbitrarily distinguish low, medium, or high-risk areas, fishers could 
independently select what risk thresholds they deem acceptable each 
week. Use of this information can therefore help to ease the financial 
hardships experienced by fishermen in recent years due to unintended 
closures and enhance economic efficiency. Ultimately, this analysis 
could inform the development of a long-term bycatch risk tool for fishers 
to use directly that can be presented in a live format and regularly 
updated. 

The development of a river herring bycatch risk tool could follow 
previous accomplishments in forecasting distributions of marine turtles, 
southern bluefin tuna, and other marine megafauna. The ongoing Tur-
tleWatch project utilizes environmental data to quantify loggerhead 
turtle interactions with the pelagic longline fishery in Hawaii and pro-
vides a daily mapping product of predicted turtle locations to reduce 
bycatch (Howell et al. 2008). A similar daily product is available in 
Australia using habitat preference models and seasonal forecasts to 
contribute to the dynamic spatial management of southern bluefin tuna 
(Hobday et al. 2011, Eveson et al. 2015). The effectiveness of such 
conservation tools is attributed to an online framework designed with 
participation from key stakeholders as well as accessibility. The fore-
casting tool for southern bluefin tuna, for example, has produced 
tangible outcomes in the adjustment of fishing operations, particularly 
as climate change accelerates shifts in habitat and distribution of 
commercially important fish species (Eveson et al. 2021). In addition to 
demonstrating the application of subseasonal forecasting to fisheries 
bycatch, building on similar research utilizing 0–2 day oceanographic 
forecasts (Turner et al. 2017a), our approach utilized 6 climate fore-
casting models and found negligible spatiotemporal variability once the 
forecasts were integrated with the ecological model. This provides even 
more flexibility and justification for transitioning this model to a web- 
based tool where managers could preemptively select the forecast 
model that best fits their objectives for fisheries management (i.e., a 
model initialized every 5 days, every 7 days, or multiple forecasts 
generated each week). Furthermore, as numerical weather/climate 
models and operational forecasting systems are frequently upgraded and 

Fig. 5. Predicted probability of bycatch for vessels targeting Atlantic herring in the Southern New England region. Predicted values generated separately for all 6 
SubX models and a multi-model ensemble mean (MME). 
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Fig. 6. Spatial output of forecasted risk predictions generated with the SubX MME for vessels targeting Atlantic herring in the Gulf of Maine region.  

Fig. 7. Spatial output of forecasted risk predictions generated with the SubX MME for vessels targeting Atlantic herring in the Southern New England region.  
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improved, forecast skill is expected to increase. Better representation of 
key processes through higher model resolution will provide even more 
accurate identification of high bycatch risk areas. Previous attempts in 
bycatch avoidance programs had grid cells of 5 nmi × 8 nmi (10 
longitude × 5 latitude) and these approaches had some success 
(Bethoney, 2012, Bethoney et al., 2017). Our forecast approach could be 
integrated with such bycatch avoidance programs to improve upon past 
efforts and enable dynamic spatial management at smaller spatial scales 
than the current management areas. 

5. Conclusions 

Defining areas that fishers should avoid at fine spatial and temporal 
scales presents a unique and multidimensional challenge, both from an 
ecological and social perspective. Foremost, fishing locations are often 
based on a suite of considerations beyond just environmental conditions. 
Secondly, temperature associations are very similar for many target and 
nontarget species and consequently, fisheries optimized for a target 
species can have disastrous implications on the sustainability of 
nontarget species (Hastings et al. 2017). To avoid severe cutbacks to the 
harvest of target species, or the closure of a fishery altogether, managers 
require forward-looking planning tools that better position the industry 
to compensate for shifting environmental conditions at relevant time-
scales. Our analysis demonstrates that subseasonal forecasts can be used 
to predict fisheries bycatch, and could be integrated into fisheries 
management to mediate target/bycatch species interactions and thus 
improve decision-making in a dynamic spatial management context. 
While there will naturally be competing objectives surrounding man-
agement frameworks, an increased understanding of fish and fisher’s 
interactions can lead to more effective, integrated approaches to man-
aging the ocean. 
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