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EXECUTIVE SUMMARY 

Term of Reference (TOR) #1: Identify relevant ecosystem and climate influences 

on the stock. Characterize the uncertainty in the relevant sources of data and 

their link to stock dynamics. Consider findings, as appropriate, in addressing 

other TORs. Report how the findings were considered under impacted TORs. 

Temperature and photoperiod are the principal factors directing activity, migrations, and 

distribution of adult bluefish. Based on this mechanistic connection, quantitative indicators of 

optimal temperature were developed to better understand temperature trends during the bluefish 

spawning season. Sources of uncertainty are discussed. Analyses suggested that the spawning 

season may now extend later in the year compared to historical periods, though it is unclear how 

these changes in potential spawning season may affect bluefish recruitment. On the other hand, 

the amount of habitat in the optimal temperature range during the peak spawning month of July 

has not changed over time, indicating stability in spawning conditions and therefore possibly also 

in recruitment. A Vector Autoregressive Spatiotemporal (VAST) model was developed from the 

fall NEFSC bottom trawl survey to determine the fall centers of gravity of three bluefish size 

groups over time; analyses suggested systematic trends in large and medium bluefish, but not 

small bluefish. Temperature was tested as a covariate in the VAST model, but resulting poor 

model diagnostics were beyond the scope of the present working group to address.   

 

Using a VAST framework, we also developed a forage fish index to evaluate changes in bluefish 

prey over time and space that could be used to inform survey and/or fishery availability in the 

bluefish stock assessment to inform annual deviations in catchability. Small pelagic forage 

species are difficult to survey directly, so we developed a novel method of assessing small 

pelagic fish aggregate abundance using predator diet data. The forage fish indices based on fall, 

spring, and annual datasets all show fluctuations in forage fish biomass, alternating between 

multiple years or decades with higher and lower levels. 

 

Variability in bluefish life history processes was modeled by splitting life history data by 

semesters of the year, by decade, by geographic region, and by sex; results and sources of 

uncertainty are discussed. Natural mortality was updated for this assessment from one based on a 

“rule of thumb” estimate of 0.2 for all ages to Lorenzen weight-based age-varying estimates. 

Our findings were considered and/or incorporated into several subsequent TORs, including: 

spatial domain of the stock (TOR2), estimates of seasonal and regional catch weights (TOR2), 

development of survey indices of abundance with environmental covariates (TOR3), 

incorporation of the forage fish index into a companion assessment model (TOR4), updating 

natural mortality for use in the assessment model (TOR4), and informed several research 

recommendations (TOR7). 

Term of Reference #2: Estimate catch from all sources including landings and 

discards. Describe the spatial and temporal distribution of landings, discards, 

and fishing effort. Characterize the uncertainty in these sources of data. 

The majority of commercial landings over the time series (1950-present) have been taken in the 

Mid-Atlantic region (New York, New Jersey, and North Carolina). The majority of recreational 

activity occurred from May to October, with specific seasonal patterns varying by state. 
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Recreational offshore (3-miles, or 4.8-km, or more from shore) areas account for only about 7% 

of total catch. 

 

Total bluefish removals (total dead catch) have declined since the beginning of the time series. 

There was a slow increase from 1996 to 2010, but the declining trend has continued to the lowest 

values in the time-series in recent years. On average, commercial landings account for 14% of 

the total removals with commercial discards averaging only 0.2%. Dead commercial discards 

have not contributed to total removals in previous assessments, but since they have been 

identified as a source of uncertainty, they were included in this assessment. Total removals are 

dominated by the recreational fishery with recreational landings accounting for 71% of total 

removals, and recreational dead releases averaging 15% of total removals. The recreational dead 

release mortality rate was updated for this assessment through reexamination of the methods 

used in the previous assessment, and an updated literature review; the value changed from 15% 

to 9.4%. The recreational dead discard component of the catch was calculated using the 

season/region length frequency distributions developed from all of the recreational biological 

sampling data for released fish; this is a change from previous assessments to account for 

regional differences in fish size.  

Term of Reference #3: Present the survey data used in the assessment (e.g., 

indices of relative or absolute abundance, recruitment, state surveys, age-length 

data, application of catchability and calibration studies, etc.) and provide a 

rationale for which data are used. Describe the spatial and temporal 

distribution of the data. Characterize the uncertainty in these sources of data. 

The WG participated in an ASMFC Bluefish Technical Committee workshop to review available 

state datasets. The WG explored standardizing fishery independent indices of abundance using 

environmental covariates in a GLM framework. However, the standardization process did not 

notably affect index trends or reduce interannual variability or index coefficients of variation, so 

the WG did not use the standardized indices in the base run and instead used the stratified 

arithmetic mean for surveys with a stratified random design and the geometric mean for surveys 

with a fixed station design. Bayesian hierarchical modeling was used to combine YOY indices 

into a single composite index, using the method developed by Conn (2010) that represents the 

coast wide recruitment dynamics of bluefish. Surveys included in the composite index were from 

NH Juvenile Finfish Seine Survey, RI Narragansett Bay Juvenile Finfish Beach Seine Survey, 

NY Western Long Island Seine Survey, NJ Delaware River Seine Survey, MD Juvenile Striped 

Bass Seine Survey, and VIMS Juvenile Striped Bass Seine Survey. In addition, the bluefish 

working group decided on 8 additional representative indices of bluefish abundance for the 

assessment: 

1. NEFSC Fall inshore strata: 1985-2008 (age-0 – age-6+) 

2. NEFSC Fall outer inshore strata (FSV Bigelow): 2009-2021 (age-0 – age-6+) 

3. NEAMAP Fall Inshore trawl survey: 2007-2021 (age-0 – age-6+) 

4. ChesMMAP trawl survey: 2002-2018 (age-0-3) 

5. Pamlico Sound Independent Gillnet Survey; 2001-2021 (age-0 – 6+) 

6. Marine Recreational Information Program CPUE: 1985-2021 (age-0 – age-6+) 

7. SEAMAP Spring Inshore trawl survey: 1989-2021 (age-1) 

8. SEAMAP Fall Inshore trawl survey: 1989-2021 (age-0) 
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Calculation of the MRIP CPUE was updated for this assessment. Bluefish trips were defined 

using a guild approach where a trip was considered a bluefish trip if it caught either bluefish or a 

species that was significantly positively associated with bluefish. This was a change from the 

previous benchmark assessment where effort was described using “directed trips,” which 

describe trips where bluefish were considered a target species. 

 

Multinomial age length keys were also explored as part of this assessment. Seasonal multinomial 

age length keys (ALKs) reduced retrospective trends and improved convergence diagnostics in 

statistical catch at age models relative to alternative ALKs; additionally, the WG did not believe 

data were sufficient for higher resolution (e.g., regional) ALKs, and so seasonal multinomial 

ALKs were selected for use in the assessment. 

Term of Reference #4: Use appropriate assessment approach to estimate annual 

fishing mortality, recruitment and stock biomass (both total and spawning stock) 

for the time series, and estimate their uncertainty. Compare the time series of 

these estimates with those from the previously accepted assessment(s). Evaluate 

a suite of model fit diagnostics (e.g., residual patterns, sensitivity analyses, 

retrospective patterns), and (a) comment on likely causes of problematic issues, 

and (b), if possible and appropriate, account for those issues when providing 

scientific advice and evaluate the consequences of any correction(s) applied. 

The Woods Hole Assessment Model (WHAM), a state-space, age structured stock assessment 

model, was used as the base model to estimate annual fishing mortality, recruitment, stock 

biomass, and associated estimates of uncertainty, with data updated through 2021. A suite of 

model fit diagnostic plots were examined for each model of interest and model fits were 

examined using conventional residual diagnostics, as well as one-step ahead residual diagnostics. 

Retrospective patterns in model results were evaluated using Mohn’s rho values.  

 

The final model configuration included a number of notable model and data changes since the 

previous peer reviewed model, including: a state-space model, updated natural mortality 

estimate, addition of new indices, including a newly estimated MRIP CPUE index, and addition 

of several selectivity blocks. Spawning stock biomass from the final base model starts in 1985 

high and declines through the late 1990s, remains stable for several years before rising to a 

localized peak in 2008, declining through 2018, and rising in the years since. This pattern 

broadly reflects trends from the previously accepted model, albeit with differences in scale. 

Fishing mortality from the base model starts low in 1985 and rises quickly, then declines and 

varies without trend over much of the timeseries; fishing mortality reached a high in 2017, and 

has declined to timeseries lows since. The trend from the previously accepted model is broadly 

similar, albeit again, with some differences in scale, primarily in estimates of recruitment. 

  

WHAM allows for incorporation of environmental covariates on the catchability of survey 

indices, and we explored a companion model that leveraged this capability. The companion 

model that used the forage fish index as a covariate on catchability of the MRIP index showed 

promise for continued development. The covariate led to an overall decreasing trend in 

catchability over time. 
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Term of Reference #5: Update or redefine status determination criteria (SDC; 

point estimates or proxies for BMSY, BTHRESHOLD, FMSY and MSY reference points) 

and provide estimates of those criteria and their uncertainty, along with a 

description of the sources of uncertainty. If analytic model-based estimates are 

unavailable, consider recommending alternative measurable proxies for 

reference points. Compare estimates of current stock size and fishing mortality 

to existing, and any redefined, SDCs. 

Existing status determination criteria from the 2021 management track assessment (data through 

2019) were FMSY proxy = F35% = 0.181 and SSBMSY = 201,729 MT (1/2 SSBMSY = SSBTHRESHOLD 

= 100,865 MT). Updated reference points from the ASAP continuity run are FMSY proxy = F35% 

= 0.176 and SSBMSY = 190,771 MT (1/2 SSBMSY = SSBTHRESHOLD = 93,386 MT). 

 

Both F35% and SSB35% were calculated in WHAM using average recruitment over the time series 

(1985-2021), and 5-year averages for fishery selectivity, maturity and weights-at-age for SSB per 

recruit calculations. Reference points from the final model (BF28W_m7) were FMSY proxy = 

F35% = 0.248 (95% CI: 0.209 – 0.299) and SSBMSY proxy = SSB35% = 91,897 MT (95% CI: 

66,219–127,534 MT); SSBTHRESHOLD =1/2 SSBMSY proxy = 45,949 MT (95% CI: 33,110–66,768 

MT). The retrospectively adjusted values of terminal year F and SSB were within the 90% 

confidence bounds of the unadjusted values, indicating a retrospective adjustment was not 

necessary to determine stock status. The terminal year SSB was 55,344 MT (95% CI: 35,185 – 

87,052 MT) which was above the SSBTHRESHOLD and 60% of SSBMSY. Full fishing mortality was 

0.166 (95% CI: 0.103 – 0.268) in 2021, which was 67% of the F35% reference point. Stock status 

determination based on the final model indicates that there is an 87% chance that the bluefish 

stock is currently not overfished and over-fishing is not occurring. 

 

Status 

determination 

criteria 

2021 Management 

track assessment 

2022 research track 

assessment 

(continuity run) 

2022 research track 

assessment 

(WHAM) 

FMSY proxy = F35% 0.181 0.176 0.248 

SSBMSY 201,729 MT 190,771 MT 91,897 MT 

½ SSBMSY 100,865 MT 93,386 MT 45,949 MT 

 

Term of Reference #6: Define appropriate methods for producing projections; 

provide justification for assumptions of fishery selectivity, weights at age, 

maturity, and recruitment; and comment on the reliability of resulting 

projections considering the effects of uncertainty and sensitivity to projection 

assumptions. 

Short-term projections were conducted in WHAM, and incorporated model uncertainty and auto-

regressive processes in recruitment and numbers-at-age. The projections used 5-year averages for 

natural mortality, maturity, fishery selectivity and weights-at-age. Removals in 2022 were 

assumed to be equal to the 2022 ABC (11,460 MT), and projections were carried forward for 

years 2023-2025 with different fishing mortality and harvest assumptions: F = 0, Fstatus quo = 

0.166, F35% = 0.248, and that harvest in each year is equal to the acceptable biological catch 

(ABC) in each year. The probability of SSB in 2025 being above the SSB threshold is > 80% for 
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all scenarios explored. Catch advice will be updated as part of the 2023 Management Track 

assessment, but catch advice from WHAM under the most likely scenario explored for this 

research track assessment (MAFMC risk policy assuming CV = 100%) is expected to be stable, 

but lower, relative to 2022. 

Term of Reference #7: Review, evaluate, and report on the status of research 

recommendations from the last assessment peer review, including 

recommendations provided by the prior assessment working group, peer review 

panel, and SSC. Identify new recommendations for future research, data 

collection, and assessment methodology. If any ecosystem influences from TOR 

1 could not be considered quantitatively under that or other TORs, describe next 

steps for development, testing, and review of quantitative relationships and how 

they could best inform assessments. Prioritize research recommendations. 

The SAW 60 WG reviewed the status of previous research recommendations and proposed new 

ones to address issues raised during WG meetings. Notable accomplishments relative to past 

research recommendations include: development of an MRIP index using a species-association 

method to identify bluefish trips, updating the estimate of natural mortality used in the 

assessment model, evaluating model results that aggregated all model input data at a seasonal 

and regional level of resolution, multiple fishery independent surveys were combined using 

VAST as part of this assessment, examination of differences in the calibrated and uncalibrated 

MRIP estimates of bluefish catch, spatial stratification of recreational release length frequencies 

when calculating the weight of dead recreational releases, and the migration to the WHAM 

framework will allow for continued exploration and testing of covariates influencing time-

varying catchability and selectivity.  

 

The WG proposed several new research recommendations to better understand bluefish 

dynamics and assessing the population through the current or future models. These include the 

following: expand collection of recreational release length frequency data, continue development 

and refinement of the forage fish / availability index as well as incorporation of this index in to a  

base model for bluefish management advice, initiate additional fisheries-independent surveys or 

fishery-dependent sampling programs to provide information on larger, older bluefish, continue 

coastwide collection of length and age samples from fishery-independent and -dependent 

sources, refinement and development of indices of abundance, and develop a recreational 

demand model.  

Term of Reference #8: Develop a backup assessment approach to providing 

scientific advice to managers if the proposed assessment approach does not pass 

peer review or the approved approach is rejected in a future management track 

assessment. 

A backup assessment approach is required to be in place as a hedge against a scenario where the 

primary catch-at-age model is not suitable for providing management advice. The bluefish 

Working Group chose the index-based method Ismooth (previously known as PlanBSmooth) as 

the backup model due to its performance in the analyses performed by the Index Based Model 

Working Group (NEFSC 2020) and because it has a history of application at the NEFSC as an 

approach that has been used to develop ABCs (e.g., Georges Bank cod, Gulf of Maine / Northern 
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Georges Bank and Southern Georges Bank / Mid-Atlantic monkfish). Briefly, this approach 

applies recent trends in an index or indices to recent dead catch to generate ABC advice. 
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1 ECOSYSTEM AND CLIMATE INFLUENCES 

Term of Reference (TOR) #1: Identify relevant ecosystem and climate influences 

on the stock. Characterize the uncertainty in the relevant sources of data and 

their link to stock dynamics. Consider findings, as appropriate, in addressing 

other TORs. Report how the findings were considered under impacted TORs. 

1.1 Ecosystem and Socioeconomic Profile (ESP) 

An Ecosystem and Socioeconomic Profile (ESP) was used as a framework to address TOR1 in 

this research track assessment. ESP is a standardized framework to facilitate the inclusion of 

ecosystem and socioeconomic information in the stock advice process; it leverages existing 

information to understand the ecological and socioeconomic drivers of stock dynamics and to 

incorporate this diverse information into the stock advice process through the creation of 

ecosystem and socioeconomic indicators. This standard framework also facilitates the 

interpretation of data and allows future working groups to update the existing indicators in 

addition to creating and assessing new indicators. 

 

The ESP process begins with (1) a systematic review of existing ecosystem and socioeconomic 

literature and identification of problem statements for the stock, followed by (2) development of 

conceptual models to outline the major drivers on the stock, (3) creation of indicators relevant to 

stock performance, (4) analysis of select indicators, and, lastly, (5) reporting out scientific 

advice. The scientific advice provided by an ESP can inform the stock assessment in multiple 

ways, ranging from providing additional context and research recommendations, to suggesting 

new covariates to include that can inform dynamic processes within assessment modeling. 

 

The bluefish ESP includes a comprehensive literature review of bluefish life history and related 

ecosystem considerations relating to bluefish habitat, distribution, diet, predators, competitors, 

growth, and survival at each life stage. It also served as a review of the history of the bluefish 

stock assessment and relevant biological information that is used to make decisions relating to 

the assessment modeling. A conceptual model identifying the major drivers for different life 

stages of bluefish was developed from this review (Figure 1). Diet data collected from multiple 

scientific surveys were analyzed to determine the major prey and predators of bluefish, 

supplementing the literature review on this topic with the most recent data. Distributional and 

environmental data from multiple state and federal surveys were analyzed to understand where, 

when, and under what conditions bluefish of different life stages and size classes were found. 

Ecosystem and socioeconomic indicators were developed to better understand the current status 

of bluefish in the context of each of these dimensions, as well as to begin to probe potential 

mechanistic linkages between the environment and the status of the bluefish stock. Relevant 

results are summarized below; see Working Paper 1 (Tyrell et al. 2022) for the detailed report. 

1.1.1 Diet 

In the Northeast Fisheries Science Center (NEFSC) bottom trawl data, anchovies, butterfish, and 

squid were important prey items in all years. Sandlance, herring, bluefish, scup, and drum were 

important prey in some years in the NEFSC bottom trawl. Bay anchovy, butterfish, and striped 

anchovy were important prey species in the Northeast Area Monitoring and Assessment Program 

(NEAMAP) bottom trawl. Bay anchovy, spot, and menhaden were important prey species in the 
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Chesapeake Bay Multispecies Monitoring & Assessment Program (ChesMMAP) bottom trawl. 

Overall, >80% of bluefish diet was composed of fish, both by weight and by abundance. There 

were few records of bluefish in the stomachs of other species captured and sampled in these 

surveys. 

 

1.1.2 Environment, Spatial Distribution, and Cohorts 

Adult and juvenile bluefish are found primarily in waters less than 20 meters deep along the 

Atlantic coast (Shepherd and Packer 2006). The 2022 bluefish research track assessment 

Working Group (referred to herein as WG) investigated whether Gulf of Mexico bluefish were 

part of the unit stock being assessed for the 2022 research track assessment. This investigation 

did not identify any known systematic studies (e.g., tagging, genetics) that demonstrated bluefish 

migrations into or out of the Gulf of Mexico. A review of the Florida Fish and Wildlife’s 

acoustic receiver network and the American Littoral Society’s volunteer angler tagging program 

indicated that no bluefish tagged on the Atlantic coast were ever recaptured in the Gulf of 

Mexico. Marine Recreational Information Program (MRIP) and commercial landings queries 

indicated that, on average, total bluefish harvest or removals (landings plus dead releases) in the 

Gulf of Mexico is 3-4% of combined Gulf and Atlantic coast bluefish removals. Finally, a query 

of recreational harvest length frequency suggested similarities between the two regions, which 

did not support a WG hypothesis that “missing” lengths in some observed periodic bimodal 

length frequency distributions on the Atlantic coast might reside in the Gulf of Mexico. 

Therefore, no data suggest that the Gulf of Mexico is an important habitat for Atlantic bluefish. 

 

MRIP data and state and federal scientific surveys supported the seasonal migration pattern of 

bluefish, with fish observed in more southern locations in the winter and migrating northward in 

spring and summer. Spawning was also recorded in spring and summer, with eggs observed in 

some years in May through August. Length data from scientific surveys supported the presence 

of multiple sub-annual young-of-the-year cohorts in some years, although precise quantification 

of spring-spawned versus summer-spawned cohorts was generally not possible due to 

spatiotemporal variation in sampling effort and low sample sizes. Juveniles may be estuarine 

dependent (Munch 1997) although they also occur in nearshore ocean waters (Taylor et al. 

2006); juvenile habitat use may vary by cohort (Taylor et al. 2007; Wuenschel et al. 2012). 

Adults use both estuarine and ocean environments and favor warmer water temperatures 

although they are found in a variety of hydrographic environments (Ross 1991; Shepherd and 

Packer 2006; Wuenschel et al. 2012). Small (≤30.3 cm) bluefish were generally found in the 

highest abundance along the Atlantic coast between Long Island and North Carolina. Medium 

(30.3-50.0 cm) bluefish were generally found in the highest abundance along the Atlantic coast 

as well as on Georges Bank. Large (≥50.0 cm) bluefish were generally found in the highest 

abundance in Southern New England and on Georges Bank. 

 

In recent years, stakeholders have reported that larger bluefish are staying offshore and are less 

abundant inshore. The American Littoral Society Fish Tagging Program’s bluefish data were 

analyzed to assess whether larger fish (> 18 inches or 46 cm) are being tagged and released or 

recaptured more frequently offshore. Analyses did not show that larger fish are being tagged and 

released or recaptured more frequently offshore in recent years (Working Paper 2, Valenti 

2022a); however, very few large bluefish were tagged and released or recaptured in the last five 

years, so the sample size was notably small. The disparity between the stakeholder reports and 
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the results of this analysis could be due to limitations inherent to volunteer fish tagging program 

data, including low sampling of bluefish and variability in angler effort and reporting. 

 

A Vector Autoregressive Spatiotemporal (VAST; Thorson and Barnett (2017); Thorson (2019)) 

model was developed from the fall NEFSC bottom trawl survey to determine the fall centers of 

gravity of three bluefish size groups over time. Center of gravity analyses showed that medium 

bluefish are moving north and east at an average rate of 1.1 km/year, and large bluefish are 

moving north at an average rate of 0.2 km/year and east at an average rate of 0.5 km/year. The 

center of gravity of small bluefish did not have a trend. This distribution change may support 

anecdotes about large bluefish moving offshore in recent years. Further research is needed to 

fully understand bluefish distribution, as the 2020 and 2021 NEFSC fall bottom trawl surveys 

did not catch enough bluefish to be included in this study. Additionally, temperature was tested 

as a covariate in the VAST model, but resulting poor model diagnostics were beyond the scope 

of the present working group to address. See Working Paper 3 (Tyrell 2022) for more details. 

1.1.3 Ecosystem Indicators 

1.1.3.1 Temperature 

Bluefish can tolerate temperatures ranging from approximately 11°-30.4°C, however they exhibit 

stress, such as an increase in swimming speed, at both extremes (Olla and Studholme 1971; 

Klein-MacPhee 2002). The literature indicated temperature and photoperiod are the principal 

factors directing activity, migrations, and distribution of adult bluefish (Olla and Studholme 

1971, Taylor et al. 2007). Based on this mechanistic connection, quantitative indicators of 

optimal temperature were developed to better understand temperature trends during the bluefish 

spawning season.  

 

The spawning season may now extend later in the year compared to historical periods. Bluefish 

spawning has been recorded at 18-25.6°C (Norcross et al. 1974). In the greater Mid Atlantic 

Bight and Southern New England regions, the first day when 75% or more of the sea surface 

reaches 18°C has remained stable over time, while the last day when 75% of the sea surface is 

above 18°C has occurred later in the year over time, currently persisting into mid and late 

October (in contrast to the beginning of October in the 1980s); the total number of days with 

75% or more of the sea surface above 18°C has increased over time. It is unclear how these 

changes in potential spawning season may affect bluefish recruitment. There were no notable 

correlations between first, last, or number of days above 18°C and the composite young-of-the-

year index used in the model (Section 3.1.2) or modeled recruitment (NEFSC 2019). However, 

the surveys used to characterize young-of-the-year bluefish may not fully document spawning 

that occurs in the fall due to a mismatch in survey timing and the recruitment of fall-spawned 

bluefish to estuaries; furthermore, most surveys do not capture the smallest bluefish (<15 cm 

length) that have been spawned most recently. 

 

In contrast to trends in the potential spawning season, the amount of habitat in the optimal 

temperature range during the peak spawning month of July has not changed over time, indicating 

stability in spawning conditions and therefore possibly also in recruitment; however, the amount 

of habitat with colder-than-optimal temperatures (<18°C) has decreased, while the amount of 

habitat with warmer-than-optimal temperatures (>25.6°C) has increased. The amount of area in 

the Central Atlantic with optimal bluefish spawning temperatures in July was marginally 
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positively correlated with bluefish recruitment (modeled recruitment in the 2015 assessment), 

while the amount of area with warmer-than-optimal temperatures was negatively correlated with 

bluefish recruitment. Although the amount of area with optimal temperatures in July has 

remained consistent over time, future ocean warming may eventually decrease the proportion of 

the Central Atlantic with optimal bluefish spawning temperatures as more areas warm above 

25.6°C and fewer or no areas are left below 18°C.  

1.1.3.2 Natural Mortality 

Proxies for natural mortality were investigated to the extent possible. Relative condition of the 

small, medium, and large bluefish size groups was determined over time. Condition of large 

bluefish was found to be increasing over time, while the condition of medium bluefish had no 

change over time. Relative condition of small bluefish decreased slightly in the spring only, but 

remained above one, indicating good condition. Condition could be considered as a proxy for 

natural mortality, and generally indicates that mortality sources other than fishing have not 

increased compared to historical conditions, supporting the use of time-invariant natural 

mortality in the assessment model. 

 

Bluefish predators are not well sampled, but existing data suggest that bluefish are not currently 

experiencing higher predation risk relative to historical conditions. 

1.1.3.3 Condition and Recruitment 

An increasing trend in the relative condition of large bluefish may be beneficial for bluefish 

recruitment, as larger and fatter bluefish may produce more eggs and/or more high-quality eggs; 

however, further research is needed to quantify the relationships between fecundity and length, 

weight, and age, which are currently not well documented. 

1.1.4 Socioeconomic Indicators 

Despite lower catches in recent years, bluefish remains one of the top recreational fisheries on 

the U.S east coast in terms of total catch, and therefore likely helps support a robust recreational 

fishing industry.  

 

Although management was fairly stable in terms of catch limits and trip limits until the bag limit 

reductions implemented in 2020, the recreational fishery has shifted to catch-and-release rather 

than catch for harvest. Recreational landings in weight have decreased over time, with landings 

in 2021 being less than 10% of landings in 1981. Over the same time period, the total 

recreational catch (harvest plus all released bluefish) has decreased from 76 million fish in 1981 

to 30 million fish in 2021. 

  

Neither commercial nor recreational catch typically exceed catch limits, though in both 2020 and 

2021 there were recreational catch limit overages of 32% in 2020 and 41% in 2021. However, 

the Acceptable Biological Catch (ABC) has generally decreased each year since it was 

implemented in 2011 due to stock condition. Therefore, recent decreases in catch and landings 

may be attributable to management actions rather than lack of interest in the bluefish fishery.  

1.2 Forage Fish Index 

The objective of this work was to create a forage fish index to evaluate changes in bluefish prey 

over time and space that could be used to inform survey and/or fishery availability in the bluefish 

stock assessment to inform annual deviations in catchability. Changing distribution and 
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abundance of small pelagic prey may drive changes in predator distributions, affecting predator 

availability to fisheries and surveys. However, small pelagic forage species are difficult to survey 

directly, so we developed a novel method of assessing small pelagic fish aggregate abundance 

using predator diet data.  

 

We used piscivore diet data collected from multiple bottom trawl surveys within a Vector 

Autoregressive Spatio-Temporal (VAST) model (Thorson and Barnett 2017, Thorson 2019) to 

assess trends of small pelagic forage species on the Northeast US shelf. This approach uses 

survey-sampled predator stomach contents as observations to develop a survey index for forage 

fish, following Ng et al. (2021), which used predator stomach data to create a biomass index for 

a single prey, Atlantic herring. 

 

We adapted the approach of Ng et al. (2021) to generate an index for bluefish prey in aggregate 

rather than a single prey species. Further, we include inshore and offshore regions by combining 

two regional bottom trawl surveys, the NEFSC survey and the NEAMAP survey, as was done 

previously for summer flounder biomass (Perretti and Thorson 2019). Finally, since bluefish 

themselves are sparsely sampled by the surveys, we aggregate all predators that have a similar 

diet composition to bluefish to better quantify bluefish prey biomass. 

 

Methods and results are summarized below; for more detail, see Working Paper 4 (Gaichas et al. 

2022). 

1.2.1 Forage Fish in Bluefish Diets 

Using NEFSC bottom trawl survey diet data from 1973-2021, 20 small pelagic groups were 

identified as major bluefish prey, with 10 or more observations in bluefish stomachs over the 

entire 48-year period. In descending order of observations, bluefish prey are: longfin squids 

(Doryteuthis formerly Loligo sp.), anchovy family (Engraulidae), bay anchovy (Anchoa 

mitchilli), Atlantic butterfish (Peprilus triacanthus), Cephalopoda, striped anchovy (Anchoa 

hepsetus), red eye round herring (Etrumeus teres), sandlance (Ammodytes sp.), scup (Stenotomus 

chrysops), silver hake (Merluccius bilinearis), shortfin squids (Illex sp.), Atlantic herring 

(Clupea harengus), herring family (Clupeidae), bluefish (Pomatomus saltatrix), silver anchovy 

(Engraulis eurystole), longfin inshore squid (Doryteuthis pealeii), Atlantic mackerel (Scomber 

scombrus), flatfish (Pleuronectiformes), weakfish (Cynoscion regalis), and Atlantic menhaden 

(Brevoortia tyrannus). 

 

Prey categories such as “fish unidentified”, “Osteichthyes”, and “unidentified animal remains” 

were not included in the prey list. Although unidentified fish and Osteichthyes can comprise a 

significant portion of bluefish stomach contents, unidentified fish in other predator stomachs 

may not represent the same types of unidentified fish in bluefish stomachs. 

1.2.2 Predators Feeding Similarly to Bluefish 

All size classes of 50 fish predators captured in the NEFSC bottom trawl survey were grouped by 

diet similarity to identify the size classes of piscivore species with the most similar diet to 

bluefish in the region. Diet similarity analysis was completed using the Schoener similarity index 

(Schoener 1970; B. Smith, pers. comm.), and is available via the NEFSC food habits shiny app. 

The WG evaluated several clustering methods to develop the predator list (see this link with 

detailed cluster results). 

https://fwdp.shinyapps.io/tm2020/#4_DIET_OVERLAP_AND_TROPHIC_GUILDS
https://sgaichas.github.io/bluefishdiet/PreySimilarityUpdate.html
https://sgaichas.github.io/bluefishdiet/PreySimilarityUpdate.html
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The nineteen predators with highest diet similarity to bluefish from the NEFSC diet database 

(1973-2020) included Atlantic cod, Atlantic halibut, buckler dory, cusk, fourspot flounder, 

goosefish, longfin squid, shortfin squid, pollock, red hake, sea raven, silver hake, spiny dogfish, 

spotted hake, striped bass, summer flounder, thorny skate, weakfish, and white hake.  

 

The NEAMAP survey operates closer to shore than the current NEFSC survey. The NEAMAP 

dataset includes predators sampled by the NEFSC survey and adds two species, Spanish 

mackerel and spotted sea trout, not captured by the NEFSC survey offshore but included as 

bluefish-like predators based on WG expert judgement of diet similarity to bluefish. Predator 

size classes included are listed in Table 2 of Working Paper 4 (Gaichas et al. 2022). 

1.2.3 Datasets 

The mean weight of forage fish per predator stomach at each location was calculated by 

combining weight across the 20 forage fish (bluefish prey) groups found in stomachs from all 22 

piscivores (including bluefish) at each surveyed location. Data for each station included station 

ID, year, season, date, latitude, longitude, vessel, mean bluefish prey weight (g), mean piscivore 

length (cm), number of piscivore species, and sea surface temperature (degrees C). Because 

approximately 10% of survey stations were missing in-situ sea water temperature measurements, 

National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface 

Temperature (NOAA OI SST) V2 High Resolution Dataset (Reynolds et al. 2007) data provided 

by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov were 

used to fill gaps. For survey stations with in-situ temperature measurements, the in-situ 

measurement was retained. For survey stations with missing temperature data, OI SST was 

substituted for input into VAST models. 

 

Models were developed combining all data for the year (“Annual”) and with separate data for 

“Spring” (collection months January - June) and “Fall” (collection months July-December) to 

align with seasonal stratification used in the bluefish stock assessment. Modeled years included 

1985-2021 to align with other data inputs in the bluefish stock assessment. 

1.2.4 VAST Modeling 

VAST is structured to estimate fixed and random effects across two linear predictors, which are 

then multiplied to estimate an index of the quantity of interest. Following the methods of Ng et 

al. (2021), we applied a Poisson-link delta model to estimate expected prey mass per predator 

stomach. We used a higher resolution (500 knots, estimated by k-means clustering of the data) to 

define the spatial dimensions of each seasonal model. Two step model selection first compared 

whether the data supported estimation of spatial and spatio-temporal random effects, and then 

evaluated whether catchability covariates improved fits. Best fit models included spatial and 

spatio-temporal random effects, with predator mean length, number of predator species, and sea 

surface temperature as catchability covariates; that is, these covariates all influenced the 

observation process rather than the distribution or abundance of prey. Detailed results of model 

selection are available in Working Paper 4 (Gaichas et al. 2022). 

 

Similar to findings of Ng et al. (2021), a vessel effect was not supported, but the inclusion of the 

predator length covariate may more directly account for vessel differences in predator catch that 

affect stomach contents than modeling a vessel catchability covariate directly. Similar to our 

https://psl.noaa.gov/
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results, Ng et al. (2021) found that predator length covariates were strongly supported as 

catchability covariates (larger predators being more likely to have more prey in stomachs). In our 

aggregate predator dataset, we also found strong support for including the number of predator 

species in a tow as a catchability covariate. The rationale for including number of predator 

species is that more species “sampling” the prey field at a particular station may result in a 

higher encounter rate (more stomachs with bluefish prey). Water temperature was also supported 

as a catchability covariate, perhaps because temperature affects predator feeding rate and fish 

distribution. 

1.2.5 Spatial Forage Indices 

Spring, fall, and annual prey indices were split into inshore and offshore areas to quantify 

changing prey availability over time in areas available to the recreational fishery and the bottom 

trawl survey. First, we define a partition that includes survey areas relevant to the bluefish 

assessment (Mid Atlantic and Georges Bank). Within this partition, 

• To evaluate bluefish availability to the NEFSC bottom trawl survey, two inshore-

offshore strata partitions were created to account for the NEFSC survey vessel change 

in 2008. Inshore and offshore strata partitions included: 

o Albatross inshore stations (historically included in the Albatross NMFS bottom 

trawl index developed for the bluefish assessment) 

o Bigelow inshore bluefish index stations (historically included in the Bigelow 

NMFS bottom trawl index developed for the bluefish assessment) 

o Offshore bluefish index stations (the same for both vessels, and considered for 

addition to the NMFS bottom trawl bluefish indices in 2022) 

• To evaluate bluefish availability to the MRIP catch-per-unit-effort (CPUE) index, 

recreational fishery strata partitions included: 

o shoreline to 3 miles offshore (state waters) 

o offshore of 3 miles (federal waters) 

 

NEFSC survey strata definitions are built into the VAST “northwest-Atlantic” extrapolation grid. 

We defined additional new strata to address the recreational inshore-offshore 3-mile boundary, 

and incorporated them into a custom extrapolation grid so that the forage indices could be 

calculated and bias corrected (Thorson and Kristensen 2016) for all strata within VAST.  

 

Full VAST model results for Fall, Spring, and Annual models, along with diagnostics, are 

available in Working Paper 4 (Gaichas et al. 2022). Here we show the forage fish index for the 

Fall model. The index is calculated for several regions relevant to the bluefish assessment: 

 

• Albatross New (AlbNew) includes all inshore and new offshore survey strata (largest 

area) 

• Albatross Old (AlbOld) includes all inshore survey strata 

• Bigelow New (BigNew) includes the subset of inshore survey strata that can be sampled 

by the R/V Henry Bigelow plus new offshore strata 

• Bigelow Old (BigOld) includes the subset of inshore survey strata that can be sampled by 

the R/V Henry Bigelow 

• StateWaters includes the coastline to 3 nautical miles offshore (smallest area) 
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1.2.6 WHAM model example covariates: forage index time series, fall 

Comparison of inshore and offshore spatial forage indices shows higher abundance of forage fish 

in state waters than in the subset of inshore strata that can be sampled by the R/V Henry Bigelow 

(Figure 2). Highest forage abundance is in the largest area, which includes all inshore survey 

strata as well as new offshore strata proposed for use in the bluefish assessment. The forage fish 

indices based on fall, spring, and annual datasets all show fluctuations in forage fish alternating 

between multiple years or decades with higher and lower levels. In general, the fall forage 

indices were higher at the beginning of the time series (mid-1980s), dropping to lower levels in 

the mid- and late-1990s, then showing cyclical fluctuations up until 2021, but never returning to 

high levels observed in the mid-1980s. 

1.3 Life History Parameters 

A single dataset was created from life history data collected by fishery-independent and fishery-

dependent sampling by NMFS and Atlantic coast states and agencies. These data included ages, 

lengths, weights, and maturity observations. Life history processes were modeled, including 

mean length- and weight-at-age, modeled age-length relationships (e.g., Figure 3), allometric 

growth (e.g., Figure 4) and maturity-at-age (Table 1). 

 

1.3.1 Age-Length and Length-Weight Relationships 

Parameter estimates from the different life history models and expected values for size-, weight- 

and maturity-at-age and weight-at-length were generally consistent with analyses performed 

during the 2015 benchmark as well as with other previous research. Variability in the life history 

processes was modeled by splitting the data by semesters of the year, by decade, by geographic 

region (north and south, defined as Maine-Virginia and North Carolina-Florida, respectively), 

and by sex. Seasonal differences in length-at-age, weight-at-length, and maturity-at-age were 

apparent from these data; consistent with first principles, bluefish tended to be larger, weigh 

more and were more likely to be mature for their age during the second semester of the year 

relative to the first semester. Inter-decadal changes and differences by sex were less evident from 

the data. See Working Paper 5 (Truesdell et al. 2022) for more information including figures and 

tables outlining these findings.  

 

1.3.2 Maturity-at-Age 

The bluefish maturity schedule, in combination with the estimated total weight by age class, is 

used to estimate spawning stock biomass. The WG examined a variety of approaches to calculate 

maturity-at-age; all were based on using logistic generalized linear models (GLMs). The WG 

surmised through fitting models using different iterations of the data that the 2015 benchmark 

assessment had most likely employed federal data only (i.e., NMFS survey and port sampling 

data) to determine this ogive. The 2022 WG computed ogives using only federal data through 

2021 and using state and federal data combined. The ogives that used both state and federal data 

estimated a mid-year maturity schedule by including time of year in the GLM; see Working 

Paper 5 (Truesdell et al. 2022) for more details. Ultimately, the differences in the versions of 

maturity ogives were not dramatic (Table 1) and the WG decided to use the same schedule that 

was implemented during the 2015 benchmark for primary model runs as this had been previously 

reviewed. 
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1.3.3 Natural Mortality 

In the absence of direct natural mortality estimates for bluefish, the WG evaluated life history 

and longevity-based estimators of natural mortality. These methods included: maximum-age 

based methods, life history methods (using von Bertalanffy parameters), and length- or weight- 

based methods. The length and weight data described in the life history working paper (Truesdell 

et al. 2022a) were used for these calculations. For a detailed comparison of methods and natural 

mortality (M) estimates, see Working Paper 6 (Tyrell and Truesdell 2022).  

 

The WG decided not to rely on natural mortality methods based on von Bertalanffy parameters, 

following the reasoning of Then et al. (2015). Based on the updated analyses using the 

maximum-age based methods of Hewitt and Hoenig (2005) and Then et al. (2015), the WG 

agreed that the “rule of thumb” estimate of 0.2 for all ages used in the 2015 benchmark 

assessment was too low. Ultimately, the WG decided to proceed with the Lorenzen weight-based 

age-varying natural mortality method because these estimates were in line with both the Hewitt-

Hoenig (2005) and Then et al. (2015) estimates, and furthermore retained biological realism. The 

Lorenzen (1996) estimates using empirical weight-at-age (M range = 0.27-0.85) were higher at 

all ages than the age-constant value of 0.2 used in the previous benchmark assessment (Figure 5). 

1.4 Uncertainty 

Some of the ecosystem indicators identified in the ESP were not developed due to uncertainty 

around the underlying mechanistic connection to bluefish and/or the data source, and are 

described in detail in the ESP (Working Paper 1 Tyrell et al. 2022). For example, the WG 

proposed a large predator index to inform natural mortality, but could not locate sufficient data to 

create this index. The WG also identified overwinter survival as a bottleneck on survival to age 

1, but could not develop any indicators of overwinter survival due to uncertainty in the locations 

where juvenile bluefish overwinter. Furthermore, the main source of long-term, large-scale 

fishery independent data for bluefish are bottom trawls (e.g., the NEFSC bottom trawls, 

NEAMAP), which are not well suited to capturing a large, fast-moving pelagic species like 

bluefish. As a result, the available data on the spatio-temporal distribution and movement of 

larger, older bluefish and the associated environmental indicators is limited. All of these 

proposed indicators are documented in the ESP and can be revisited as further data become 

available during future stock assessments.  

 

The ESP identified several mechanistic linkages between the environment and bluefish stock 

dynamics and developed several quantitative environmental indicators. The development of 

these indicators is a first step towards including ecosystem variability in the assessment model to 

reduce uncertainty. With the bluefish stock assessment model now in a Woods Hole Assessment 

Model (WHAM) modeling framework, these environmental linkages can be tested in the future 

by including environmental covariates in model sensitivity runs, informing processes such as 

catchability, selectivity, natural mortality, and recruitment.  

 

While the fall forage fish indices are temporally aligned with bluefish assessment inputs and both 

temporally and spatially aligned with two trawl survey indices used in the assessment, 

improvements in spatial overlap with recreational fisheries and other survey indices could be 

considered in the future to reduce uncertainty in associating forage fish with the bluefish MRIP 

abundance index. The current forage index does not cover inland waters, aside from Narragansett 
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Bay and Buzzards Bay. Diet data are available for Chesapeake Bay from the ChesMMAP 

survey, which could be added to the VAST model in the future. Less diet information is available 

for the portion of the bluefish range south of Cape Hatteras, although some collections have 

taken place. Investigation of sources of diet information, or possibly direct forage fish surveys 

for inland and southern areas would be worthwhile to see whether data are adequate to cover the 

full range of bluefish. 

 

A key recommendation for future treatment of the life history data is to account for variability in 

spatio-temporal observations, as numerous fishery-independent and fishery-dependent sampling 

programs contributed to the available life history information, each with different sampling 

intensity across the Atlantic coast and across seasons and years. The VAST model developed for 

the NEFSC fall bottom trawl (Working Paper 3 Tyrell 2022) is a first step towards addressing 

some of this uncertainty caused by the spatiotemporal variability, but more work is needed to 

resolve the issue. 

1.5 Incorporating Findings into Impacted TORs 

TOR2 (catch data): The WG elected to omit Gulf of Mexico bluefish catch data from the 

assessment, based on the review of movement and distribution data; this is consistent with 

previous assessments for bluefish (NEFSC 2015). To capture seasonal and regional variations in 

growth and availability/distribution of bluefish, the WG used a seasonal length-weight 

relationship and seasonal-regional length frequencies to describe the age structure of the 

commercial and recreational catch. 

 

TOR3 (survey data): The WG explored standardizing survey indices using generalized linear 

models (GLMs) parameterized with several environmental covariates (depending on the data 

collected during the survey), such as temperature, salinity, and dissolved oxygen. Ultimately, the 

WG found that the trends and uncertainty in the standardized survey indices were similar to the 

trends and uncertainty in the nominal indices, and decided to use nominal indices because they 

are simpler to maintain and update in management track assessments (e.g., versus possible future 

update GLM convergence issues). See TOR 3 and Working Paper 7 (Celestino et al. 2022a) for 

more details. 

 

TOR4 (fishing mortality, recruitment, spawning stock biomass), TOR5 (stock status), TOR6 

(projections): The forage fish index was incorporated into a companion model run as a covariate 

for catchability associated with the MRIP index. This companion model had good diagnostics, 

but was not put forward as the primary model due to concerns that it did not capture forage fish 

trends in the South Atlantic Bight, among other issues (see Section 4). The companion model 

was used to generate population estimates for comparison with the primary model, and generally 

showed similar results to the primary model, and its continued exploration and development is a 

high priority research recommendation (see TOR 7). The age-structured primary model used 

time-varying size-at-age from the observed average weight-at-age by year and fleet to calculate 

total and spawning stock biomass, to reflect the observed interannual variability in growth and 

condition. The primary assessment model also used the age-specific natural mortality schedule 

that was developed under TOR 1. Additionally, the assessment model was shifted into the 

WHAM platform in part due to WHAM’s ability to incorporate environmental covariates in 

future model updates. 
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TOR7 (research recommendations): The ecosystem information compiled for TOR1 was used to 

inform several research recommendations under TOR7, most notably suggesting further 

sampling to resolve spring-spawned and summer-spawned cohorts, associated environmental 

drivers of relative cohort strength, and possible effects on the bluefish population, as well as 

testing additional environmental covariates in the WHAM modeling framework. 

 

2 CATCH 

Term of Reference #2: Estimate catch from all sources including landings and 

discards. Describe the spatial and temporal distribution of landings, discards, 

and fishing effort. Characterize the uncertainty in these sources of data. 

For more detailed information on commercial and recreational data collection and analysis, see 

Working Papers 8-10. 

2.1 Commercial Removals 

2.1.1 Commercial Landings Data Collection 

Commercial landings (1950 to present) for all species on the Atlantic coast are maintained in the 

Atlantic Coastal Cooperative Statistics Program (ACCSP) Data Warehouse.  The Data 

Warehouse is an online database of fisheries dependent data provided by the ACCSP state and 

federal partners. The Data Warehouse was queried on 31 May 2022 for all commercial bluefish 

landings (monthly summaries by state, gear and market category) from 1985-2021 for Florida 

(Atlantic coast), Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New 

Jersey, New York, Connecticut, Rhode Island, Massachusetts, New Hampshire, and Maine. 

2.1.2 Commercial Landings 

Over the last approximately 40 years, commercial landings from the bluefish fishery ranged from 

a high of 7,162 MT (15.8 million pounds) in 1988 and have steadily declined to a low of 1,090 

MT (2.4 million pounds) in 2021 (Figure 6). During this time, commercial landings have been 

consistently lower than the recreational catch and accounted for on average approximately 14% 

of the total removals in weight (Table 2, Figure 6). Amendment 1 to the bluefish Fishery 

Management Plan (FMP) was implemented in the year 2000 and the commercial fishery has 

been regulated by quota since this time. Gill nets are the dominant commercial gear used to 

target bluefish and average approximately 50% of the bluefish commercial landings from 1982 

to 2021; this gear is fished primarily in the Mid-Atlantic and Florida. Other commercial gears, 

including hook & line, pound nets, seines, and trawls, collectively account for approximately 

50% of the commercial landings. 

  

Regional variations in commercial fishing activity are linked to the seasonal migration of 

bluefish. The majority of commercial fishing activity in the North and Mid-Atlantic occurs from 

late spring to early fall when bluefish are most abundant in these areas. As water temperatures 

decrease in late fall and winter, bluefish migrate south. Peak landings in the South Atlantic occur 

in late fall and winter. The majority of commercial landings over the time series (1950-present) 

have been taken in the Mid-Atlantic region (New York, New Jersey, and North Carolina); 

approximately 65% of the coast-wide total landings have been taken by these three states since 
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1982. Florida accounted for a larger percent of commercial catch historically (early 1980s) but 

has accounted for a diminishing proportion of landings over time.  

 

2.1.3 Commercial Biological Sampling 

Commercial fisheries from Maine to Virginia were sampled as part of the NEFSC data collection 

program (1985-2021). In addition, Virginia, North Carolina, and Florida have collected age and 

length data from their commercial fisheries to characterize the catch from the late 1980s onward. 

Since 2012, states that account for more than 5% of total coastwide landings have been required 

to collect 100 paired age and length samples, although those samples may come from any 

combination of commercial, recreational, or fishery independent sources. Sampling details were 

modified in 2020; see ASMFC 2020 and 2021 for more detail on state sampling programs. 

Length frequency data for Maine – North Carolina were expanded according to total landings in 

weight by market category and quarter. Biological data collection for the bluefish fishery south 

of North Carolina was sparse. Florida landings were characterized by North Carolina length 

frequencies from 1985-1991 due to lack of sampling in Florida; from 1992-2021, Florida 

samples were expanded by half-year (hereafter referred to as “season”). Landings from South 

Carolina and Georgia were generally negligible across the time series; when they occurred, they 

were pooled with Florida landings and characterized using the length frequency data used for 

Florida. 

2.1.4 Commercial Length Frequency Distribution 

The length frequency distribution from the commercial fisheries is characterized by a bi-modal 

distribution for much of the time-series. In the more recent years (2012-2021), the larger mode is 

reduced, leading to a skewed distribution with a peak around 35 cm. This pattern in bluefish 

length frequency has been observed in some years of the recreational harvest length frequencies, 

and the recreational discard length frequencies. The bi-modal pattern is likely a result of low 

availability to the fisheries of age 3 to age 4 bluefish. Bluefish are known to school by size class 

and it is speculated that movement dynamics at this age/size range affects availability of these 

fish. Much of this size cohort could be staying in the south (SC-FL) or offshore in certain years, 

and since the dominant fisheries for bluefish are coastal and north of Cape Hatteras, North 

Carolina, this would account for a reduced availability of this size/age class. 

2.1.5 Commercial Discards  

Previous bluefish technical committees (TCs) and working groups have concluded that 

commercial discards for bluefish along the Atlantic coast were insignificant, and historically this 

portion of the commercial catch has been ignored. The 2022 research track WG concluded that 

although commercial discards are a small fraction of the total catch, they should still be 

estimated and included in the commercial catch totals. To estimate commercial discards for 

bluefish, the Standardized Bycatch Reporting Method (SBRM) approach (Wigley et al. 2007) 

was applied, using the combined (D2) estimator. Commercial discard rates from 1989-2021 were 

calculated by half-year, gear, mesh, and region. A commercial discard mortality estimate of 32% 

was estimated via a literature review and meta-analysis based on the relevant gear types for the 

bluefish fishery and applied to the annual discards. See Appendix I to Working Paper 8 (Wood 

2022a) for more details. Commercial landed lengths were used to characterize the size structure 

of the dead discards in all years due to the absence of adequate discard length samples. 
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Commercial bluefish dead discards have ranged from a high of 166 MT in 1996, to a low of 7 

MT in 2017 (Table 2, Figure 6). Trawl and gillnet fisheries account for almost all of the discards, 

with small contributions from handline, longline, and midwater fisheries. Observed trips where 

bluefish was a primary target averaged around 1,800 trips per year over the time series. 

Commercial bluefish discards average 1.5% of the commercial catch by weight, and 0.2% of the 

total catch. While this portion of the catch is insignificant, the inclusion of these data will allow 

future shifts in magnitude to be monitored and accounted for in the assessment and more closely 

represent commercial allocations in catch accounting. 

2.1.6 Commercial CAA and WAA 

Seasonal length-weight parameters (Figure 4; Working Paper 5 Truesdell et al. 2022) were used 

to calculate numbers at length for the commercial catch. Final commercial catch-at-age (CAA) 

and weight-at-age (WAA) matrices were calculated using the annual seasonal multinomial age 

length keys (Section 3.3.1; Working Paper 14 Celestino et al. 2022b). The commercial catch is 

predominately comprised of age-1 and age-2 bluefish. 

2.2 Recreational Removals 

2.2.1 Recreational Data Collection 

Estimates of recreational harvest and live releases for bluefish come from the NOAA Fisheries 

Marine Recreational Information Program, which uses a combination of effort surveys and 

angler-intercept surveys to develop those estimates (Papacostas and Foster 2018). This program 

was historically known as the Marine Recreational Fishery Statistics Survey (MRFSS), but was 

renamed in 2013 as NOAA Fisheries began making improvements to the survey design and 

estimation methods to address concerns identified by a National Academies review of the 

program (NRC 2006). 

 

In 2018, MRIP transitioned from the Coastal Household Telephone Survey (CHTS) of effort to a 

mail-based survey, the Fishing Effort Survey (FES), following three years of side-by-side 

benchmarking. The CHTS and the FES only estimate effort for the private angler mode; the for-

hire mode is covered by a separate survey, the For-Hire Survey (FHS). The FES produced 

consistently higher estimates of effort than the CHTS, so MRIP calibrated the historical 

estimates of catch and effort from the CHTS to the new scale of the FES estimates to provide a 

consistent time series (Papacostas and Foster 2018). The calibration model included fixed annual 

and seasonal effects as well as random effects and included information on trends in state-

specific population size for the full time series and the prevalence of wireless/cell phone only 

households by state from 2007-2014. The calibration process also included the 2013 changes to 

the angler-intercept survey and corrections for the historical inconsistencies in the MRFSS 

intercept survey design (Papacostas and Foster 2018). 

 

This increase in effort translated into an increase in total catch for bluefish, in both harvest and 

live releases. The overall trends in harvest and live releases were generally the same between the 

calibrated and uncalibrated time series, but the calibrated estimates were consistently higher. For 

a more detailed review of MRIP changes over time and the impacts of the calibration, see 

Working Paper 9 (Drew 2022a).  
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2.2.2 Recreational Harvest 

Recreational harvest estimates of bluefish have averaged around 20,000 MT (44.1 million 

pounds) annually since 1985. From the 1980s to the early 1990s, recreational harvest declined by 

about 60%. The 1985‐1989 average harvest was 52,064 MT (114.8 million pounds), while the 

1990‐1994 harvest averaged 22,285 MT (49.1 million pounds). Recreational harvest estimates 

continued to decline at a somewhat slower rate until reaching a low of 10,695 MT (23.6 million 

pounds) in 1999, increasing to 21,269 MT (46.9 million pounds) in 2010, and steadily decreasing 

since then to a value of 5,471 MT (12.1 million pounds) in 2021 (Table 2, Figure 6). In 2021, 

recreational anglers along the Atlantic coast caught 6.2 million bluefish, a 34% decrease from 

2020. 

 

The majority of recreational activity occurred from May to October, with the peak activity in 

July and August and almost 70% of the bluefish harvest being taken between July and October. 

The seasonal pattern varies by state, however, with more northern states seeing a peak in the 

summer and more southern states seeing peaks at the beginning and end of the year, reflecting 

both differing effort patterns by state and differing availability to states as bluefish migrate. 

 

MRIP assigns catch to three fishing areas based on where anglers report doing the majority of 

their fishing: inland (which includes bays and estuaries like Long Island Sound, Chesapeake 

Bay, and Albemarle Sound), near-shore ocean (state waters less than three 3 miles from the 

shore), and offshore ocean (federal waters three miles or more from shore). About 51% of the 

catch of bluefish on a coast-wide basis came from inland waters, followed by near-shore ocean 

(42%) (Figure 7). Offshore ocean is only about 7% of the total catch.  The inland portion of the 

harvest has been decreasing in recent years, with a concurrent increase in near-shore ocean 

harvest (Figure 7). For a detailed analysis of the spatial distribution of bluefish based on MRIP 

catch information see Working Paper 10 (Drew 2022b). 

 

The majority of recreational harvest comes from the private boat and shore‐based fishing modes 

(Figure 8). Less than 10% of the catch came from for-hire boats over the time-series. 

 

2.2.3 Recreational Discards/Dead Releases 

MRIP estimates of bluefish released alive have ranged from a low of 5.2 million fish (1988) to a 

high of 42.5 million fish (2001) from 1985-2021. Recreational release estimates have generally 

increased in proportion to harvested fish over the time series, increasing from approximately 

19% of the total coast-wide catch in 1985 to over 80% in 2021. These releases represent both 

regulatory discards as well as voluntary releases by anglers practicing catch-and-release fishing.  

 

About 48% of recreational bluefish releases on a coast-wide basis came from inland waters, and 

48% from nearshore waters (Figure 7). Offshore ocean is only about 4% of the total releases.  

For a detailed analysis of the spatial distribution of bluefish harvest and releases based on MRIP 

data see Working Paper 10 (Drew 2022b). 

 

The majority of recreational live releases comes from the private boat and shore‐based fishing 

modes (Figure 8). Less than 10% of the releases came from for-hire boats over the time-series. 
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2.2.3.1 Recreational Release Mortality Rate 

Estimating recreational catch-and-release mortality of bluefish is an important component of the 

stock assessment process given the popularity of catch-and-release angling in this fishery and the 

direct influence of release mortality on the total allowable catch. The literature reviews and 

analyses completed for the 2015 benchmark assessment (NEFSC 2015) were updated to re-

assess the appropriateness of the 15% bluefish recreational release mortality estimate. From the 

updated literature reviews, no additional bluefish-specific release mortality papers were 

discovered, and one additional release mortality review paper (which was used for a meta-

analysis) was discovered. Eleven exclusion criteria were applied to each bluefish-specific study 

and the studies within the review paper to determine which studies were suitable for inclusion in 

the bluefish-specific analysis and the meta-analysis. Three bluefish-specific studies passed the 

exclusion criteria. The individual mortality estimates from these three studies were used to 

calculate the mean (± standard error) bluefish-specific release mortality estimate, which was 

9.4% ± 0.6%. From the review paper literature tables, 19 studies passed the exclusion criteria. 

The 22 individual mortality estimates from these 19 studies were used to calculate the mean (± 

standard error) meta-analysis release mortality estimate, which was 9.7% ± 1.9%.  

 

The bluefish-specific release mortality estimate of 9.4% was used for this assessment. See 

Working Paper 11 (Valenti 2022b) for the full review and analysis. 

 

2.3 Recreational Biological Sampling 

2.3.1 Recreational Harvest 

Recreational landings are sampled for length as part of the MRIP program. The MRIP length 

samples were used to expand recreational harvest per half-year season. In some years of the time 

series bluefish harvest lengths exhibit a bi-modal distribution, with a peak of fish around 35 cm, 

and a smaller peak around 70 cm. This trend has diminished in recent years but is consistent with 

trends seen in the commercial length frequency distributions. The bi-modal pattern is a result of 

an apparent low availability to the fisheries of age-3 to age-4 bluefish. Bluefish are known to 

school by size class and it is likely that unobserved movement dynamics at this age/size range 

affects availability of the population. It is possible a larger portion of the population at these 

sizes are staying south or offshore each year. Since the dominant fisheries for bluefish are coastal 

and north of Cape Hatteras, North Carolina, this would account for reduced availability of this 

size/age class.  

 

The size of bluefish harvested by the recreational fishery varied by state and mode, with more 

northern states harvesting a wider range of sizes with a higher proportion of large bluefish than 

more southern states, which rarely harvest bluefish larger than 50 cm in fork length (Figure 9). In 

addition, bluefish harvested by the shore mode in states from Massachusetts through New York 

had a distinct peak of smaller fish around 15-20 cm that were not harvested by the private and 

for-hire boat modes. Young-of-the-year “snapper” bluefish are typically found inshore and are 

often targeted by shore-based anglers in the northern states. From New Jersey southward, that 

peak of smaller fish disappeared and the shore and boat mode length frequencies almost 

completely overlapped each other (Figure 9).   
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2.3.2 Recreational Dead Releases 

MRIP conducts limited at-sea observing on headboat trips to collect lengths of fish released 

alive. To characterize the length frequency of the dead releases, the MRIP observer data were 

supplemented with lengths from the American Littoral Society (ALS) volunteer angler tagging 

program (by definition released fish), volunteer angler logbook programs in RI, CT, and NJ, and 

a volunteer angler tagging program in SC. See Atlantic States Marine Fisheries Commission 

(ASMFC) (2021) for more details on the state volunteer angler programs. 

 

The recreational dead discard component of the catch was calculated using the season/region 

length frequency distributions developed from all of the recreational biological sampling data for 

released fish. For each year, expanded lengths were calculated by season/region and summed to 

get a seasonal total length distribution. Seasonal length-weight parameters (see above) were then 

used to calculate total seasonal weight and summed for a total annual release weight. A discard 

mortality estimate of 9.4% (Section 2.2.3.1) was applied to calculate the weight of dead discards 

for the total catch. 

 

When the samples were pooled across season and region without weighting by removals, as was 

done for SARC 60, the harvest and release length frequency distributions appeared fairly 

distinct, with harvested fish centered around a smaller mean size than released fish (Figure 10). 

However, when stratified by region and season, the length frequencies for the harvested and the 

released fish were generally similar, with the exception of the northern region in the second half 

of the year, which had a peak of smaller fish in the harvest and a peak of larger fish in the 

releases (Figure 11). The majority of the release lengths were from the northern region; the 

southern region was not well sampled, particularly in recent years (see Working Paper 8 Wood 

2022a for more details on sample size), and the differences in length frequency by region made it 

important to stratify the releases by region as well as season. Of note, in season/region/year cells 

where n < 30 fish, the cumulative length frequency of released alive fish was used as a proxy, 

instead of borrowing from another region or season. 

 

Recreational releases/discards in 2021 were estimated at 14,792 MT, and after adjusting for a 

9.4% mortality rate, the resulting discard loss was 1,391 MT. Recreational discard loss in weight 

has ranged from a low of 905 MT in 1988, to a high of 7,271 MT in 2001 (Table 2, Figure 6). 

2.3.3 Recreational CAA and WAA 

Final recreational harvest-at-age, dead releases-at-age, and weight-at-age matrices were 

calculated using the annual seasonal multinomial age length keys (Section 3.3.1; Working Paper 

14 Celestino et al. 2022) applied to the harvest and dead release length frequencies. The 

recreational harvest-at-age and dead-releases-at-age were summed to calculate the total 

recreational dead catch-at-age. The recreational catch is predominately comprised of age-0, age-

1 and age-2 bluefish. 

2.4 Total Removals 

Total bluefish removals (total dead catch) by component are presented in Table 2 and Figure 6. 

Overall, total removals have declined since the beginning of the time series. There was a slow 

increase from 1996 to 2010, but the declining trend has continued to the lowest values in the 

time-series in recent years (Figure 6). On average, commercial landings account for 14% of the 

total removals with commercial discards averaging only 0.2%. Total removals are dominated by 
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the recreational fishery with recreational landings accounting for 71% of total removals, and 

recreational dead releases averaging 15% of total removals. 

 

3 SURVEY DATA 

Term of Reference #3: Present the survey data used in the assessment (e.g., 

indices of relative or absolute abundance, recruitment, state surveys, age-length 

data, application of catchability and calibration studies, etc.) and provide a 

rationale for which data are used. Describe the spatial and temporal 

distribution of the data. Characterize the uncertainty in these sources of data. 

The ASMFC Bluefish TC held a workshop in November 2021 to review the available state 

datasets for bluefish with the goal of evaluating their utility for this assessment, including fishery 

independent surveys. Metrics used to evaluate the datasets included the length of the time series, 

the geographic coverage, the quality and consistency of the survey design, and the prevalence of 

bluefish in the dataset, as measured by the percent positive tows or hauls for bluefish. Detailed 

descriptions of the surveys considered and the TC evaluations are available in the State Data 

Review Workshop Report (ASMFC 2021). The WG participated in the workshop and reviewed 

the final recommendations of the TC as to which datasets to include, exclude, or explore further. 

The WG’s final decisions on which indices to include are summarized in Table 3 and Table 4. 

The surveys covered the majority of the bluefish range on the Atlantic coast, ranging from the 

Gulf of Maine in the north to Cape Canaveral, Florida in the south (Figure 12). 

 

The suite of indices used in the base model was similar to what was used in SARC 60 (NEFSC 

2015). Two new indices were added: the SEAMAP age-1 index (Section 3.1.1) and the 

ChesMMAP age-0+ index (Section 3.2.3). Two indices were dropped: the New Jersey Ocean 

Trawl Survey (NJ OT) and the Connecticut Long Island Sound Trawl Survey (CT LISTS). The 

NJ OT survey was dropped on the recommendation of the state data providers, as it was 

dominated by age-0 fish and did not seem to be adequately tracking age-1+ abundance (ASMFC 

2021). The CT LISTS survey was removed for similar reasons: it covered a smaller spatial area 

than other trawl surveys in the model and was dominated by age-0 fish with little information on 

age-1+ fish. In addition, inclusion of the index resulted in worse model diagnostics without 

significantly affecting population estimates (Section 4.3.1). 

  

The WG explored standardizing the fishery independent indices of abundance using 

environmental covariates in a GLM framework. However, the standardization process did not 

significantly affect index trends or reduce interannual variability or index coefficients of 

variation (CVs), so the WG did not use the standardized indices in the base run and instead used 

the stratified arithmetic mean for surveys with a stratified random design and the geometric mean 

for surveys with a fixed station design; see Working Paper 7 (Celestino et al. 2022a) for a 

detailed write-up of the process and results. The exception to this decision was the SEAMAP 

survey; see Section 3.1.1 below. 

3.1 Recruitment Indices 

For detailed descriptions of survey methods, see the ASMFC State Data Review Workshop 

Report (ASMFC 2021). 



 

 

31 

 

3.1.1 SEAMAP Age-0 and Age-1 Indices 

The Southeast Area Monitoring and Assessment Program (SEAMAP) Coastal Trawl Survey has 

sampled the coastal zone off the southeast U.S. between Cape Hatteras, North Carolina and Cape 

Canaveral, Florida with a standardized protocol since 1990. A stratified random sampling design 

is used, with strata based on latitude and water depth. The SEAMAP survey encounters both age-

0 and age-1 bluefish, with the age frequency varying by season. The spring survey is dominated 

by age-1 bluefish, while the fall survey is dominated by age-0 bluefish (Figure 13). Therefore, 

separate indices were developed for age-0 (fall-caught) and age-1 (spring-caught) bluefish.  

 

SEAMAP used a GLM to calculate the indices for bluefish. The GLM standardization was able 

to smooth an exceptionally large value in the nominal index for age-0 bluefish which improved 

the correlation between the SEAMAP age-0 and lagged age-1 indices and the correlation 

between the SEAMAP age-0 and the composite age-0 indices (Section 3.1.2). In addition, due to 

vessel, weather, and funding issues, sampling in the northern-most strata of the survey has 

dropped off in recent years. Those strata have the highest abundance of bluefish in the SEAMAP 

survey, and the use of latitude in the standardization accounts for the decline in sampling in those 

strata. Therefore, the WG used the standardized age-0 and age-1 indices developed by SEAMAP 

for both indices (Zimney and Smart 2022). 

 

The age-0 and age-1 indices have generally varied without trend over the time series; strong and 

weak year classes can be tracked from the age-0 to age-1 index in several years (Figure 14).  

3.1.2 Composite Young-of-Year (YOY) Index 

States from New Hampshire to Virginia conduct seine and trawl surveys for juvenile finfish that 

capture YOY bluefish. These surveys are noisy and cover small geographical areas, compared to 

the range of bluefish. Bayesian hierarchical modeling was used to combine these indices into a 

single composite index, using the method developed by Conn (2010), which represents the coast 

wide recruitment dynamics of bluefish. A composite index developed from state trawl YOY 

surveys (Table 4) was also explored, but it was not well correlated with the age-0 catch or any of 

the other indices and was not used in the assessment model. See Working Paper 12 (Drew 

2022c) for details of the analysis. The surveys included in the composite index are described 

below. 

 

Overall, the composite index did not show a strong trend over the time series; the early years 

were higher than later years, but also had more uncertainty around them (Figure 14). 

3.1.2.1 New Hampshire Juvenile Finfish Seine Survey 

The New Hampshire Juvenile Finfish Seine Survey samples at 15 fixed stations during June 

through November. The stations are spread throughout the New Hampshire coast, including the 

Hampton/Seabrook Estuary, Little Harbor, the Piscataqua River and Little Bay/Great Bay. 

Historical catches have ranged from 2.3 – 22 cm total length, all classified as YOY using a 25 

cm size cutoff. Samples from November and December were removed from the analysis due to 

no positive catches. The survey has run from 1997 through the present. The nominal index was 

calculated as a geometric mean catch per tow with bootstrapping (n = 1000) to estimate the 

annual CVs. The index varied without trend (Figure 15). 

 



 

 

32 

 

3.1.2.2 Rhode Island Narragansett Bay Juvenile Finfish Beach Seine Survey 

The Rhode Island Narragansett Bay Juvenile Finfish Beach Seine Survey currently samples 18 

fixed stations throughout the bay; the survey began with 15 stations and added one additional 

station in each of 1990, 1993 and 1995. The survey began in 1988 and runs from June through 

October. A 25 cm size cutoff was used as the threshold to identify YOY bluefish. The nominal 

index was calculated as a geometric mean catch per tow with bootstrapping (n = 1000) to 

estimate the annual CVs. The early part of the time series was characterized by considerable 

variability. Catches were generally stable from 2010-2016, dropped during 2017 and 2018, and 

have since increased (Figure 15). 

 

3.1.2.3 New York Western Long Island Seine Survey 

The New York Department of Environmental Conservation Western Long Island Beach Survey 

has employed a consistent methodology since 1987 to sample sites at fixed stations within 

western Long Island bays: Little Neck and Manhasset Bay on the north shore of Long Island, and 

Jamaica Bay on the south shore (1984-present). Other bays have been sampled on a shorter time 

frame but were not included in this index. The nominal index was calculated as a geometric 

mean catch per tow with bootstrapping (n = 1000) to estimate the annual CVs. The index has 

generally varied without trend over the time series (Figure 15). 

 

3.1.2.4 New Jersey Delaware River Seine Survey 

The New Jersey Fish and Wildlife Delaware River Seine Survey is a fixed station beach seine 

survey conducted in three regions of the Delaware River. It targets age-0 striped bass, but 

bluefish are also captured in the brackish to tidal freshwater regions of the river. A 25 cm length 

cutoff is used to identify age-0 bluefish. The bluefish YOY index was reported as the geometric 

mean number of YOY bluefish per seine haul of samples collected from mid-June through 

September in region 1, with bootstrapping (n = 1000) to estimate the annual CVs; samples taken 

in October through November were excluded as YOY bluefish are rarely captured in those 

months. The index included data from 2002-2021, although 2020 was missing due to the 

COVID-19 pandemic. The index generally varied without trend, but the three lowest values in 

the time series occurred in 2016, 2018, and 2021 (Figure 15). 

 

3.1.2.5  Maryland Juvenile Striped Bass Seine Survey 

The Maryland Department of Natural Resources Juvenile Striped Bass Seine Survey is a fixed 

station survey that samples in major striped bass spawning areas in Maryland’s portion of the 

Chesapeake Bay from July – September. A subset of 13 sample sites was selected for the 

development of a juvenile bluefish index from 1981 to present. The nominal index was 

calculated as a geometric mean catch per tow with bootstrapping (n = 1000) to estimate the 

annual CVs. The index is variable but has shown a declining trend over time, with low catch 

rates and a low proportion of positive hauls in recent years (Figure 15). 

 

3.1.2.6 Virginia Institute of Marine Science Juvenile Striped Bass Seine Survey 

The Virginia Institute of Marine Science Juvenile Striped Bass Seine Survey is a fixed station 

survey that samples from July – September in the James, York, and Rappahannock Rivers, as 

well as in the main tributaries of these systems. The nominal index was calculated as a geometric 

mean catch per tow with bootstrapping (n = 1000) to estimate the annual CVs. The index showed 
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a period of higher recruitment from the late 1980s to the late 1990s, followed by a period of 

lower recruitment from the early 2000s forward, although 2019-2021 have been higher (Figure 

15). 

3.2 Age 0+ Indices 

3.2.1 Northeast Fisheries Science Center (NEFSC) Fall Inshore Trawl Survey 

Since 1963, the NEFSC has conducted a standardized bottom trawl survey during the fall and 

spring along the northeastern continental shelf of the United States in the area comprising the 

Western Scotian Shelf of the Gulf of Maine, south to Cape Lookout, North Carolina. The survey 

uses a stratified random design. There was a vessel change in 2009 from the F/RV Albatross to 

the F/RV Bigelow, which resulted in the loss of historical inshore strata from the survey area, all 

of which are now sampled by the Northeast Area Monitoring and Assessment Program 

(NEAMAP) via the Mid-Atlantic/Southern New England Nearshore Trawl Survey (Section 

3.2.1), the Massachusetts Division of Marine Fisheries Bottom Trawl Survey (ASMFC 2021) 

and Maine-New Hampshire Inshore Trawl Survey (ASMFC 2021). For more information on the 

NEFSC bottom trawl survey design, see Avarovitz (1981) and NEFSC (2015).  

 

Bluefish are predominately caught during the fall in the inshore strata south of the Gulf of 

Maine, so fall inshore strata from Cape Hatteras to Cape Cod were used to build two indices for 

bluefish, one for the Albatross years (1985-2008) and one for the Bigelow years (2009-2021). 

The indices were calculated as the stratified mean catch-per-tow. The Albatross index showed 

high variability at the beginning of the time series followed by a generally increasing trend from 

the mid-1990s to the mid-2000s (Figure 16). The Albatross index declined from 2005 to the end 

of that time series in 2009, and the Bigelow has shown a consistent decline over its entire time 

series from 2009-2021 (Figure 17). 

 

The fall stratified mean length frequencies of the Albatross and Bigelow indices were 

apportioned to ages by applying the annual fall age-length key (Section 3.3.1). The age-structure 

of the Albatross and Bigelow indices was dominated by age-0 fish (Figure 16); the Bigelow had 

a higher proportion of age-1 fish than the Albatross did, but was still dominated by age-0 and 

age-1 fish (Figure 17). 

 

3.2.2 NEAMAP Mid-Atlantic/Southern New England Nearshore Trawl Survey 

The NEAMAP Mid-Atlantic/Southern New England Nearshore Trawl Survey uses a stratified 

random design to sample the coastal ocean from Martha’s Vineyard, MA to Cape Hatteras, NC 

since the fall of 2007. NEAMAP conducts two cruises per year, one in the spring and one in the 

fall, and samples inshore areas that were lost from the NEFSC Bottom Trawl Survey with the 

vessel change in 2009. The index was calculated as the stratified mean catch-per-tow for the fall 

cruise where the bluefish catch and proportion positive tows were higher. The index has been 

variable with a somewhat declining trend, reaching a time-series low in 2019 before increasing 

in 2020 and 2021 (Figure 18). 

 

The fall stratified mean length frequency of the NEAMAP index was apportioned to ages by 

applying the annual fall age-length key (Section 3.3.1). The age-structure of the NEAMAP index 

was dominated by age-0 bluefish (Figure 18). 
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3.2.3 Chesapeake Bay Multispecies Monitoring & Assessment Program 

(ChesMMAP) 

The Chesapeake Bay Multispecies Monitoring & Assessment Program (ChesMMAP) uses a 

stratified random design to sample the mainstem of Chesapeake Bay every other month from 

March through November. The survey underwent a vessel change in 2019, and the calibration 

work has not been completed. As a result, the ChesMMAP index for bluefish includes data from 

2002-2018. The index was calculated as the stratified mean catch-per-tow for the May through 

November cruises, where the bluefish catch and proportion positive tows was highest. The index 

has generally varied without trend over the time series (Figure 19).  

 

The length frequency of the ChesMMAP index was stratified by season (May-June and July-

November). The seasonal length frequencies were apportioned to ages by applying the 

appropriate seasonal age-length key, and the final age composition of the index was calculated 

by summing the seasonal index age compositions. The age-structure of the ChesMMAP index 

was dominated by age-0 and age-1 bluefish and had no observations greater than age-3 (Figure 

19). 

 

3.2.4 North Carolina Pamlico Sound Independent Gill Net Survey (PSIGNS) 

The North Carolina Division of Marine Fisheries Pamlico Sound Independent Gill Net Survey 

(PSIGNS) uses a stratified random design to sample the Pamlico Sound estuary from mid-

February to mid-December. Bluefish is the second most commonly caught species in the survey. 

The index was calculated as the stratified mean catch-per-set for all months. The index increased 

from 2001 through 2007 and then declined to a time-series low in 2015; subsequent years have 

increased slightly, and 2019 was an extremely high value (Figure 20). 

 

The length frequency of the PSIGNS index was stratified by season (February-June and July-

December). The seasonal length frequencies were apportioned to ages by applying the 

appropriate seasonal age-length key, and the final age composition of the index was calculated 

by summing the seasonal index age compositions. The age-structure of the PSIGNS index was 

dominated by age-1 and age-2 fish, and had the highest proportion of older fish of all fishery-

independent indices used in the assessment (Figure 20).  

 

3.2.5 MRIP Recreational CPUE 

The MRIP dockside intercept program dataset was used to develop recreational total catch-per-

unit-effort (i.e., harvest plus live releases in numbers) as an index of abundance for bluefish. 

Bluefish trips were defined using a guild approach where a trip was considered a bluefish trip if 

it caught either bluefish or a species that was significantly positively associated with bluefish. 

This was a change from the previous benchmark assessment where effort was described using 

“directed trips,” which describe trips where bluefish were considered a target species. The CPUE 

was standardized using a zero-altered negative binomial model with year, state, wave, state-wave 

interaction, mode (e.g., shore, private boat, charter), area fished, kind of day (i.e., weekday or 

weekend), and angler avidity as factors and angler-hours per trip as an effort offset. For more 

information on the MRIP CPUE development, see Working Paper 13 (Drew 2022c). 
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The MRIP CPUE peaked at the beginning of the time-series, declining through the mid-1990s 

after which it showed a stable to slightly increasing trend until 2016 (Figure 22). It has declined 

in recent years. The choice of trip definition (guild trips vs. directed trips) and standardization 

model (zero-altered negative binomial vs. negative binomial) resulted in significant changes in 

overall trend compared to the index developed during the last benchmark (directed trips 

standardized with a negative binomial model with no interaction terms). While the indices 

showed roughly similar trends – declining through the mid-1990s before stabilizing and 

increasing somewhat – the MRIP CPUE used in this assessment showed much more contrast 

than the continuity run index used in the SARC 60 assessment, starting out at a higher level, 

declining to lower levels, and not recovering as much after the decline (Figure 21). 

 

The age-structure of the MRIP CPUE was developed from the recreational catch and release 

information, as the CPUE used both harvested and released alive fish in the calculation of the 

catch per unit effort. The recreational harvest numbers-at-age matrix was combined with the 

recreational live release numbers-at-age matrix. Unlike the recreational removals matrix, the live 

releases numbers-at-age were not scaled by the release mortality rate. The MRIP CPUE had a 

broader age-structure than the fishery independent indices (Figure 22). 

3.3 Age and Length Data 

3.3.1 Age-Length Keys 

The WG evaluated multinomial age-length keys (ALKs) relative to traditional ALKs, and ALKs 

resolved at a seasonal as well as season-region level of resolution; for complete details, see 

Working Paper 14 (Celestino et al. 2022b). Briefly, multinomial ALKs were explored as an 

objective, repeatable, and efficient way to fill gaps in ALKs. The data to construct the ALKs for 

bluefish were sparse early in the timeseries, and throughout the time series when subset to a 

season (January-June and July-December) and region (Florida-North Carolina and Virginia-

Maine) level of resolution. The multinomial approach to developing ALKs (Gerritsen et al. 

2006) has been explored across a number of stocks assessed by ASMFC and NOAA Fisheries, 

and is available in modelling software [e.g., weakfish (ASMFC 2019), Stock Synthesis (Methot 

and Wetzel 2013)]. 

 

Age and length data collected by fishery-independent and fishery-dependent sampling by NMFS 

and Atlantic coast states were compiled and used to construct ALKs. When developing and 

comparing ALKs, the WG developed various borrowing and multinomial model configuration 

rules. Final multinomial ALKs were constructed using all data (all years, seasons, regions 

combined) input through a single model, with terms for year and season (or year, season, and 

region for exploration of the seasonal-regional ALKs). All spring age-0 fish were removed from 

the dataset prior to running multinomial models, which helped the performance of model 

predictions relative to biological expectations (e.g., minimized the probabilities of spring age-0 

fish in ALKs). Traditional ALKs (i.e., non-model based ALKs such as those used in the 2015 

assessment) were only constructed at the year-season level due to concerns related to the sparse 

nature of data at the year-season-region level of resolution that would require a large number of 

decisions related to data borrowing. Spring age-0 fish were also removed from that dataset.  

The influence of multinomial and traditional ALKs, at the season and season-region level of 

resolution was evaluated in a statistical catch-at-age framework. Total catch and indices of 

abundance were apportioned into ages using seasonal traditional ALKs, seasonal multinomial 
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ALKs, and season-region multinomial ALKs. Statistical catch-at-age model performance was 

similar among model runs (Table 5). The scale of retrospective patterning was comparable 

between models that used multinomial ALKs, but higher for the model that used traditional 

ALKs. After extensive discussions, the WG did not believe data were sufficient to support an 

ALK model at a seasonal-regional level of resolution. All sample sizes are reduced as data are 

subset to finer spatial and temporal resolutions. 

  

While Akaike’s Information Criteria (AIC) among the ALK multinomial models supported 

seasonal-regional ALKs (vs seasonal multinomial ALKs), the WG did not have high confidence 

in partitioning data at this level of resolution, and so supported the use of the seasonal 

multinomial ALKs applied to season-region length frequencies for the catch and indices. The 

statistical catch at age model results suggested less retrospective patterning with the seasonal 

multinomial ALKs compared to the traditional seasonal keys, and so the WG supported use of 

the seasonal multinomial ALK for continued modelling (and ultimately the base model). 

4 ASSESSMENT METHODS 

Term of Reference #4: Use appropriate assessment approach to estimate annual 

fishing mortality, recruitment and stock biomass (both total and spawning stock) 

for the time series, and estimate their uncertainty. Compare the time series of 

these estimates with those from the previously accepted assessment(s). Evaluate 

a suite of model fit diagnostics (e.g., residual patterns, sensitivity analyses, 

retrospective patterns), and (a) comment on likely causes of problematic issues, 

and (b), if possible and appropriate, account for those issues when providing 

scientific advice and evaluate the consequences of any correction(s) applied. 

4.1 History of the Bluefish Assessment 

A statistical catch at age assessment model was first used to assess bluefish and provide 

management advice in 2005, at the Stock Assessment Workshop 41 review (NEFSC 2005). Prior 

to this review, several model types were explored including a modified Delury model, a surplus 

production model, a VPA, and catch-at-age models. At the time, the Bluefish TC concluded that 

age-based models such as a VPA or catch-at-age were the most appropriate for the bluefish 

assessment and age-based models have been used since.  

 

At the last benchmark assessment in 2015, a number of changes were made to the data structure 

and assessment model. Major changes included fitting to the age composition of the surveys (as 

opposed to age-specific indices), separating total catch into two fleets (commercial and 

recreational), updated maturity-at-age information, splitting the Bigelow and Albatross survey 

time series into two indices, and changing MRIP index selectivity from independent estimates at-

age to a logistic curve. The final model was reviewed during SAW/SARC60 (NEFSC 2015) and 

has been used to provide management advice since 2015.   

 

The most recent operational assessment for bluefish took place in 2021, with data through 2019.  

Based on this assessment update of the 2015 benchmark model, the bluefish stock was 

overfished and overfishing was not occurring relative to the updated biological reference points. 

Spawning stock biomass was estimated to be 95,742 MT in 2019, about 47.5% of SSB35% 
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(201,729 MT) and 95% of the threshold (100,865 MT). Fishing mortality was estimated to be 

0.172, which was 95% of F35% (0.181).  Average recruitment from 1985-2019 was 46 million 

age-0 fish. The terminal year estimates for fishing mortality and spawning stock biomass 

adjusted for retrospective error were within the 90% confidence bounds of the terminal year 

estimates, indicating no retrospective adjustment was needed for stock status determination.   

4.2 Bluefish Research Track 2022 Model Introduction 

The Research Track (RT) 2022 model building procedure for bluefish was accomplished over 

multiple steps. The majority of the model bridge was built using ASAP (Age Structured 

Assessment Program, Legault and Restrepo 1999), which was the previously approved 

assessment model. ASAP is an age-structured model that uses forward computations, assuming 

separability of fishing mortality into year and age components, to estimate population sizes given 

observed total catches, catch-at-age, and indices of abundance. Bluefish are modeled as age-0 

through age-6+, with ages six and older pooled into a plus group. The separability assumption is 

partially relaxed by allowing for fleet-specific computations and by allowing the selectivity-at-

age to change in blocks of years. Weights are specified for different components of the objective 

function, which allows for configurations ranging from relatively simple age-structured 

production models to fully parameterized statistical catch-at-age models. The objective function 

is the sum of the negative log-likelihood of the fit to various model components. Catch-at-age 

and survey age composition are modeled assuming a multinomial distribution, while most other 

model components are assumed to have lognormal error. Specifically, lognormal error is 

assumed for: total catch in weight by fleet, survey indices, stock recruit relationship, and annual 

deviations in fishing mortality. Recruitment deviations are also assumed to follow a lognormal 

distribution, with annual deviations estimated as a bounded vector to force them to sum to zero 

(this centers the predictions on the expected stock recruit relationship, or on mean recruitment 

when steepness is fixed at one). For more technical details, the reader is referred to the technical 

manual (Supporting documentation: ASAP manual, Legault 2012). 

 

Early WG discussions led to the decision that the bluefish assessment model should be shifted 

into a new modeling framework, the Woods Hole Assessment Model (WHAM: Miller et al 2016, 

Miller and Hyun 2018, Miller et al. 2018). WHAM is a general state-space age-structured 

assessment model that is able to include environmental and other covariate effects on population 

processes. The shift from ASAP to WHAM allowed more flexibility, including the estimation of 

observation and process error, and the propagation of random effect parameters in stock 

projections. The final ASAP model was transitioned into its “ASAP-like” WHAM model 

counterpart, which was parameterized so that it was essentially identical to the ASAP model; 

after this initial WHAM model was fit, a suite of models that included random effects on the 

numbers-at-age were fit, and model selection via AIC was used to select a best model. 

Environmental indices based on a VAST analysis of forage fish availability along the east coast 

(Section 1.2) were also explored as covariates on the catchability of survey indices. 

 

4.3 Bluefish Research Track 2022 Model Bridge 

4.3.1 ASAP Modeling 

The first step in modeling in ASAP was to conduct a continuity run, which updated the current 

assessment model with data through 2021. A base model was then constructed by adding new 
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data (CAA and WAA) and indices to the continuity run, keeping the same model settings and 

weights. A model bridge was then built from the base model to a final ASAP model by changing 

model data formulation, specifications, and weighting inputs. In total, about 80 variations of 

ASAP models were explored during this bridge building procedure. The model steps with the 

most important changes that provide a linear path from the base model to the final ASAP model 

are presented below. See Working Paper 15 (Wood 2022b) for a detailed description of the 

bridge-building process, results, and diagnostics. Working Paper 16 (Wood 2022c) includes the 

complete diagnostic plots for the major milestone runs, including the final ASAP model; the 

diagnostic plots for the final ASAP model alone are linked below. 

 

The continuity model run was carried out as update of the SAW/SARC 60 benchmark final 

model, which is the model currently used for management advice. Total catch, catch-at-age, 

weight-at-age, and indices-at-age were updated for 2020 and 2021 using previously established 

data protocols (Figure 23). Retrospective pattern for the continuity run was examined for F, SSB, 

and recruitment using 7-year peels. The analysis showed consistent and significant pattern in the 

estimates of F and SSB, with Mohn’s rho values of -0.277 and 0.294, respectively. Recruitment 

estimates exhibited lower retrospective pattern that was inconsistent over the peels, with a 

Mohn’s rho estimate of 0.170. The continuity run had poor convergence diagnostics; a jitter 

analysis indicated that when the parameter initial values were varied randomly, only 130 of 200 

realizations of the model reached the same final objective function value as the base run and 

there were 18 non-converged models. Gradient values were also poor for a number of the runs 

that did converge, with the majority of maximum gradient values being greater than 0.0001, a 

value often used as threshold for an acceptable model (Carvalho et al. 2021). This diagnostic was 

not explored in the 2015 benchmark assessment. 

 

The switch to multinomial age-length keys had a significant impact on estimates of SSB. The 

multinomial keys had the effect of spreading numbers-at-age in the older ages to younger ages, 

especially with the plus group. This had the result of lowering the SSB as the total biomass of 

mature fish was reduced. The multinomial keys substantially improved the convergence 

diagnostics for this model. All previous models that used the traditional keys had poor 

convergence diagnostics. A jitter analysis of starting parameter values showed that the previous 

model step with traditional keys failed to converge 52 times and only found the original model 

solution 129 times out of 200 jitter runs. Conversely, the model with multinomial keys was very 

robust to the original objective function solution and did not seem overly sensitive to the initial 

starting values; it failed to converge only 6 times, and found the original objective function 193 

times, out of 200 jitter runs. All of the alternate objective function values were higher than the 

original objective function value.  

 

The change from the directed trips method to the guild approach (Section 3.2.5) to develop the 

MRIP index was another significant change for the data going into the model. The MRIP index 

has historically been the most important index in the assessment model and effectively scales the 

model because of the assumed logistic selectivity. Without this flat-top selectivity, the model is 

able to create cryptic biomass in the older ages and can produce unrealistic results. Due to the 

importance of this index, small changes in trend have dramatic impacts on the scale of model 

results. The continuity MRIP index (i.e., using the directed trips effort and the previous 

standardization model) remained fairly flat throughout the time-series. Shifting to the guild 
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approach for the index calculation resulted in a much different trend, with the guild approach 

index starting out at higher values and declining to lower levels compared to the continuity run 

directed trips index (Figure 21). 

  

The overall effect of this new index on the model was a decrease in SSB and an increase in F.  

The switch to the MRIP guild index significantly reduced the retrospective pattern in SSB from 

40% to 25%. The retrospective pattern in fishing mortality was also reduced from 36% to 21%. 

Convergence diagnostics in the ASAP framework for the model with the guild approach MRIP 

index were very good, with 191 of 200 jitter runs finding the original model solution and 8 non-

convergences. All of the alternate objective function values were higher than the original 

objective function value. 

 

The change from an age-constant natural mortality of 0.2 to the higher, age-varying estimates of 

M from the Lorenzen (1996) method increased SSB, decreased F, and greatly increased 

recruitment, as would be expected. The retrospective pattern was increased for all model results 

with the change in natural mortality (Table 6). Convergence diagnostics were very similar 

between the age-constant and age-varying M. 

 

The previous assessment model specified a single selectivity block for each fleet for the entire 

time-series. To address the retrospective pattern and the patterning in the catch-at-age residuals, 

a selectivity block was added in each fleet beginning in the year 2000, which is the year 

Amendment 1 to the bluefish fishery management plan was implemented.  An additional 

selectivity block was added in the recreational fleet from 2011-2021, to align with the increasing 

trend in the proportion of the recreational catch from the southern region, which tends to catch a 

smaller size range of bluefish (Working Paper 9 Drew 2022a). The addition of new selectivity 

blocks increased SSB estimates and reduced retrospective pattern. 

  

Model fit diagnostics for the Connecticut Long Island Sound Trawl (CT LIST) survey index 

indicated a somewhat poor fit early on in the time-series, with two blocks of residuals from 

1985-2000. This survey also caused issues with the estimation of retrospective peels, with some 

peels giving gradient estimates >0.001, indicating poor or no convergence. The removal of the 

CT LIST survey resulted in slight increases in both SSB and recruitment, and little change in 

fishing mortality. There was a small improvement in the retrospective pattern in SSB, and a 

small increase for the pattern in fishing mortality; this model did not have the retrospective peel 

convergence issues that occurred in previous models that included the CT LIST survey. 

 

The WG chose model BF24 as the final bluefish ASAP model configuration, prior to migration 

into the state-space framework of the Woods Hole Assessment Model. A full suite of input, 

results, diagnostic, retrospective and MCMC plots are available for this run as part of Working 

Papers 15 and 16 (Wood 2022b and 2022c) and as a standalone file which can be downloaded or 

viewed from the following link: BF24 plots. When reviewing the ASAP plots, note that ASAP 

numbers the age classes starting with age-1, but the first age in the bluefish model is age-0. 

Therefore, all ages in the figures are increased by one relative to the biological age-class they 

represent (ASAP age-1 is really age-0, ASAP age-2 is really age-1, etc.). A brief summary of 

main model results is presented below. 

 

https://github.com/Bluefish-WG/RT2022/blob/main/TOR4/BF24_PLOTS.pdf
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The final ASAP model fleet selectivity-at-age estimates for the two fleets each show a decrease 

in selectivity at middle ages (ages 3-4), with selectivity increasing at older ages. The final 

selectivity block in the recreational fleet (2011-2021) has more of a domed shape, with older fish 

having much lower selectivity than previous blocks (Figure 24). Final ASAP model estimates for 

the index selectivities show a rapid decrease in selectivity after age-0. A few of the indices have 

higher selectivity towards larger/older fish, the most important being MRIP and PSIGNS, and to 

a lesser extent the Bigelow survey. 

  

Abundance results from model BF24 showed a maximum of 424 million fish in 1985, declining 

to 166 million in 1995, and then increasing to a peak of 311 million in 2006. Total abundance 

declined from the peak in 2006 to a low of 147 million in 2016, a small peak to 208 million in 

2018, and a terminal year estimate of 169 million fish. Spawning stock biomass started from a 

high of 208,791 MT in 1985 and declined over the time-series to a low of 44,931 MT in 2018, 

and increased since to a value of 63,320 MT in 2021. The majority of the spawning stock 

biomass is ages 5 and 6+ (30-60%) for the entire time-series. Fully selected fishing mortality in 

2021 was 0.159, compared to an average full F from 1985 to 2021 of 0.354. Estimates of F have 

varied over the time-series from a peak in 1987 of 0.519 to the lowest value of 0.159 in 2021. 

Estimates of recruitment have remained steady over the time series, fluctuating around an 

average value of 127 million fish. Recruitment has been below average for the past 12 years, and 

was estimated at 95 million fish in 2021. 

 

Retrospective pattern for the final model was examined for F, spawning stock biomass, and 

recruitment. There was a notable retrospective pattern in both SSB (Mohn’s rho = 0.326) and 

fishing mortality (Mohn’s rho = -0.277), with very little in recruitment (Mohn’s rho = 0.017). 

Shifting this assessment model into the state-space framework of WHAM and estimating random 

effects helped to improve the retrospective diagnostics of this model. 

 

The variation in the final ASAP model results for F and SSB was determined using a Markov 

chain Monte Carlo (MCMC) with 1000 iterations and a thinning factor of 2000 (2,000,000 

iterations). Trace plots for both SSB and F show little to no patterning. There is no significant 

autocorrelation in the SSB or F chains. Terminal year 90% confidence intervals (CI) from the 

MCMC ranged from 49,856 to 71,780 MT, with a median estimate of 60,338 MT. The 2021 SSB 

point estimate from the final model (63,320 MT) is slightly higher than the median estimate from 

the MCMC distribution. The 90% CI around the terminal year F ranged from 0.112 and 0.231. 

The point estimate from the final model (0.159) is nearly identical to the median estimate (0.160) 

from the MCMC distribution.  

 

Model BF24 had good convergence diagnostics with 192/200 jitter runs finding the original 

model solution, and 4 non-convergences (Figure 25). 

 

4.3.2 Woods Hole Assessment Model (WHAM) Modeling 

The Woods Hole Assessment Model (WHAM: https://github.com/timjmiller/wham) is a state-

space age-structured stock assessment model developed at the Northeast Fisheries Science 

Center (NEFSC, Stock and Miller, 2020). WHAM is a flexible model framework that can be 

configured as a traditional statistical catch-at-age model, which allows for bridge building 

transitions from models like ASAP. In addition to the traditional catch-at-age approach, WHAM 

https://github.com/timjmiller/wham
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allows for the estimation of state-space effects, including annual transitions in the numbers-at-

age, age and time varying random effects on natural mortality or selectivity, and the ability to 

incorporate environmental effects as covariates on population processes. 

 

The final bluefish model from the ASAP model bridge (model BF24) was moved into WHAM 

for further model exploration. The WG made the decision to finish model exploration in WHAM 

because of its flexible framework, specifically allowing for the estimation of random effects on 

recruitment and numbers-at-age. A desirable feature of the state-space framework is that these 

models tend to have lower retrospective pattern in model results, and more realistic estimates of 

uncertainty (Stock and Miller, 2020). Model BF24 had a notable retrospective pattern in both 

SSB and F (Table 6) and this was a primary driver for moving the bluefish model into WHAM.   

 

In addition to improving retrospective pattern, the final bluefish model was shifted into WHAM 

to explore environmental covariate links on the catchability of different surveys indices. Forage 

fish indices were developed using a VAST model (Section 1.2; Working Paper 4 Gaichas et al. 

2022) and explored as environmental covariates on the catchability (q) of NEFSC survey indices 

and the MRIP catch-per-unit-effort index. 

 

The focus of the model exploration in WHAM was to refine the final bluefish model from 

ASAP, and not continue building a model bridge. This refinement focused on models with 

random effects on recruitment and numbers-at-age. The models explored had different options 

for treating the yearly transitions in survival (numbers-at-age): 

1. Deterministic survival: a traditional statistical catch-at-age (SCAA) model, recruitment in 

each year is estimated as independent fixed effect parameters. 

2. Recruitment deviations (random about mean) are random effects 

a. Random effects are independent, uncorrelated: model subscript _m2 going 

forward 

b. Autoregressive (AR1) by year (autocorrelated): model subscript _m3 going 

forward 

3. Full state-space model where survival of all ages are random effects 

a. Random effects are independent, uncorrelated: model subscript _m4 going 

forward 

b. Autoregressive (AR1) deviations by year: model subscript _m5 going forward 

c. Autoregressive (AR1) deviations by age: model subscript _m6 going forward 

d. Autoregressive deviations by age and year (2D AR1): model subscript _m7 going 

forward 

 

To assess the fit and results of each model, a series of diagnostic criteria were applied. First, 

models were designated as converged if the maximum gradient was less than 1e-10 and the 

hessian matrix was invertible. Next, a model selection process using AIC was carried out to 

choose a best model among models with comparable likelihood structures. Convergence 

properties of the best models chosen by AIC were further explored using a jitter approach 

analogous to the approach used in ASAP. Parameter starting values were randomly generated 

using the model covariance matrix to develop random normal distributions around the MLE 

parameter estimates as well as a distribution scaling factor, which alters the spread of the 

distribution around the potential starting values by scaling the variance. Similar to the ASAP 
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jitter approach, 200 iterations of the model were carried out to test model sensitivity to the initial 

parameter guesses and investigate convergence. The 200 realizations of the model objective 

function and gradient were examined to see how robust the model was to the starting values. 

   

A suite of model fit diagnostic plots were also examined for each model of interest. Model fits 

were examined using conventional residual diagnostics, as well as one-step ahead residual 

diagnostics (OSA), which are more appropriate for state-space models with correlated 

parameters (Trijoulet et al. 2023). Finally, retrospective pattern in model results was evaluated 

using Mohn’s rho values (Mohn 1999) calculated from 5-year model peels (Miller and Legault 

2017, ICES 2020).   

 

When reviewing the WHAM plots, note that WHAM (similar to ASAP) numbers the age classes 

starting with age-1, but the first age in the bluefish model is age-0. Therefore, all ages in the 

figures are increased by one relative to the biological age-class they represent (WHAM age-1 is 

really age-0, WHAM age-2 is really age-1, etc.).  

4.3.2.1 Model BF24W: Run the final ASAP model as a traditional SCAA model in WHAM 

The first step in WHAM modeling was to run the ASAP final model (BF24) as a traditional 

statistical catch-at-age model. A comparison of model results from the final ASAP model and 

BF24W show nearly identical results (Figure 26). The slight differences in model results can be 

attributed to different objective function and minimization algorithms between the two model 

frameworks.  

  

One-step ahead residual diagnostics for the fleets indicate that the input CV of both fleets might 

be too broadly specified, with very tight blocking around 0 for the commercial fleet (fleet 1), and 

poor quantile distributions for both fleets (Figure 27).   

4.3.2.2 Model BF26W to BF28W: Reduce CV around fleets 

This series of models reduced the CV around fleet 1 by a factor of 0.5 (BF26W), the CV around 

fleet 2 by a factor of 0.5 (BF27W), and then both fleets’ CVs by a factor of 0.5 (BF28W).   

4.3.2.3 Model BF28W with different for NAA deviations specifications 

Modal BF28W was used as a starting point to explore random effects models and the inclusion 

of environmental covariates on the catchability of selected survey indices.   

   

The base statistical catch-at-age model (BF28W) and 6 state-space models (BF28W_m2 – 

BF28W_m7) with different options for treating the yearly transitions (survival) in recruitment 

and numbers-at-age were evaluated and compared (Table 7). Convergence diagnostics for each 

model run were examined and model selection via AIC was used to select a “best” model among 

the 6 models with comparable likelihood structures. Based on AIC selections, all of the top 

models were full state-space models, where survival of all ages were random effects with 

different correlation structures (Table 7). The model with the lowest AIC was BF28W_m7, 

which included correlation in the random effects by year and age (2D AR1). Model BF28W_m5 

was very close in AIC but not within 2 AIC units of BF28W_m7 and was not considered 

equivalent based on model selection. Model BF28_m4 and BF28_m6 had similar model results 

but were noticeably higher in AIC. 
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Numbers-at-age deviations were correlated by age and year for the best model according to AIC, 

and were correlated by year for the next best model. The correlation by age was low and showed 

series of positive, negative and positive values from age-2 to age-4 in the middle of the time-

series (Figure 28). The negative correlation between these ages is likely a result of the changing 

availability over time of this size class to the fisheries.   

 

Results from the top 3 state-space models (BF28W_m7, BF28W_m5, and BF28W_m4) and the 

base statistical catch-at-age model (BF28W) showed good agreement among the model results 

(Table 7). The base model differed slightly in estimates of full F and SSB from 2008-2015 and in 

SSB again at the end of the time-series from 2016-2021, where SSB trended higher for this 

model (Figure 29). There were differences in the fleet selectivity block estimates, most notably 

with the base model in comparison to the state space models (Figure 30). In the final recreational 

selectivity block, the base model selectivity pattern was more domed, which likely resulted in the 

higher SSB estimates seen at the end of the time-series for this model. Index selectivity across 

the models showed differences mainly in those indices that catch older, larger bluefish. Those 

indices are the NEFSC Bigelow, PSIGNS, and ChesMMAP survey (Figure 31). 

 

The final bluefish assessment model chosen by the working group was model BF28W_m7.  A 

full presentation of parameter tables, input data, results, diagnostic, and retrospective plots are 

included in Working Paper 17 (Wood 2022d) and can also be downloaded or viewed separately 

from the following link: BF28W_m7_plots. A brief summary of results of the final model with 

selected plots are included below. 

 

The final model fleet selectivity-at-age estimates for the two catch fleets showed a decrease in 

selectivity at middle ages (ages 3-5), with selectivity increasing at older ages. There was a 

decrease in the selectivity of these middle ages over time in the recreational selectivity blocks 

(Figure 32). Most of the index selectivities showed a domed selectivity after age-0. The MRIP 

CPUE index had a flat top logistic selectivity and was fully selected for the older ages. Both the 

NEFSC Bigelow index and the PSIGNS index had higher selectivity on the older, larger fish than 

the other fishery-independent indices (Figure 33). 

  

Total abundance estimates from model BF28W_m7 peaked at a high of 599 million fish in 1985, 

declined to 162 million fish in 1995, and then increased to 269 million fish in 2005. Total 

abundance declined from 2005 to a low of 144 million in 2016, a small peak to 177 million in 

2018, and a terminal year estimate of 162 million fish. Spawning stock biomass started from a 

high of 218,291 MT in 1985 and declined over the time-series to a low of 41,377 MT in 2018, 

and increased since then to 55,343 MT in 2021 (Figure 34). The majority of the spawning stock 

biomass is ages 5 and 6+ (30-60%) for the entire time-series. Fully selected fishing mortality in 

2021 was 0.166, compared to an average full F from 1985 to 2021 of 0.309.  Estimates of F have 

varied over the time-series from a peak in 2018 of 0.456 to the lowest value of 0.166 in 2021 

(Figure 34). Estimates of recruitment remained stable over the time series, fluctuating around an 

average value of 128 million age-0 fish. Recruitment has been below average for the past 12 

years, and was estimated at 87 million age-0 fish in 2021. 

 

Retrospective pattern for the final model was examined for F, spawning stock biomass, and 

recruitment. Model BF28W_m7 exhibited a significantly improved retrospective pattern when 

https://github.com/Bluefish-WG/RT2022/blob/main/TOR4/BF28W_m7_PLOTS.pdf
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compared to model BF24, the final ASAP model. The retrospective pattern was considered 

minor for SSB (Mohn’s rho = 0.130), fishing mortality (Mohn’s rho = -0.096), and recruitment 

(Mohn’s rho = -0.063).  

 

Model BF28W_m7 had excellent convergence diagnostics. Three sets of jitter analyses at 

increasing scale values of 1, 2, and 3 (the increase in scale broadens the distribution around the 

potential starting values by scaling the variance) were conducted. At a scale value of 1 (using 

variance estimates directly) 200/200 models converged at the original objective function. At a 

scale value of 2, all models converged, with 193/200 at the original objective function. Other 

objective function solutions were nearly identical to the original solutions (original objective 

function was 1468.54, other converged solutions were at 1468.69, 1468.72, and 1468.78). At a 

scale value of 3, all models converged with 155/200 jitter runs finding the original model 

solution and most of the other objective functions solutions very close to the original objective 

function (Figure 35). For comparison, the ASAP jitter analyses were only conducted at a scale of 

1. 

 

A historical retrospective analysis showing the model results from the 2015 benchmark 

assessment, 2021 operational assessment, BF01, the continuity run model, and BF28W_m7 (the 

final model) is presented in Figure 36.  

4.3.2.4 Companion Model BF28WE: Environmental covariate on catchability of survey 

indices 

One of the main reasons the bluefish assessment model was moved into WHAM was to explore 

the incorporation of environmental covariates on the catchability of different survey indices.  

Forage fish indices were developed using a VAST model (Section 1.2; Working Paper 4 Gaichas 

et al. 2022) and explored as environmental covariates on the catchability (q) of NEFSC survey 

indices and the MRIP CPUE index. These models are still under development and are being 

briefly presented as companion models for preliminary review. It is hoped that further 

exploration of these environmental models will lead to future improvements in the assessment. 

 

The application of the forage fish indices as covariates on the catchability of the NEFSC science 

center surveys had mixed results. The forage fish index for the catchability of the NEFSC 

Albatross survey was explored as both a random walk and auto-regressive (AR1) process and 

each caused problems with the convergence of all models.  Standard error around the covariate 

was explored using both the VAST estimated standard errors as an input standard error to the 

model, or allowing WHAM to estimate a single standard error of the covariate shared among 

time steps. All of the model runs either did not converge, or had issues with the hessian matrix 

calculations.  

 

The forage fish index for the Bigelow survey did not have the same convergence issues as the 

Albatross index. The forage fish index was fit as a covariate on the Bigelow index catchability 

assuming a random walk over the time-series. All models with the forage fish covariate 

converged, but these models had worse fits than the base model according to AIC. 

 

The application of the forage fish index to the MRIP CPUE index catchability was successful 

when implemented as an autoregressive (AR1) process over the time series with WHAM 

estimating a single shared standard error. The inclusion of the forage fish index improved the fit 
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of all models (m2-m7), and model selection via AIC chose the time-varying catchability version 

of BF28W_m7 as the best model.  This model will be referred to as model BF28W_m7ecov 

(where “ecov” refers to environmental covariate).  Model BF28W_m7ecov had improved AIC of 

2 units over BF28W_m5ecov, and by 5.6 units over BF28W_m7.  The results from these top 3 

models and the base model (BF28W) are presented in Figure 37. 

 

A full presentation of parameter tables, input data, results, diagnostic, and retrospective plots are 

available for the best model BF28W_m7ecov are included in Working Paper 17 (Wood 2022d) 

and can also be downloaded or viewed separately from the following link: 

BF28W_m7ecov_plots. 

 

The use of the forage fish index as a covariate on catchability led to an overall decreasing trend 

in catchability over time (Figure 38). The MRIP index is important in scaling the biomass 

results, and the lower availability at the end of the time-series led to higher recent biomass 

estimates from the environmental model. Spawning stock biomass started from a high of 181,804 

MT in 1985 and declined over the time-series to a low of 52,697 MT in 2018, and increased 

since then to a value of 74,549 MT in 2021. Fully selected fishing mortality in 2021 was 0.126, 

compared to an average F from 1985 to 2021 of 0.271. Estimates of F have varied over the time-

series from a peak in 1987 of 0.503 to the lowest value of 0.126 in 2021. Estimates of 

recruitment have remained stable over the time series, fluctuating around an average value of 

143 million age-0 fish. Recruitment has been below average for the past 12 years, and was 

estimated at 106 million age-0 fish in 2021. 

4.3.2.5 Model BF28W sensitivity analyses 

A number of sensitivity runs of the final model (BF28W_m7) were explored. The model results 

and retrospective pattern results from each of these runs are presented in Table 8. 

 

The sensitivity of the final model to the indices was explored in several ways. First, each index 

was removed individually, and the model was re-run to gauge the effect. Results from this series 

of models are in Table 8 and Figure 39. The final model was not overly sensitive to any single 

index, which was a shift from past bluefish assessment models. The bluefish assessment used to 

be heavily weighted towards the MRIP CPUE index. In many cases the model would not 

converge without this index included, or the model would scale the biomass to an unrealistic 

magnitude to find a model solution. This was no longer the case with model BF28W_m7, which 

converged without the MRIP CPUE index and found a solution that is in agreement with all the 

other index sensitivity runs (Figure 39). The model results appeared to be most sensitive to the 

removal of the PSIGNS index, which is an important index for tracking the abundance of older 

fish. Removal of this index significantly reduced SSB and increased F. 

 

Two other index sensitivity runs were explored. Model based (GLM) versions of the indices 

(Working Paper 7 Celestino et al. 2022a) were substituted into the model for a sensitivity run. 

This change had very little impact on the model results and retrospective results.  

 

Next, NEFSC indices that included some offshore strata were substituted into the model. The 

NEFSC survey encounters larger bluefish offshore in some years, and these “offshore” indices 

were explored to see impact of including bluefish observations from these offshore strata. The 

https://github.com/Bluefish-WG/RT2022/blob/main/TOR4/28_m7ecov_PLOTS.pdf
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results from this sensitivity run were similar to the final model results, with both recruitment and 

SSB scaled upwards a small amount.  

 

The next group of sensitivities focused on how recreational discard lengths were developed.  

First, a sensitivity was run that borrowed recreational discard (MRIP B2) lengths across regions, 

as opposed to using a cumulative length by season/region for years where the number of lengths 

sampled was less than 30. This sensitivity did not have good convergence properties and the 

hessian was not positive definite. This was due to changes in some of the fleet selectivity-at-age 

estimates, with some hitting the bound of 1.0. Further development could improve this model 

and results but were beyond the scope of a sensitivity analysis. 

 

Next, recreational harvest lengths were borrowed for season/region years where the number of 

recreational discard lengths sampled was less than 30. The results of this model were nearly 

identical to the final model run. Finally, recreational length proportions from harvested fish 

(MRIP AB1) were used in place of the dead release lengths (instead of the i9, ALS, and VAS 

lengths). This model sensitivity also produced very similar results to the final model, with a 

slightly reduced recruitment and SSB, and slightly increased F (Figure 40). 

 

Other sensitivity runs that were explored included:  

1. Using the MRIP directed trip index instead of the Guild index 

2. Setting the MRIP index to estimate selectivity-at-age instead of estimating a logistic 

curve 

3. Assuming 15% recreational discard mortality instead of 9.4% 

4. Assuming both the upper and lower confidence bounds for the Lorenzen M estimates 

 

Results from each of these one-off sensitivities are presented in Table 8. 

 

5 STATUS DETERMINATION CRITERIA 

Term of Reference #5: Update or redefine status determination criteria (SDC; 

point estimates or proxies for BMSY, BTHRESHOLD, FMSY and MSY reference points) 

and provide estimates of those criteria and their uncertainty, along with a 

description of the sources of uncertainty. If analytic model-based estimates are 

unavailable, consider recommending alternative measurable proxies for 

reference points. Compare estimates of current stock size and fishing mortality 

to existing, and any redefined, SDCs. 

In a meeting of the Mid-Atlantic Fishery Management Council Scientific and Statistical 

Committee (SSC) following the 2015 benchmark assessment for bluefish, the SSC stated, “…the 

FMSY proxy of F40% might be inappropriate for Bluefish, a highly productive stock…”. Citing two 

studies as support, the SSC used F35% to set the overfishing limits for 2016-2018. The two papers 

the SSC cited (Rothschild et al. 2012; Thorson et al. 2012) were read and evaluated for support 

to use F35% for bluefish in the 2022 assessment update. The WG agreed that the literature 

supported the use of F35% for bluefish and continued the use of F35% as the FMSY proxy. 
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Many species managed in the Greater Atlantic region that use per-recruit reference points use 

F40% (e.g., many groundfish species with analytical assessments, Atlantic herring, scup and black 

sea bass). However, bluefish is not the only example of a species that currently uses F35% as 

summer flounder also uses this reference point.   

 

5.1 Stock Status from the Continuity Run, BF01 

Stock status was first determined using the continuity run model, which is the current accepted 

model for providing management advice, and would be used in absence of the research track 

assessment.  Reference points were calculated using the non-parametric yield and SSB per-

recruit long-term projection approach assuming 5-year averages for fishery selectivity, maturity 

and weights-at-age for SSB per recruit calculations. The cumulative distribution function of the 

1985-2021 recruitment estimates were resampled to provide future recruitment estimates for the 

projections and used to estimate the SSBMSY reference point associated with F35% from a 100-

year projection. 

   

Existing reference points from the 2021 management track assessment (data through 2019) were 

FMSY proxy = F35% = 0.181 and SSBMSY = 201,729 MT (1/2 SSBMSY = SSBTHRESHOLD = 100,865 

MT). Updated reference points from the continuity run are FMSY proxy = F35% = 0.176 and 

SSBMSY = 190,771 MT (1/2 SSBMSY = SSBTHRESHOLD = 93,386 MT).  

 

A retrospective adjustment of the terminal year results for F and SSB resulted in these values 

being outside of their 90% MCMC confidence bounds. The retrospective pattern in F and SSB 

was considered major (SSBrho = 0.29, Frho = -0.28, based on 7-year peel) and required a 

retrospective adjustment to determine stock status. The 2021 retrospective adjusted F was 0.222 

and falls above FMSY. The 2021 retrospective adjusted value for SSB was 70,900 MT, and is 

lower than SSBTHRESHOLD. The results from the continuity run model indicate that the bluefish 

stock is overfished, and over-fishing is occurring (Figure 41). The over-fishing status has 

changed since the 2021 management track assessment. This change is a result of increased 

retrospective for F in the updated continuity run model, resulting in a retrospective adjustment 

that increased the terminal F value. 

 

5.2 Stock Status from the Final Research Track Model, BF28W_m7 

Both F35% and SSB35% were calculated internally in WHAM using average recruitment over the 

time series (1985-2021), and 5-year averages for fishery selectivity, maturity and weights-at-age 

for SSB per recruit calculations. The 5-year average was selected for those parameters to capture 

the most recent conditions while still smoothing some interannual variability; the full time-series 

of recruitment was chosen to fully capture the range of possible recruitment, given that there did 

not appear to be a significant regime shift in recruitment levels for bluefish over the time series. 

F35% explicitly accounts for uncertainty from selectivity; SSB35% explicitly accounts for 

uncertainty from selectivity and average recruitment. Uncertainty in the reference points 

associated with the 2D-AR1 process is implicitly accounted for through its impacts on selectivity 

and average recruitment. Additional sources of uncertainty in reference points not explicitly 

accounted for include uncertainty associated with the remaining SPR calculation inputs (e.g., 

natural mortality, maturity, and average weights-at-age).  

 



 

 

48 

 

Reference points from the final model (BF28W_m7) were FMSY proxy = F35% = 0.248 (95% CI: 

0.209 – 0.299) and SSBMSY proxy = SSB35% = 91,897 MT (95% CI: 66,219–127,534 MT); 

SSBTHRESHOLD =1/2 SSBMSY proxy = 45,949 MT (95% CI: 33,110–66,768 MT). The 

retrospectively adjusted values of terminal year F and SSB were within the 90% confidence 

bounds of the unadjusted values, indicating a retrospective adjustment was not necessary to 

determine stock status (Figure 42). The terminal year SSB was 55,344 MT (95% CI: 35,185 – 

87,052 MT) which is above the SSBTHRESHOLD and 60% of SSBMSY. Full fishing mortality was 

0.166 (95% CI: 0.103 – 0.268) in 2021, which is 67% of the F35% reference point (Figure 43). 

Accounting for uncertainty in reference points and terminal year F and SSB estimates, stock 

status determination based on the final model indicates that there is an 87% chance that the 

bluefish stock is currently not overfished and over-fishing is not occurring (Figure 44).  

 

A comparison of stock status results from 2015 benchmark model, 2021 operational assessment, 

the current assessment continuity run, and the final model from this assessment is presented in 

Table 9. 

 

6 PROJECTION METHODS 

Term of Reference #6: Define appropriate methods for producing projections; 

provide justification for assumptions of fishery selectivity, weights at age, 

maturity, and recruitment; and comment on the reliability of resulting 

projections considering the effects of uncertainty and sensitivity to projection 

assumptions 

Short-term projections were conducted in WHAM, and incorporate model uncertainty, auto-

regressive processes and uncertainty in recruitment and numbers-at-age. Removals in 2022 were 

assumed to be equal to the 2022 ABC (11,460 MT), and projections were carried forward for 

years 2023-2025 with different fishing mortality and harvest assumptions: F = 0, Fstatus quo = 

0.166, F35% = 0.248, and that harvest in each year is equal to the acceptable biological catch 

(ABC) in each year. The annual ABC values were derived using projected OFL catch and 

applying the Mid-Atlantic Fishery Management Council (MAFMC) risk policy with an assumed 

OFL CV (MAFMC, 2020). In recent years, the ABC for bluefish has been developed using an 

OFL CV = 100%. Projections were carried out assuming an OFL CV of 100% and 60%. 

 

Fishing at F35% caused a decrease in biomass over the projected years, from 65,805 MT in 2022 

to 61,784 MT in 2025 (Table 10). The catches associated with fishing at the reference point 

(OFL catch) ranged from 13,909 MT to 13,584 MT (Table 11). The probability of the stock 

being over the biomass threshold in 2025 was 0.84 for the F35% projection. 

 

The most realistic projections are the F status quo projection, and the MAFMC risk policy 

projection at an assumed CV of 100%. The risk policy approach is how management 

specifications are currently developed for bluefish. The probability of the stock being over the 

biomass threshold in 2025 was 0.93 for the F status quo projection, and 0.88 for the risk policy 

approach. 
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The projections use 5-year averages for natural mortality, maturity, fishery selectivity and 

weights-at-age.  The 5-year average was selected for those parameters to capture the most recent 

conditions while still smoothing some interannual variability; the full time-series of recruitment 

was chosen to fully capture the range of possible recruitment, given that there did not appear to 

be a significant regime shift in recruitment levels for bluefish over the time series. Projections 

were not retrospectively adjusted, as the adjusted terminal year estimates of F and SSB fell 

within the 90% confidence intervals of the unadjusted values (Figure 42). The sensitivity of these 

projection assumptions were tested using 3-year, and 10 year averages.  The projections are not 

overly sensitive to these assumptions. Assuming a 3-year averages leads to ~7.0% decrease in 

biomass, and ~6.0% decrease in catch when compared to the 5-year average. Assuming a 10-year 

average for the projection input results in a <1.0% difference in all results when compared to the 

5-year average.  

 

A final projection was carried out at Frebuild. The bluefish stock is currently under a rebuilding 

plan, with a target date of 2028. Frebuild for the stock is currently set a 0.166 and a projection 

through 2028 was done assuming this value in each year. The 2028 SSB resulting from this 

projection is 79,215 MT, which is 86% of the biomass target (91,897 MT). 

7 RESEARCH RECOMMENDATIONS 

Term of Reference #7: Review, evaluate, and report on the status of research 

recommendations from the last assessment peer review, including 

recommendations provided by the prior assessment working group, peer review 

panel, and SSC. Identify new recommendations for future research, data 

collection, and assessment methodology. If any ecosystem influences from TOR 

1 could not be considered quantitatively under that or other TORs, describe next 

steps for development, testing, and review of quantitative relationships and how 

they could best inform assessments. Prioritize research recommendations. 

7.1 Status of Previous Research Recommendations 

Some research recommendations were repeated in various documents (e.g., 2015 benchmark, 

SSC documents); for brevity, where the same, or substantially similar recommendations were 

made, we consolidated them under a single heading (e.g., 2015 benchmark), but noted the 

additional documents in which the recommendation was raised. 

 

7.1.1 Research recommendations from SAW60 (NEFSC 2015) 

7.1.1.1 High Priority 

Recommendation: Determine whether NC scale data from 1985-1995 are available for age 

determination; if available, re-age based on protocols outlined in ASMFC (2011); if re-aging 

results in changes to age assignments, quantify the effects of scale data on the assessment 

WG Response: The WG spoke with NC technical staff who endeavored to find the historical 

structures for ageing (in addition to 1985-1995 scale samples, otolith samples through 2000 were 

also included in the search). NC staff reached out to multiple additional agency staff at multiple 

offices throughout the state and the samples were not found. 
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Recommendation: Develop additional adult bluefish indices of abundance (e.g., broad spatial 

scale longline survey or gillnet survey); initiate fishery-dependent or fishery independent 

sampling of offshore bluefish populations to reduce reliance on MRIP sampling [also 

recommended in July 2015 and July 2021 SSC reviews] 

WG Response: As part of the current research track assessment, ASMFC solicited data from 

state, federal, and academic partners as well as stakeholders via a press release and public data 

workshop. However, no new fishery-independent indices that capture very large fish, or offshore 

fish, were identified. The WG engaged with stakeholders to understand the extent of possible 

adult bluefish interactions with the offshore longline tilefish fishery, who indicated offshore 

interactions do occur with bluefish, but not consistently across states, and no clear trend was 

identified. 

 

Recommendation: Expand age structure of SEAMAP index 

WG Response: The WG added an age-1 index of abundance from the SEAMAP survey to the 

assessment; other ages classes were rarely encountered. 

 

7.1.1.2 Moderate Priority 

Recommendation: Investigate species associations with recreational angler trips targeting 

bluefish (on a regional and seasonal basis) to potentially modify the MRIP index used in the 

assessment model; Explore alternative definitions for targeting for calculating CPUE (e.g., 

directed trips or directed trips + incidental harvest) [also recommended in July 2015 and July 

2021 SSC reviews] 

WG Response: The WG developed an MRIP index using a species-association method to 

identify bluefish trips as well as a directed trips approach; see Section 3.2.5 and Working Paper 

13 (Drew 2022d) for more details. 

 

Recommendation: Explore age- and time-varying natural mortality from, for example, predator 

prey relationships; quantify effects of age- and time-varying natural mortality in the assessment 

model 

WG Response: The WG evaluated a suite of life history and environmental data approaches to 

estimating age-constant and age-varying natural mortality and selected the Lorenzen (1996) age-

varying approach for the base model; see Working Paper 6 (Tyrell and Truesdell 2022). The WG 

explored trends in large scale predator data (e.g., Shortfin mako, Isurus oxyrinchus) to 

potentially inform time-varying natural mortality, but concluded data were not sufficient to 

support a time-varying M at this time. 

● Next steps: If relevant predator abundance information becomes available in the 

future, a predator index could be used to inform time-varying natural mortality. The 

working group produced a condition index for bluefish of three size groups, which 

could be used to inform time-varying natural mortality in a WHAM model in the 

future; the working group prioritized using the forage fish index as a WHAM 

covariate in this research track assessment. 

 

 

Recommendation: Continue to evaluate the spatial, temporal, and sector-specific trends in 

bluefish growth and quantify their effects in the assessment model. 
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WG Response: The WG explored life history characteristics over various temporal and spatial 

scales (Working Paper 5 Truesdell et al. 2022), and constructed age-length keys and length-

frequencies at the seasonal and regional level. While the age-length data were too sparse to 

support the season-region keys (Working Paper 14 Celestino 2022b), the catch length 

frequencies for both harvest and dead discards were stratified to the season and region level, an 

advance from the 2015 benchmark where only the harvest was stratified at that level. 

 

Recommendation: Continue to examine alternative models that take advantage of length-based 

assessment frameworks. Evaluate the source of bimodal length frequency in the catch (e.g., 

migration, differential growth rates). 

WG Response:  The WG did not believe a length-based approach would improve the stock 

assessment for bluefish given the improvements in the age data collection across the coast and 

the longer time series of otolith-only data, and so did not pursue a length-based modelling 

approach. In addition, the WG did not have the type of data that would support a size transition 

matrix. The WG investigated whether the bimodal length frequency in the catch could be 

attributed to mid-size bluefish migrating to the Gulf of Mexico, but did not find support for this 

hypothesis. To some extent, with the development, expansion, and continuation of the coastwide 

biological collection program (Amendment I to the FMP), the bimodal pattern has become less 

frequent but has not disappeared; the WG suggests that this remains a research recommendation. 

Tagging programs (e.g., traditional, satellite) could provide additional insights.  

 

Recommendation: Modify thermal niche model to incorporate water temperature data more 

appropriate for bluefish in a timelier manner [e.g., sea surface temperature data & temperature 

data that cover the full range of bluefish habitat (SAB and estuaries)]. 

WG Response: The 2015 analysis of the centers of biomass (COB) indicated that COB positions 

were correlated with variations in body size and abundance, but not temperature, and the annual 

proportion of thermal habitat suitability surveyed did not exhibit consistent, systematic trends. 

Therefore, the WG did not update the thermal niche model for this assessment, but included 

temperature as a covariate in the VAST forage fish index to serve a similar function as a 

covariate to inform catchability of the indices; see Working Paper 4 (Gaichas et al. 2022) for 

more details. 

 

7.1.2 Research recommendations from SSC (July 2015) 

Recommendation: Develop Bluefish-specific MSY reference points or proxies. 

WG Response: Bluefish-specific MSY proxy reference points were developed for this 

assessment (see Section 5 above). 

 

Recommendation: Low frequency environmental variability may have caused changes in the 

timing of the movement of juvenile Bluefish through the region that, in turn, may have affected 

availability. Changes in the selectivity of age-0 Bluefish in the survey relative to water column or 

surface temperature and date should be examined. 

WG Response: The WG investigated the influence of temperature effects on bluefish as part of 

the ESP. See Section 1.1 and Working Papers 1 and 3 (Tyrell et al. 2022, Tyrell 2022) for more 

detail. However, more work, including additional bluefish data collection, needs to be done to 

incorporate this information into the assessment model framework in a quantitative way (see also 
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Section 7.2 below). The WHAM framework will allow for continued exploration and testing of 

covariates influencing time-varying catchability and selectivity. 

● Next steps: Additional survey data in the late fall would be needed to determine 

whether bluefish spawning is extending later in the year, which may be possible due 

to warmer temperatures extending later in the fall. Environmental covariates on 

recruitment could be incorporated into WHAM to test for improvements to model fit.   

● Next steps: Further VAST models could be developed that incorporate additional 

scientific surveys, e.g., ChesMMAP and NEAMAP. The effect of environmental 

variability and timing of sampling could also be further investigated with VAST 

models, which can account for the day of sampling using a catchability covariate and 

can account for environmental variability using density covariates.  

 

Recommendation: Evaluate methods for integrating disparate indices produced at multiple 

spatial and temporal resolutions into a stock-wide assessment model, especially for a migratory 

species like Bluefish [also a July 2021 SSC review recommendation] 

WG Response: The WG continued the use of the Conn (2010) approach to develop a single 

recruitment index from multiple state seine surveys as a means to addressing this research 

recommendation; see Section 3.1.2 and Working Paper 12 (Drew 2022c). The WG also explored 

using VAST to develop a forage fish index from multiple surveys (Section 1.2 and Working 

Paper 4 Gaichas et al. 2022) and to develop a standardized index with a single time series from 

the NEFSC Albatross and Bigelow vessels (Section 1.1.2 and Working Paper 3 Tyrell 2022); 

both approaches need more development before they can be incorporated into the base model of 

the assessment (see also Section 7.2 below). 

● Next steps: The bluefish Albatross-Bigelow VAST index could be further developed 

with environmental covariates (such as temperature). Additionally, multiple surveys 

could be combined in the VAST index. 

 

7.1.3 Research recommendations from SSC (July 2021)  

Recommendation: A primary source of uncertainty is the recreational catch time series. The 

MRIP trend does not seem consistent with hypothesized reasons for differences between the mail 

and phone surveys. This historical correction to the MRIP estimates for bluefish should be 

explored further to evaluate the causes of differences from other species and to consider their 

plausibility. 

WG Response: The WG examined differences in the calibrated and uncalibrated MRIP 

estimates of bluefish catch and found that while the magnitude of the calibration effect differed 

by mode and state, overall, we do generally see differences over time consistent with the 

hypothesized reasons for differences between the mail and phone surveys, and similar to trends 

in other mid-Atlantic species like summer flounder (Paralichthys dentatus), tautog (Tautoga 

onitis), and striped bass (Morone saxatilis). More detail is available in Working Paper 9 (Drew 

2022a). 

 

Recommendation: Investigate whether and how the selectivity pattern in discards has changed 

over time; the SSC questioned the methods for estimating the weight of recreational discards and 

the disparity between the use of volunteer angler data and the assumptions used by GARFO. 

WG Response:  For this assessment, the WG stratified released length frequency by region 

when calculating the weight of dead recreational releases to account for differences in the size 
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structure of removals and the release length samples between the regions. In addition, during the 

course of the present research track assessment, the WG communicated with the Greater Atlantic 

Regional Fisheries Office (GARFO) staff to ensure there is no longer a discrepancy between how 

the assessment estimates the weight of dead recreational releases and how that component is 

estimated for management; the agreed upon methods are consistent with other managed species 

(e.g., black sea bass, summer flounder). 

 

Recommendation: Investigate patterns and trends in recent recruitments; the SSC noted low 

recruitment estimates in 2019 and asked whether it was possible to detect shifts between spring 

vs late summer recruiting cohorts. 

WG Response: The WG’s review of recruitment data largely suggested that data were not clear 

or sufficient to resolve whether there has been a shift between spring versus late summer 

recruiting cohorts; see Working Paper 1 (Tyrell et al. 2022) for a more detailed review of 

recruitment information available for bluefish.  

● Next steps: In order to quantitatively distinguish between spring-spawned and summer-

spawned bluefish cohorts, regular seasonal sampling targeting small (<10cm) bluefish 

would need to be conducted over the broader Mid-Atlantic region and would have to 

extend later into the fall than current surveys. 

 

 

Recommendation: Long term environmental variability may have caused changes in the timing 

of the movement of juvenile Bluefish and the distribution of adults throughout the region that, in 

turn, may have affected availability. 

WG Response: The WG explored development of VAST index of small pelagic fish aggregate 

abundance via predator diet data as a covariate for bluefish availability (Section 1.2 and Working 

Paper 4 Gaichas et al. 2022) and incorporating environmental covariates into index development 

via VAST (Section 1.1.2 and Working Paper 3 Tyrell 2022) and GLM-based standardization 

(Working Paper 7 Celestino et al. 2022a); both approaches need more development before they 

can be incorporated into the base model of the assessment (see also Section 7.2 below). 

● Next steps: More formal examination of time series changepoints and relationships of the 

forage indices with other ecosystem indicators will be explored during the NEFSC’s 2023 

State of the Ecosystem report development cycle, and can be included in future bluefish 

assessments. 

● Next steps for Albatross-Bigelow VAST: there are additional VAST model changes that 

can be explored to better understand the influence of environmental covariates on 

bluefish distribution. The VAST model presented in this report could be further developed 

to successfully incorporate environmental covariates such as temperature.  

7.2 New Research Recommendations 

7.2.1 High Priority 

Expand collection of recreational release length frequency data  

Recreational release mortality accounts for approximately 15% of total removals in weight in 

recent years, but information on the size structure of released fish is limited, particularly in the 

South Atlantic. The assessment now stratifies length frequency of released fish by region, but 

requires borrowing across years with low sample sizes (n<30), and this borrowing should be 

minimized or avoided where possible to better capture year class effects. Expansion and 
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promotion of volunteer angler survey programs would be one option to reduce this source of 

uncertainty in the assessment.   

 

Continue development and refinement of the forage fish / availability index as well as 

incorporation of this index into a base model for bluefish management advice 

Preliminary modelling that incorporated the forage fish index suggested an improved model fit 

relative to a model without the index. The forage fish index could provide information on 

availability of bluefish to different surveys and fisheries, and could potentially help the model 

resolve conflicts between indices that occur more offshore and indices that occur more inshore. 

Additional work could include:  

• Investigate sources of piscivore diet data for “inland waters” (Chesapeake Bay, 

Delaware Bay, Long Island Sound) to integrate into the model, potentially providing 

more insight into availability to the MRIP index. (ChesMMAP has diet data; other 

surveys or studies should also be investigated) 

• Investigate sources of piscivore diet data south of Cape Hatteras to expand to full 

bluefish range 

• Investigate other potential environmental covariates (e.g., higher resolution SST) 

• Continue modelling within the WHAM framework to resolve issues identified in 

TOR4 

• Continue to explore environmental linkages to catchability, selectivity, recruitment, 

and natural mortality using WHAM 

 

Initiate additional fisheries independent surveys and/or fishery-dependent sampling 

programs to provide information on larger, older bluefish 

This remains a high priority given the limited information on older (e.g., age 2+) bluefish 

collected by existing fishery independent surveys. This item addresses the need to adequately 

characterize dynamics of older fish that are currently not well sampled by fishery independent 

trawl surveys, as well as to understand the extent of summer and fall spawning and the 

contribution of these fish to year classes. This item also would help address unresolved issues 

identified above (e.g., relative cohort strengths, offshore movements, environmental effects). 

Further engagement with stakeholders can help identify areas of incidental bluefish catch in 

offshore fisheries and inform potential development of voluntary or required reporting programs 

and data sources. 

 

Continue coastwide collection of length and age samples from fishery-dependent and 

fishery-independent sources.  

The availability of bluefish to different fisheries varies throughout the year along the coast; in 

order to accurately characterize the age-structure of the removals, adequate samples, stratified 

spatially and temporally, need to be collected. The increased sampling at the state level as a 

result of Amendment 1 to the Bluefish FMP improved the available data and reduced gaps in the 

ALK. Current sampling levels should be maintained at a minimum. 

  

7.2.2 Medium Priority 

Further index of abundance development and refinement 
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The large number of indices input into the model sometimes provide conflicting signals and add 

additional parameters that need to be estimated. Exploring environmental drivers of bluefish 

distribution and exploring index consolidation using VAST or other modeling approaches could 

provide more coherent indices and/or provide information on catchability covariates to resolve 

conflicting signals and improve model fits. 

 

Develop a recreational economic demand model 

Recreational demand models can inform managers of the likely economic and biological 

implications of alternative regulatory and stock conditions. Given the large role recreational 

effort plays in the bluefish fishery, efforts in developing recreational demand models should be 

prioritized to develop measures that will meet both biological and socioeconomic goals for the 

bluefish fishery (Appendix 1 of Working Paper 1 Tyrell et al. 2022). 

 

7.2.3 Low Priority 

Development of an updated recreational release mortality study  

Given the importance of recreational releases in the bluefish fishery for both accurately 

estimating total catch and therefore population scale and in the correct allocation of dead catch to 

the commercial and recreational sectors, reducing uncertainty on the release mortality estimate is 

important, especially if it has changed over time with changing angler behavior. The WG 

discussed: (1) examination of release mortality based on study factors (hook type, fish length, 

etc.), and (2) a comparison of release mortality estimates generated from a variety of methods. 

 

A coordinated tagging program to help understand migration patterns potentially 

contributing to patterns in length frequency distributions.  

To the extent that spatiotemporal variation in availability is contributing to the bimodal length 

frequency distribution, this could help resolve a source of uncertainty in the assessment. The WG 

was not able to resolve the source of bimodal length frequency distributions and has 

hypothesized offshore migration or summer/fall residency in southern waters makes those size 

classes of bluefish unavailable to fisheries and surveys. A coordinated fishery-independent 

tagging program could also help to more definitively resolve migrations between the Gulf of 

Mexico and Atlantic coast. A coordinated program could also address the release mortality 

recommendation above and provide a different source of growth information to compare to age-

based methods. 

 

Commercial discard length frequency data 

There are currently no length data to characterize the length frequency of commercial discards. 

This source of mortality is small relative to other sources of fishing mortality, but does represent 

a source of uncertainty. 

8 BACKUP ASSESSMENT APPROACH 

Term of Reference #8: Develop a backup assessment approach to providing 

scientific advice to managers if the proposed assessment approach does not pass 

peer review or the approved approach is rejected in a future management track 

assessment. 
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A backup assessment approach is required to be in place as a hedge against a scenario where the 

primary catch-at-age model fails peer review. Such alternative models could include biomass 

dynamic-type models (e.g., as used for red crab), swept area approaches (e.g., witch flounder), 

catch curves, index-based methods (e.g., Georges Bank Atlantic cod) or other approaches. In one 

case, a statistical catch-at-age approach was put forward as the primary model and modifications 

that were still in the statistical catch-at-age framework were suggested as a backup approach 

(e.g., American Plaice Research Track). 

 

The Working Group chose the index-based method Ismooth (previously known as PlanBSmooth; 

see Chris Legault’s GitHub repository for more information) as the backup model due to its 

performance in the analyses performed by the Index Based Model Working Group (NEFSC 

2020) and because it has a history of application at the NEFSC as an approach that has been used 

to develop ABCs (e.g., Georges Bank cod, Gulf of Maine / Northern Georges Bank and Southern 

Georges Bank / Mid-Atlantic monkfish). 

 

In general, this approach applies recent trends in an index or indices to recent dead catch to 

generate ABC advice. There are two steps in the process. The model calculates an average of 

normalized indices that are selected for inclusion, applies a loess smooth to those values, fits a 

linear model to the final three years of log-transformed smoothed data, and extracts the slope of 

the fit. The results are then applied to recent dead catch levels. In this case, the previous three 

years of dead catch are averaged and the Ismooth exponentiated slope is multiplied by that 

average to generate the advice.  

 

Ismooth was one of a number of data poor approaches examined by the NEFSC Index Based 

Methods Working Group (NEFSC 2020, Legault et al., n.d.). The primary focus of this Working 

Group was to quantify the performance of data poor approaches in circumstances that led to 

severe retrospective errors in statistical catch-at-age models. That group found that none of the 

data poor methods outperformed a retrospectively adjusted catch-at-age model over the long-

term, but also concluded that the Ismooth approach performed reasonably well relative to other 

methods, especially with respect to maintaining an acceptable level of SSB and constraining F. 

Thus, the Ismooth approach represents a reasonable choice if the statistical catch-at-age model 

were to fail. 

 

The WG simulated the performance of Ismooth relative to historical bluefish ABCs that were 

based on results of the ASAP model; see Working Paper 18 (Truesdell 2022) for additional 

information. In general, the retrospective advice calculated by the Ismooth model was correlated 

with the actual ASAP-derived ABCs that were recommended for management use by the SSC, 

especially when the MRIP index was included when developing the Ismooth advice (Figure 45). 

Accordingly, as a one-off ABC tool (i.e., when differences between approaches do not 

compound over time), Ismooth offers similar advice to the previously accepted statistical catch-

at-age model (ASAP) given the historical indices that were used to compile the Ismooth 

estimate. 

 

The WG explored other data-limited approaches for estimating sustainable yield including 

Depletion-Corrected Average Catch (DCAC; MacCall 2009) and Depletion-Based Stock 

Reduction Analysis (DBSRA; Dick and MacCall 2011) as was done in the previous benchmark 

https://github.com/cmlegault/PlanBsmooth
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(NEFSC 2015). However, McCall (2009) noted that the DCAC method is not recommended for 

species where natural mortality is greater than approximately 0.20. Because of that, DCAC was 

dropped from further consideration as an alternative model for bluefish given the updated natural 

mortality rate. The DBSRA model produced significantly higher estimates of biomass and 

sustainable yield than the age-structured model and had a low rate of accepted runs when 

parameterized with updated bluefish life history information; because of this and concerns about 

the underlying surplus production model framework of the DBSRA, the WG did not recommend 

this approach for providing alternate catch advice. 

 

Swept area approaches were also investigated but given the importance of the recreational sector 

a method that could incorporate the MRIP index was preferable. In addition, bluefish catchability 

and selectivity in trawl nets is not well understood which would decrease confidence in a trawl 

survey-only swept area approach. Catch curves were considered but were not recommended by 

the WG as a backup approach, as the WG did not know of other assessments that used catch 

curves to produce catch advice. 

 

The WG does not anticipate the need for the backup approach to be applied. The scenarios in 

which the selected catch-at-age model would be abandoned are limited to new data that caused 

complete convergence failure, the discontinuation of critical data streams or logistical issues that 

precluded the model fitting process altogether. In the case of severe retrospective errors, the 

Index Based Model Working Group found that a retrospectively adjusted statistical catch-at-age 

model did not perform worse than index or data poor approaches, so this potential issue is not 

expected to cause a transition to the backup assessment. If new data causes major issues with 

model fitting, modifications within the catch-at-age framework (e.g., data weighting, random 

effect structure, etc.) would be exhausted before moving to the backup assessment approach. 

Such changes could be implemented through an Expedited or Enhanced management track peer 

review. 
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10 TABLES 

Table 1. Maturity-at-age through age-6 as calculated using various approaches. 

“Benchmark 2015” refers to the ogive used in the previous assessment, “NMFS 

2022” refers to analyses performed during the 2022 research track assessment using 

data through 2021 but from federal sources only, and “Midyear model” refers to the 

GLM that was fit using federal and state data together. 

 Age Benchmark 2015 NMFS 2022 Midyear model 

0 0.00 0.000 0.000 

1 0.40 0.417 0.456 

2 0.97 0.965 0.926 

3 1.00 0.999 0.995 

4 1.00 1.000 1.000 

5 1.00 1.000 1.000 

6+ 1.00 1.000 1.000 
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Table 2. Total removals of bluefish in metric tons by sector, 1985-2021. 

Year 
Commercial 

Landings 
Commercial 

Discards 
Recreational 

Landings 
Recreational 

Dead Releases Total Catch 

1985 6,124 
 

47,754 1,045 54,923 

1986 6,657 
 

75,470 1,611 83,738 

1987 6,579 
 

64,160 2,012 72,750 

1988 7,162 
 

36,475 905 44,542 

1989 4,740 29 36,464 1,279 42,511 

1990 6,250 32 31,553 1,976 39,811 

1991 6,138 116 26,766 2,486 35,506 

1992 5,208 38 22,533 1,769 29,548 

1993 4,819 32 16,396 2,369 23,617 

1994 4,306 162 14,176 3,140 21,783 

1995 3,629 81 13,381 2,516 19,607 

1996 4,213 166 10,760 2,756 17,895 

1997 4,113 53 12,638 3,640 20,444 

1998 3,741 74 15,414 2,995 22,224 

1999 3,335 79 10,695 6,863 20,972 

2000 3,660 83 11,141 6,289 21,174 

2001 3,956 23 15,121 7,271 26,370 

2002 3,116 37 13,904 4,581 21,638 

2003 3,361 22 15,053 2,120 20,556 

2004 3,673 62 17,570 4,744 26,050 

2005 3,213 26 17,945 4,055 25,239 

2006 3,354 34 16,912 5,708 26,009 

2007 3,390 27 18,382 5,815 27,614 

2008 2,731 22 17,410 5,428 25,591 

2009 3,119 33 18,339 4,767 26,258 

2010 3,304 87 21,269 6,384 31,044 

2011 2,454 95 15,706 3,815 22,070 

2012 2,212 14 15,291 2,833 20,350 

2013 1,977 12 15,732 2,472 20,194 

2014 2,251 18 12,324 2,880 17,473 

2015 1,917 14 13,725 3,689 19,345 

2016 1,946 14 10,634 1,837 14,431 

2017 1,876 7 15,620 1,793 19,297 

2018 1,105 8 5,857 1,579 8,548 

2019 1,359 10 6,800 1,702 9,871 

2020 1,112 9 5,923 1,253 8,296 

2021 1,090 12 5,471 1,391 7,963 
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Table 3. Fishery-independent indices accepted by the Bluefish Working Group.  “In Conn” 

indicates the index is part of the composite YOY index. 

State Index Used in 2015? Use in 2022? 

NH NH Seine Survey Yes (in Conn) Yes (in Conn) 

RI Beach seine (Narragansett Bay) Yes (in Conn) Yes (in Conn) 

NY WLIS Seine Survey Yes (in Conn) Yes (in Conn) 

NJ DE R. Seine Survey Yes (in Conn) Yes (in Conn) 

MD Striped Bass Seine Survey Yes (in Conn) Yes (in Conn) 

VA NEAMAP Yes Yes 

VA ChesMMAP No Yes 

VA Juv. Striped Bass Seine Yes (in Conn) Yes (in Conn) 

NC PSIGNS Yes Yes 

SC SEAMAP Yes Yes 
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Table 4. Fishery-independent surveys analyzed and excluded by the Bluefish Working 

Group. 

State Index 

Used in 

2015? 

Use in 

2022? TC Comments WG Comments 

MA MA Inshore 

Trawl Survey 

No No Explore additional 

standardization; 

consider as a YOY 

index if trawl Conn 

dataset is expanded 

Trawl Conn not used 

RI Trawl – 

Seasonal 

No No Explore additional 

standardization; 

consider as a YOY 

index if Conn dataset 

is expanded 

Trawl Conn not used 

CT Long Island 

Sound Trawl 

Survey 

Yes No Use again in 2022 Remove; the index is 

dominated by age-0 

fish, covers a limited 

spatial area, and was 

poorly fit by the model 

NY Peconic Bay 

Trawl 

No No Explore additional 

standardization; 

consider as a YOY 

index if Conn dataset 

is expanded 

Trawl Conn not used 

NJ NJ Ocean Trawl Yes No Revise strata choice, 

standardization; 

consider as YOY 

index 

Trawl Conn not used 

DE 30’ Trawl No No Explore additional 

standardization 

Limited spatial 

coverage for 

recruitment index; 

trawl Conn not used 

MD Coastal Bays 

Juvenile Trawl 

Survey 

No No Explore as part of 

trawl composite 

YOY survey 

Trawl Conn not used 

NC IGNS No No Consider River 

Regions data to 

expand spatial extent 

of PSIGNS 

Trends in other 

regions the same as 

PSIGNS; not worth 

shortening the time 

series 

NC P195 No No Explore additional 

standardization; 

consider as a YOY 

index if Conn dataset 

is expanded 

Trawl Conn not used 
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Table 5. Model outputs and diagnostics from ASAP runs using various temporal and 

spatial levels of ALK and data resolution.  = Mohn’s rho 

ALK 

2021 

SSB 

(mt) 

Recruitment 

(millions of 

fish) F 

SSB 

 R  F  

# at initial 

objective 

function 

(out of 200) 

# unique 

objective 

function 

solutions 

# Not 

converged 

(out of 

200) 

Traditional-

Seasonal 59,540 28.7 0.19 0.341 0.080 -0.23 190 2 4 

Multinomial- 

Seasonal 
51,562 27.4 0.19 0.215 0.024 -0.18 193 2 3 

Multinomial- 

Season-

Region 

43,916 27.1 0.21 0.222 0.033 -0.19 192 2 4 
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Table 6. Model table showing linear steps in the ASAP and WHAM model bridge building 

process. R is recruitment (in millions of age-0 fish). “W” in the model names 

indicates WHAM model runs. ~ indicates jitter analysis was not performed for that 

run. Ρ is Mohn’s rho measure of retrospective patterning. 

Model Description 

2021 
SSB 

(MT) 

2021 
R 

(mil) 
2021 

F SSB ρ R ρ F ρ 
# at OG 
OBFunc 

Jitter 
Sol 

Not 
conv 

BF00 BLF 2021 MT model 95,742 27.9 0.172 0.226 0.192 -0.221 ~ ~ ~ 

BF01 BLF RT Continuity Run 91,745 39.4 0.160 0.294 0.170 -0.277 132 51 18 

BF03 Update all new data 85,975 39.2 0.172 0.364 0.174 -0.323 142 38 21 

BF04 New LW parameters 86,581 39.1 0.172 0.359 0.174 -0.320 ~ ~ ~ 

BF05 New Rec discard 
mortality 

82,103 35.9 0.159 0.380 0.186 -0.334 ~ ~ ~ 

BF07 Add commercial 
discards 

82,018 36.2 0.160 0.378 0.185 -0.332 140 28 31 

BF08 New Indices: MRIP 
Continuity 

88,424 35.3 0.158 0.319 0.123 -0.313 129 17 52 

BF09 New Indices: MRIP 
Continuity, 
multinomial ALKs 

70,336 26.3 0.158 0.352 0.042 -0.321 193 2 6 

BF10 New Indices: MRIP 
Continuity, 
multinomial ALKs, Rec 
discard length by 
season/region 

67,029 26.7 0.138 0.405 0.051 -0.361 197 2 2 

BF11 New Indices: MRIP 
Guild, multinomial 
ALKs, Rec discard 
length by 
season/region 

47,734 25.8 0.172 0.253 0.033 -0.214 191 2 8 

BF12 New M: Lorenzen 
based on empirical 
WAA 

65,946 97.3 0.110 0.346 0.113 -0.266 188 3 9 

BF18 5 Sel blocks 79,849 97.9 0.116 0.293 0.035 -0.220 183 2 9 

BF19 Fix bounded 
selectivities F2to3 

82,858 98.6 0.113 0.288 0.014 -0.221 194 2 5 

BF20 MRIP PSE for fleet 2 91,149 101.7 0.107 0.257 0.023 -0.205 194 4 2 

BF21 MRIP index input CV 
(from 0.3) 

84,212 85.3 0.116 0.193 0.000 -0.223 191 3 6 

BF22 No CT survey 88,051 93.1 0.111 0.187 -0.001 -0.229 193 2 6 

BF23 Adjust MRIP CV to 
reduce RMSE (x1.6) 

94,886 102.0 0.102 0.225 -0.014 -0.209 199 1 1 

BF24 Adjust fixed selectivity 
at age 2 for some 
blocks 

63,320 94.6 0.159 0.326 0.017 -0.277 192 4 4 

BF26W Reduce fleet 1 CV 63,606 95.7 0.160 0.270 -0.066 -0.215 ~ ~ ~ 

BF27W Reduce Fleet 2 CV 68,546 96.4 0.152 0.249 -0.062 -0.198 ~ ~ ~ 

BF28W Reduce both fleets CV 68,631 96.4 0.152 0.248 -0.063 -0.197 ~ ~ ~ 
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Table 7. Results and diagnostics for different state-space model variations of the WHAM 

model BF28W examining different options for treating the yearly transitions 

(survival) in recruitment and number-at-age. R is recruitment (in millions of age-0 

fish). Ρ is Mohn’s rho measure of retrospective patterning. 

Model Description dAIC AIC 

2021 
SSB 

(MT) 

2021 
R 

(mil) 
2021 

F R ρ SSB ρ F ρ 
Con-

verged? 

Positive 
definite 
Hessian? 

BF28W 
Base model: 

traditional statistical 
catch-at-age 

~ ~ 68,631 96.4 0.152 -0.063 0.248 -0.197 TRUE TRUE 

m7 

All NAA transitions 
are random effects 
correlated by year 

and age 

0 3229 55,344 86.5 0.166 0.010 0.130 -0.096 TRUE TRUE 

m5 
All NAA transitions 
are random effects 
correlated by year 

3 3232 55,070 82.3 0.167 0.019 0.126 -0.097 TRUE TRUE 

m4 

All NAA transitions 
are random effects 

independent, 
identically 
distributed 

46.2 3275 58,114 98.6 0.160 -0.008 0.172 -0.144 TRUE TRUE 

m6 
All NAA transitions 
are random effects 
correlated by age 

46.9 3276 58,786 99.9 0.159 -0.004 0.177 -0.148 TRUE TRUE 

m2 

Recruitment 
transitions are 
random effects 
independent, 

identically 
distributed 

111 3340 73,843 104.1 0.144 -0.022 0.236 -0.195 TRUE TRUE 

m3 

Recruitment 
transitions are 
random effects 

correlated by year 

111 3340 72,329 101.3 0.146 -0.020 0.245 -0.198 TRUE TRUE 
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Table 8. Results, retrospective, and convergence properties of the final model sensitivity 

runs for the WHAM final model (BF28W_m7, bolded row). R is recruitment (in 

millions of age-0 fish). ρ is Mohn’s rho measure of retrospective patterning. 

Model 
2021 R 
(mil) 

2021 
SSB 

(MT) 2021 F R ρ SSB ρ F ρ 
Con-

verged? 

Positive 
Definite 
Hessian? 

BF28W_m7 86.5 55,344 0.166 0.010 0.130 -0.096 TRUE TRUE 

rmALB 83.1 53,880 0.171 0.0075 0.127 -0.0924 TRUE TRUE 

rmBIG 86.6 56,327 0.163 0.0281 0.1222 -0.0885 TRUE TRUE 

rmMRIP 101.4 64,964 0.142 -0.0233 0.176 -0.0993 TRUE TRUE 

rmNEA 81.3 57,488 0.162 0.0071 0.1326 -0.0995 TRUE TRUE 

rmSEA0 90.3 55,826 0.165 0.0045 0.1266 -0.0932 TRUE TRUE 

rmPSIGN 75.1 38,725 0.236 0.0635 0.25 -0.1689 TRUE TRUE 

rmYOY 77.4 53,209 0.175 0.0278 0.1473 -0.1118 TRUE TRUE 

rmCHES 86.0 54,749 0.168 0.0048 0.1256 -0.0908 TRUE TRUE 

rmSEA1 86.9 55,633 0.165 0.0116 0.1316 -0.0983 TRUE TRUE 

NEFSC offshore 97.6 59,020 0.169 0.046 0.128 -0.094 TRUE TRUE 

GLM indices 90.5 57,758 0.158 0.0535 0.1513 -0.1155 TRUE TRUE 

MRIP direct 101.4 71,334 0.131 0.004 0.130 -0.096 TRUE TRUE 

MRIP SAA 86.8 60,378 0.165 0.007 0.121 -0.093 TRUE FALSE 

Borrow Region 83.4 95,775 0.130 0.090 0.204 -0.132 TRUE FALSE 

Borrow AB1 83.6 55,473 0.172 0.0066 0.141 -0.1023 TRUE TRUE 

Use AB1 for B2 80.9 53,674 0.186 0.0071 0.1326 -0.0921 TRUE TRUE 

B2 15% DM 93.9 58,842 0.172 0.0103 0.1244 -0.0935 TRUE TRUE 

M Lorenzen Low 31.4 42,296 0.226 0.0007 0.1316 -0.1003 TRUE FALSE 

M Lorenzen High 480.3 205,189 0.045 0.2398 0.4017 -0.2348 TRUE TRUE 
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Table 9. Biological reference points from the 2015 benchmark, 2021 operational 

assessment, the continuity run (BF01), and the final model (BF28W_m7). 

Reference Point SAW60 OA2019 BF01: Cont Run BF28W_m7: Final Model 

F35% 0.190 0.181 0.176 0.248 

SSBTARGET 101,343 MT 201,729 MT 190,771 MT 91,897 MT 

SSBTHRESHOLD 50,672 MT 100,865 MT 93,386 MT 45,949 MT 

 
Table 10. Short-term (2022-2025) projections of SSB and the probability of being above 

BTHRESHOLD in 2025 for bluefish under 3 different F scenarios. 

Projection 

scenario 2022 2023 2024 2025 

P (2025) > 

Bthreshold 

FMSY = 0.248 

65,805 

(39,305-

110,170) 

66,340 

(37,604-

117,034) 

64,083 

(35,017-

117,275) 

61,784 

(32,086-

118,971) 

0.84 

F0 = 0 

65,805 

(39,305-

110,170) 

72,637 

(41,394-

127,462) 

83,806 

(46,270-

151,792) 

94,956 

(49,788-

181,098) 

0.99 

Fstatus_quo = 

0.166 

65,805 

(39,305-

110,170) 

68,357 

(38,820-

120,367) 

70,009 

(38,411-

127,601) 

71,150 

(37,110-

136,412) 

0.93 

MAFMC 

risk policy 

(60% CV) 

65,805 

(39,305-

110,170) 

67,891 

(37,217-

123,847) 

68,583 

(33,654-

139,765) 

68,804 

(29,551-

160,198) 

0.85 

MAFMC 

risk policy 

(100% CV) 

65,805 

(39,305-

110,170) 

68,514 

(37,767-

124,295) 

70,385 

(35,116-

141,078) 

71,553 

(31,586-

162,089) 

0.88 
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Table 11. Short term (2022-2025) projections of total catch for bluefish under 3 different F 

scenarios.  

Projection scenario 2022 2023 2024 2025 

FMSY = 0.248 11,460 
13,909 (8,098-

23,889) 

13,957 (7,784-

25,022) 

13,584 (7,157-

25,784) 

F0 = 0 11,460 0 0 0 

Fstatus_quo = 0.166 11,460 
9,569 (5,564-

16,458) 

10,127 (5,628-

18,223) 

10,292 (5,399-

19,623) 

MAFMC risk 

policy (60% CV) 
11,460 

10,581 (P* = 

0.311) 

11,118 (P* = 

0.314) 

11,202 (P* = 

0.316) 

MAFMC risk 

policy (100% CV) 
11,460 

9,225 (P* = 

0.311) 

10,027 (P* = 

0.321) 

10,357 (P* = 

0.327) 
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11 FIGURES 

 

 
Figure 1. Life history conceptual model of bluefish identifying environmental factors with 

positive (blue text) or negative (red text) effects on different life stages of bluefish. 
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Figure 2. Forage fish indices for Fall 1985-2021 in Mid-Atlantic and Georges Bank 

nearshore and offshore areas. AlbNew= Albatross New, all inshore and new offshore 

survey strata (largest area); AlbOld= Albatross Old, includes all inshore survey 

strata; BigNew= Bigelow New, includes the subset of inshore survey strata that can 

be sampled by the R/V Henry Bigelow plus new offshore strata; BigOld = Bigelow 

Old, includes the subset of inshore survey strata that can be sampled by the R/V 

Henry Bigelow; StateWaters includes the coastline to 3 nautical miles offshore 

(smallest area) 
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Figure 3. Fitted von Bertalanffy relationship by season using age-length data from state 

and federal fishery-dependent and fishery-independent sources. Jan-Jun=Semester 

1, July-Dec=Semester 2. 
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Figure 4. Fitted length-weight relationship by season using age-length data from state and 

federal fishery-dependent and fishery-independent sources. Jan-Jun=Semester 1, 

July-Dec=Semester 2. 
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Figure 5. Comparison of the estimates of M-at-age used in the 2015 benchmark assessment 

and this assessment. 
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Figure 6. Total removals of bluefish on the Atlantic coast by sector, 1985-2021. 
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Figure 7. Percent of recreational harvest (top) and live releases (bottom) in numbers by 

area fished over time. 
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Figure 8. Percent of recreational harvest (top) and live releases (bottom) in numbers by 

mode of fishing over time. 
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Figure 9. Length frequency of recreationally harvested bluefish by state and mode of 

fishing, 1982-2020 pooled. 
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Figure 10. Proportion at length for harvested and released bluefish sampled, pooled over 

region, season, and years. 
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Figure 11. Proportions of length of harvested and released bluefish by region and season. 

Data pooled over 1985-2021. 
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Figure 12. Map of the east coast of the United States showing the approximate locations of 

each of the surveys used in the final assessment model. 
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Figure 13. Length and age frequency of the SEAMAP survey by season, pooled over all 

years. 



 

84 

 

 
Figure 14. Indices of bluefish recruitment (i.e, age-0 and age-1 only) used in the ASAP and 

WHAM models. 
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Figure 15. Indices of young-of-year abundance from state seine surveys used in the 

composite YOY index. Shaded area indicates 95% confidence interval. 
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Figure 16. Index of abundance (top) and age composition (bottom) from the NEFSC fall 

trawl survey (Albatross years). Shaded area indicates 95% confidence interval. 
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Figure 17. Index of abundance (top) and age composition (bottom) of the NEFSC fall trawl 

survey (Bigelow years). Shaded area indicates 95% confidence interval. 
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Figure 18. Index of abundance (top) and age composition (bottom) of the NEAMAP survey. 

Shaded area indicates 95% confidence interval. 
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Figure 19. Index of abundance (top) and age composition (bottom) of the ChesMMAP 

survey. Shaded area indicates 95% confidence interval. 
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Figure 20. Index of abundance (top) and age composition (bottom) of the NC PSIGN 

survey. Shaded area indicates 95% confidence interval. 
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Figure 21. Comparison of trends in the MRIP CPUE index developed using different trip 

selection and standardization methods.  
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Figure 22. MRIP CPUE (top) and age composition (bottom).Shaded area indicates 95% 

confidence interval. 
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Figure 23. Model results of abundance, SSB, fishing mortality, and recruitment for the 

continuity run (Model BF01). 
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Figure 24. Fleet selectivity block comparison between model BF23 (left) and final model 

BF24 (right) after addressing poor age composition residual blocks in BF23. 
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Figure 25. Convergence diagnostics for the final ASAP model, model BF24.  The left plot 

shows objective function results for 200 random sets of starting values, with the 

original objective function designated by the horizontal red line.  The right plot 

shows gradient values from each model distributed around a 0.0001 criterion for 

‘good’ convergence (blue vertical lines represent other objective function solutions, 

some where the gradient result is above or below the y-axis range of the plot). 
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Figure 26. Comparison between model results from ASAP model BF24 (blue lines and 

points) and the same model run as a traditional statistical CAA model in WHAM 

(orange lines). 
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Figure 27. One-step ahead residual diagnostics for the 2 fleets.  Patterns in the diagnostics 

for both fleets led to a reduction in the fleet input CVs. 
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Figure 28.  Number-at-age deviations for the models BF28W_m1 through BF28W_m7. Red 

indicates positive deviations and blue indicates negative deviations. 
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Figure 29. A comparison of SSB, F, and recruitment between the final bluefish model 

(BF28W_m7), the base statistical catch-at-age model (BF28W), and the top two 

closest models chosen by AIC. 
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Figure 30. A comparison of the fleet selectivity block estimates between the final bluefish 

model (BF28W_m7), the base statistical catch-at-age model (BF28W), and the top 

two closest models chosen by AIC. Block 1: commercial fleet 1985-1999, Block 2: 

commercial fleet 2000-2021, Block 3: recreational fleet 1985-1999, Block 4: 

recreational fleet 2000-2010, Block 5: recreational fleet 2011-2021. 
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Figure 31. A comparison of the Index selectivity estimates between the final bluefish model 

(BF28W_m7), the base statistical catch-at-age model (BF28W), and the top two 

closest models chosen by AIC. Block 6: NEFSC Albatross, Block 7: NEFSC Bigelow, 

Block 8: MRIP CPA, Block 9: NEAMAP, Block 10: SEAMAP Age 0, Block 11: 

PSIGNS, Block 12: Conn YoY, Block 13: ChesMMAP, Block 14: SEAMAP Age1. 
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Figure 32. Selectivity estimates for the commercial (top) and recreational (bottom) fleets 

from the final model BF28W_m7. 
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Figure 33. Final index selectivity estimates for all indices with age comps in the final model 

BF28W_m7.  Index 1: NEFSC Alb, Index 2: NEFSC Big, Index 3: MRIP CPA, 

Index 4: NEAMAP, Index 6: PSIGNS, Index 8: ChesMMAP. 
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Figure 34. Spawning stock biomass (top) and fully selected fishing mortality (bottom) 

results from the final model BF28W_m7 from 1985-2021. 
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Figure 35. Jitter analysis to investigate convergence properties of final model BF28W_m7.  

200 jitter runs at 3 different variance scales were run with convergence results 

shown (Scale 1 = black, Scale 2 = blue, Scale 3 = red).  The green line indicates the 

original model objective function. 
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Figure 36. Historical retrospective of model results from the final WHAM model, the final 

ASAP final model, the continuity run update of the SAW60 model, the operational 

assessment in 2021, and the SARC60 benchmark model. The shaded area indicates 

the 95% confidence intervals for the final WHAM model estimates. 
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Figure 37. A comparison of the results from the base model (BF28W) and the top 3 models 

that include the environmental covariate on the MRIP index catchability. 
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Figure 38. Fit to the forage fish index used as a covariate on the catchability (availability) 

of the MRIP index (top) and resulting trend in estimated catchability over time for 

the MRIP index (bottom). 
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Figure 39. Results from the sensitivity analyses testing the impact of removing each index 

on the model results. 
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Figure 40. Results from the sensitivity analyses testing different borrowing rules for the 

recreational discard lengths.  The borrowing from region model (“Borrow_reg”) 

had poor convergence properties with bounded parameter estimates. 
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Figure 41. Stock status plot with status determination criteria for the model BF01, the 

continuity run. Dashed line indicates the 90% confidence region around the 

terminal year estimates of F and SSB. Red dot shows the retrospective adjusted 

terminal year values, which fall outside the confidence region and indicate that 

status should be determined using the retrospectively adjusted values. 

  



 

112 

 

 
Figure 42. Stock status plot with status determination criteria for the final WHAM model 

for this assessment. Dashed line indicates the 90% confidence region around the 

terminal year estimates of F and SSB. Red dot shows the retrospective adjusted 

terminal year values, which fall within the confidence region and indicate that a 

retrospective adjustment is not necessary to determine stock status. 
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Figure 43. Final model SSB and fishing mortality in relation to SSB35% and F35%, the 

status determination criteria. The current bluefish stock is not-overfished and over-

fishing is not occurring. 
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Figure 44. Kobe plot from final model (BF28W_m7) with stock status probability ellipse 

showing an 87% probability the bluefish stock is not overfished and over-fishing is 

not occurring. “21” indicates the 2021 point estimates of SSB/SSB35% and F/F35%. 
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Figure 45. Results of applying a hypothetical Ismooth analysis compared to the actual ABC 

recommended for use in management.  The dashed line is the 1-1 line. 
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12 LIST OF RELEVANT WORKING PAPERS 

 

Working papers are available on the NEFSC data portal for this assessment, and at the hyperlinks 

below. 
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