

NOAA FISHERIES

Northeast Fisheries Science Center

Golden Tilefish Research Track Assessment

Manananan and

Kristan Blackhart

Chief, Population Dynamics Branch

Mid-Atlantic Fishery Management Council 4/10/2024

RT Goals and Objectives

Objective: Develop the assessment and projection methodology to support continued, incremental improvement in future Management Track assessments

Terms of Reference (ToRs)

- **1.** Identify relevant ecosystem and climate influences on the stock
- **2.** Estimate catch from all sources including landings and discards
- **3**. Present the survey data used in the assessment
- 4. Estimate annual fishing mortality, recruitment and stock biomass
- 5. Update or redefine Status Determination Criteria
- 6. Define appropriate methods for producing projections
- **7**. Report on the status of research recommendations
- **8**. Develop a backup assessment approach

RT Contributors

Working Group	Invited Contributors	Review Panel	Additional Contributors		
Jose Montañez, MAFMC, Chair	Dan Hennen, NEFSC	Mike Wilberg, MAFMC SSC, Chair	Chuck Adams, NEFSC		
Paul Nitschke, NEFSC, Lead	Kim Hyde, NEFSC	Matt Cieri, CIE	Fred Akers, MAFMC Tilefish Advisory Panel		
Jason Boucher, NEFSC	Andy Jones, NEFSC	Joe Powers, CIE	Russ Brown, NEFSC		
Nikolai Klibansky, SEFSC	Anthony Kaufman, NOAA	Sam Subbey, CIE	Alex Dunn, NEFSC		
Sean Lucey, NEFSC	Adelle Molina, NEFSC		Skip Feller, Industry/MAFMC		
John Maniscalco, NYSDEC	Stephanie Owen, NEFSC		Frank Green, Industry		
	Sara Salois, NEFSC		Scott Large, NEFSC		
H	There		Chris Legault, NEFSC		
	Mage		Laurie Nolan, Industry		
			Michele Traver, NEFSC		
			Mark Terceiro, NEFSC (ret.)		
		NOAANMES	Tony Wood, NEFSC		

RT Schedule & Approach

- October 2022 February 2024
- 10 working group meetings
- Stakeholder input invited at most meetings
 - Industry contributed to socioeconomic input for ToR1 and discussions related to the CPUE index, recreational angler effort, and the study fleet
- Consensus decision making
- 14 working papers developed

Conclusions

Meet the Golden Tilefish

- Long-lived, non-migratory demersal species
- Sexual dimorphic growth (males > females)
- Inhabit submarine canyons near the shelf break, depths of 80-440m
- Like to dig burrows, which makes them difficult to survey
- Narrow temperature preference (9-14°C) makes ageing challenging
- Recruit to the fishery ~age 4, mature ~age 5

Previous Assessment

- Last assessed in 2021 via Management Track
- ASAP model, terminal year 2020
 - Commercial landings and size/age data
 - Commercial CPUE index of abundance
- Reference points

 - F_{40%} = 0.261 (proxy for F_{MSY})
 SSB_{40%} = 10,995 mt (proxy for SSB_{MSY}/SSB_{target})
- Stock status
 - Not overfished, F/F_{MSY} proxy = 0.160/0.261
 - Overfishing not occurring, SSB/SSB_{MSY} proxy = 10,562/10,995 mt

Top RT Achievements

- . Transitioned assessment from ASAP to WHAM
- Investigations into the use of WHAM for data-limited applications
- Work with industry and other partners to investigate new indices for the assessment
 - Developed new recreational catch time series, discard time series for directed and non-directed fisheries
 - Researched available resources of abundance information
- Produced an ESP for tilefish to evaluate ecosystem indicators and provide a framework for further investigations

ToR1: Ecosystem and Climate

- Work aimed to develop a suite of environmental indicators to better understand geographical distribution and potential drivers of recruitment
- Developed an Ecosystem and Socioeconomic Profile (ESP) for Golden Tilefish
- Utilized linear regressions and generalized additive models (GAMs) to determine the effects of ecosystem indicators on catch and recruitment

Conceptual Model

Spawning Peaks in summer, 10.16-14.9C Fractional spawners ~ 5-7 years of age Spawn: Mar-Nov (peak in June)

> Good for Golden Tilefish Bad for Golden Tilefish

- Demersal/benthic
- medium sand (0.25-0.5 mm grain size)

8-19 °C, 200 m, 34-36 ppt Non-adhesive, buoyant Hatch after ~ 40 hrs

13-18 °C, 50-150 m, 33-35 ppt Size range ~2.6 - 9.0 mm Pelagic Timing/age of settlement unknown

6-7 yr class pulse

Juveniles/Recruits

Can be found in 8 °C

Size range 15-82 mm

9-11 °C, <170 m, 33-36 ppt

Golden Tilefish ESP Overview

	CPUE No Lag (Year 4)	CPUE 3y Lag (Year 1)	Rec. Estimate (Year 1)	Rec. 1y Lag (Year 0)		
SST	Ļ	Ļ	-	-	*	No trend, but
BT	-	_	-	-		literature
Salinity	-	-	-	-		Not tested
SW Volume	-	Ļ	-	spring	-	No trend
SW Temp.	-		-	-		Positive
SW Salinity	_		-	-		significant trend
GSI	Ļ	winter summer	_	-		Negative significant trend
CP Extent	-	Ļ	-	Ţ		Significant trond
CP Persistence	-	Ļ	Ļ			, trend (+ or -)
CP Index	-	_	$\widehat{1}$	-		1
Microplankton		fall	-	fall		
CHL-a			-	-		

Generalized Additive Model (GAM)

Minine in

Page 11 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

GAM Predictive Ability

Deviance
 explained =
 28%

 Predictions moderately followed the model data

ToR2: Catch

- Most commercial landings are taken by the directed longline fishery
- Managed under IFQ; top 4 permits hold 80%
- TAL since 2021 have been 800 mt based on the last MT assessment
- WG developed a new recreational catch time series
 - Recreational landings estimated to be $\sim 3\%$ of total removals

Commercial Landings

mmmm

Commercial Discards

Intro TOR 1 **TOR 2** TOR 3 TOR 4 **TOR 5** TOR 6 TOR 7 **TOR 8** Conclusions **NOAA** FISHERIES

Recreational Catch

- Appears to be a minor component of total removals
- Rec time series is not available for prior assessments
- RTWG developed a best estimate of recreational catches based on:
 - VTR party and charter data
 - LPS private data
 - Turner (1986) estimates

ToR3: Survey Data

- Tilefish are poorly sampled by regional surveys
- Fishery-independent index of abundance is not available
- Additional data sources are vital to better understand trends in abundance
- WG analyzed longline effort data, trawl study fleet and observer data, and longline survey data

Commercial LPUE

- NEFSC weighout and VTR LPUE series standardized using a GLM with year and vessel effects
 - Re-examined month and crew size effects but did not find large influence
- WG developed method to transition VTR LPUE index to CAMS-based LPUE index
 - VTR to CAMS transition recommended in 2010

Longline Study Fleet

What is the best effort metric to utilize VTR data for an index of abundance \rightarrow **IFQ Study Fleet**

Conclusions

- Support using DA-1 effort metric
- DF could be used as an alternate effort metric based on number of hooks or miles

manna

Trawl Gear CPUE

Man Martin

Tilefish Longline Survey

GOALS:

- 1. Standardize effort
- 2. Year class strength
- 3. Inform domed selectivity

- \rightarrow Pilot survey in 2017
- \rightarrow 2020 survey, with design modifications

Tilefish Survey Results

ToR4: Assessment Approach

- A primary goal was to advance from ASAP to WHAM assessment platform
- Bridge run gave similar results to ASAP model from 2021 MT
- RTWG struggled with modeling tradeoffs from the influences of random effects
- Recommended base configuration is ASAP-like model in WHAM, allows for continued model development in MT

Model Challenges

- Use of WHAM for data-limited stocks largely untested
 - Model results were sensitive to the inclusion of random effects
- NRCC AWG recommended RTWG move forward using the 2021 MT data to focus on model development
 - Work under ToRs 1-3 was reviewed on its own merit

ToR5: Status Determination Criteria

Model	F _{40%}	\$\$8 _{40%}	MSY at SSB _{40%}	Mean Recruitment	F ₂₀₂₀	SSB ₂₀₂₀	F/F ₄₀ %	SSB/SSB _{40%}
Base	0.265	9,314	855	1,139	0.146	11,980	0.55	1.29
Base_NAAiid	0.238	8,014	791	1,148	0.190	5,246	0.80	0.65
Full_RE	0.138	8,195	1,075	1,181	0.223	2,567	1.61	0.31

- Previous reference points based on $SPR_{40\%}$
- 10-year average 2011-2020
- Recruitment based on the entire time series minus the last two years

ToR6: Projections

- Projections are integrated within WHAM model
- F_{40%} 10-year projections provided for informative purposes
- Terminal year is 2020
 - Next MT (June 2020) will add 3 years of data

- RT addressed many of the current and historical research recommendations for Golden Tilefish
- RTWG provided new research recommendations for the stock:
 - 1. Collection of length samples on party/charter trips
 - 2. Evaluate WHAM performance for data-limited stocks using simulation testing
 - 3. Additional ecosystem recommendations (WP1)

Necessary for Management Track

- Incorporation of more recent (to 2023) data
- Focus on an assessment model that produces stable results with acceptable diagnostics with good rates of convergence
- Additional sensitivity analyses
- Include data on all removals

Intro

TOR 1

TOR 2

TOR 3

TOR 4

TOR 5

TOR 6

TOR 7

TOR 8

Conclusions

NOAA FISHERIES

Short Term

• Use tilefish longline survey results to estimate length-based selectivity of different hook sizes

Medium Term

Use inverse age-length key (Ailloud and Hoenig, 2019) to estimate the age composition of the catch for years with inadequate ageing to avoid assumptions about relative yearclass strength from pooled age-length keys

minimum

Intro

TOR 1

TOR 2

TOR 3

TOR 4

TOR 5

TOR 6

TOR 7

TOR 8

Conclusions

- Collect additional sex data on fishery landings and consider the potential consequences of any sex specific differences on age-length keys
- Develop an approach to include the tilefish longline survey as a fishery-independent index in the assessment
- Develop a lifecycle model of golden tilefish to better understand potential environmental drivers on population and fishery dynamics
- Consider characterization and inclusion of ageing error in the assessment
- Examine the assumed value(s) for natural mortality

mmanna

Intro

TOR 1

TOR 2

TOR 3

TOR 4

TOR 5

TOR 6

TOR 7

TOR 8

Conclusions

Long Term

- Collect and examine length frequency samples from observers to estimate age-composition of trawl bycatch for potential inclusion in the assessment
- Collect appropriate metrics and perform further
 analysis for LPUE standardization and estimation
- · Increase observer coverage
- Develop and age- and length-structured assessment model that avoids needing to borrow age data for years with only length composition data

ToR8: Backup Approach

RTWG

Plan B: Use a simpler (i.e. fewer random effects) WHAM configuration

Review Panel

Plan B: Revert to ASAP

Plan C: ???

Plan C: Historical fishery performance

Next Steps for Tilefish

- April 4: Assessment Oversight Panel
- April-June: Preparing MT assessment
- Week of June 24: Management Track Assessment Review Panel
- 2025 and beyond: Continue to address research recommendations via MT

Questions?

