Short-term forecasts of species

 distributions for fisheries managementMid-Atlantic Fishery Management Council Meeting April 4, 2023 Durham, North Carolina

Presentation Outline

- Project Need \& Goals
- Model Approach \& Development
- Preliminary Results \& Outputs
- Areas of Potential Management \& Science Application
- EOP Committee, AP \& SSC Feedback
- Council Discussion

Mismatch in timescales

Distribution projections and management needs

EAFM Guidance Document

Example Climate-Related Policies and Recommendations

- Develop and evaluate approaches for MAFMC fisheries and their management to become more adaptive to change
- Use models to develop short-term forecasts and medium-term projections
- Identify new species likely to become established in the Mid-Atlantic (from the South Atlantic) and species likely to expand or shift distribution into waters under the jurisdiction of New England and Canada

Ecosystem Approach to Fisheries Management Guidance Document

Approved by Council August 8, 2016
Revised February 8, 2019

Species Distribution Shifts

- Collaborated with Morley et al. 2018 on Projecting shifts in thermal habitat during the $21^{\text {st }}$ century project
- Highly informative and considered in a strategic way - i.e., EAFM guidance document
- This project allows Council to potentially consider distribution change in a more tactical way
- Focus on Mid At. species, but interest in possible South At. changes

Change in species distribution

Goals

Test
 retrospective forecasts

Goals

Open-access tools

Test
 retrospective forecasts

Goals

Open-access tools

Explore how forecasts might inform management

What we are not doing in this project

What we are not doing in this project

- Making future forecasts of species distributions
- Will likely require oceanographic forecasts

What we are not doing in this project

- Making future forecasts of species distributions
- Will likely require oceanographic forecasts
- Operationalizing the forecasts for routine management use

What we are not doing in this project

- Making future forecasts of species distributions
- Will likely require oceanographic forecasts
- Operationalizing the forecasts for routine management use
- Producing a stock assessment

What we are not doing in this project

- Making future forecasts of species distributions
- Will likely require oceanographic forecasts
- Operationalizing the forecasts for routine management use
- Producing a stock assessment
- Providing management advice

Research questions

1. Can dynamic range models forecast changes in species distributions?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Focal species

gray triggerfish

Spoiler alerts: summer flounder models

1. Non-climate factors (fishing, dispersal) influence species distributions
2. Species distributions are highly variable, not marching up the coast
3. Dynamic range models can forecast distribution shifts with some skill

Summary of work

Work plan

Work plan

Work plan

Summary of approach

Fit to data from bottom trawl survey, 1972-2006

Summary of approach

Fit to data from bottom trawl survey, 1972-2006

Test the forecast 2007-2016

Summary of approach

Fit to data from bottom trawl survey, 1972-2006

Test the forecast 2007-2016

This is a proof of concept, not a future forecast!

Model structure

$\rightarrow 4$

Model structure

Model structure

Model structure

Model structure

Model implementation for summer flounder

Stochastic recruitmen
yes/no

Temperature affects...
recruitment
dispersal
mortality
nothing

Known Fover time
yes/no

Fit to length data
yes/no

Stock-recruit relationship
yes/no

Candidate model for summer flounder

Model structure decision	Yes	No
Fishing values from stock assessment inform mortality rate		\checkmark
Stochastic recruitment process	\checkmark	
Length data informs age structure		\checkmark
Stock-recruit relationship		\checkmark
Temperature affects recruitment		\checkmark
Temperature affects mortality		\checkmark
Temperature affects migration	\checkmark	

Research questions

1. Can dynamic range models forecast changes in species distributions?

Forecast vs. reality: centroid position

Forecast vs.
reality: model comparison

Forecast vs. reality: Mid-Atlantic Bight vs Gulf of Maine / Georges Bank

Forecast vs. reality: abundance by patch

Forecast vs. reality: 37-38 N

Forecast vs. reality: best estimates

Estimated

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?

ט.צכ

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Research questions

1. Can dynamic range models forecast changes in species distributions?
2. At what time-scales do forecasts have skill (1-10 years)?
3. Does information on fishing pressure improve forecasts of species distributions?

Updates and next steps

1. All model features are programmed
2. Summer flounder 64 models are running on supercomputers at Rutgers this month
3. Ran traditional SDMs for comparison
4. Next up: formally evaluate and compare models
5. Other three species are in the works

Potential Project Application(s)

Examples of Potential Council Application

- Work to help address priorities in the Council's 2020-2024 Strategic Plan
- Specific strategies to evaluate and consider changes in stock distribution
- Continued development and implementation of EAFM guidance document

Theme 4: Ecosystem

Goal: Support the ecologically sustainable utilization of living marine resources in a manner that maintains ecosystem productivity, structure, and function.

Objective 13. Collaborate with management partners to develop ecosystem approaches that are responsive to the impacts of climate change. ${ }^{1}$

Risk Assessment Update 2020

Table 5: Ecosystem level risk analysis results; $1=$ low risk (green), $1 \mathrm{~lm}=$ low-moderate risk (yellow), $\mathrm{mh}=$ moderate to high risk (orange), $\mathrm{h}=$ high risk (red)

System	EcoProd	CommRev	RecVal	FishRes1	FishRes4	FleetDiv	Social	ComFood	RecFood	
Mid-Atlantic	$1 m$									

Potential Management Applications

- Council Actions
- Dynamic allocation strategies/considerations (e.g. black sea bass)
- East Coast Climate Change and Distribution Shift Scenario Planning Project
- Science needs to evaluate summit outcomes
- Adaptive governance/management
- Marine Spatial Planning/Coordination
- Offshore wind and aquaculture development
- NOAA Fisheries Climate Ready Fisheries Management
- Tools to assess and forecast changes in stock distributions

Examples of Potential Science Applications

SOE risks to meeting management objectives

- Linking ecosystem indicators to distribution changes

Stock Assessments and projections

- Ecosystem TORs and Ecosystem and Socio- economic Profiles for assessments

Less Uncertainty

Ecosystem factors accounted	Assessment considered habitat and ecosystem effects on stock productivity, distribution, mortality and quantitatively included appropriate factors reducing uncertainty in short term predictions. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are stable. Comparable species in the region have synchronous production characteristics and stable short-term predictions. Climate vulnerability analysis suggests low risk of change in productivity due to changing climate.	Assessment considered habitat/ecosystem factors but did not demonstrate either reduced or inflated short-term prediction uncertainty based on these factors. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are variable, with mixed productivity and uncertainty signals among comparable species in the region. Climate vulnerability analysis suggests moderate risk of change in productivity from changing climate.	Assessment either demonstrated that including appropriate ecosystem/habitat factors increases short-term prediction uncertainty, or did not consider habitat and ecosystem factors. Evidence outside the assessment suggests that ecosystem productivity and habitat quality are variable and degrading. Comparable species in the region have high uncertainty in short term predictions. Climate vulnerability analysis suggests high risk of changing productivity from changing climate.

From MAFMC Scientific and Statistical Committee OFL CV Guidance Document 20 - https://www.mafmc.org/ssc

EOP Committee and AP feedback

Comments/Feedback on Dynamic Range Model(s)

- Connect and share ideas, data, information with other research groups working on target species
- Potential spatial limitations and timing issues associated with the NEFSC bottom trawl survey data

Consideration of other data sources

- Model forecasts need to incorporate/respond to changes in temperature in either direction (i.e., warmer or cooler)

EOP Committee and AP feedback (cont.)

Comments/Feedback on Potential Application of Project Results and Information

- Committee recommendation: bi-directional temperature function be considered in modeling framework is needed for management application
- Need to consider the development of these models for S.A. stocks to help management prepare for future availability
- Some expressed concern about any application of project in management, particularly for IIlex and spatial considerations
- Additional work and refinement needed before use
- Others felt this type of information is needed in management
- EAFM risk assessment, sensitivity of leading/trailing edges of stocks

Short-Term Forecasts of Species Distributions for Fisheries Management

- The SSC:
- Encouraged continued development and potential utility for management decisions
- Recommended additional validation including comparisons with simpler methods.
- Encouraged further consideration of survey sampling issues and agedependent responses to temperatures
- Noted reasonably good correspondence between model predictions of Summer Flounder trends and spatial patterns for 2007-2016 period with observations from the bottom trawl surveys.
- Noted variation of predictions increases with the length of the forecast.
- Emphasized that true forecasts will require forecasts of oceanographic conditions on similar time scales.

Short-Term Forecasts of Species Distributions: Potential Applications

- Could be linked to SOE indicators of vulnerability for coastal communities and various social and economic metrics.
- Could be compared with EAFM indicators of distributional shifts.
- Evaluate recreational fishing performance under various Harvest Control Rules.
- Evaluate feasibility of catch advice relative to the historical distributions.
- Potential tool for allocation decisions.
- Interpreting retrospective patterns observed in some species stock assessments.
- Interpreting changes in species distributions within and around offshore wind energy areas.

Short-Term Forecasts of Species Distributions: Research Recommendations

- Consider changes in thermal preference that occur as fish age. Older fish prefer cooler water.
- Consider alternative patterns of spatial binning, i.e., East/West (depth) as well as latitudinal (north/south)
- Consider variations in the timing, duration, and execution of bottom trawl surveys since 1963.
- Check for confounding of such changes on detectability of trends due to climatic change.
- Species distribution forecasts should be confirmed by simpler methods.
- Adjust latitudinal boundaries to achieve more even distribution of samples among bins may be useful.
- Consider potential use of spring bottom trawl surveys along with the fall surveys.

Questions to Think About for Discussion

Potential Management Application

- If provided species-specific short term forecasts, how would you use that information?
- Is this type of information helpful for management?
- Where/what types of Council actions, priorities, and/or projects would this type of information be informative or most appropriate?

Future Model Development

- Is there different and/or additional information you would like see in order to make the model outputs more useful?
- Are there other/higher priority species that distribution forecasts would be most useful?
- Any thoughts on the future direction and development of these models (e.g., other environmental variables, coordination with NRHA products, stock dynamic information, cross research coordination/collaboration etc.)

For Council Today

- No specific decisions today
- Looking for specific feedback and direction on next steps
- Value and application for management
- Future model development considerations

THANK YOU!!

 UC SANTA CRUZ

