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1 Introduction

An Atlantic spiny dogfish stock assessment model was developed in Stock Synthesis version
3.30.18 (SS3; Methot and Wetzel 2013) to provide an alternative for the index-based approach
(Stochastic Estimator; NEFSC 2006) that was used in the previous assessments. SS3 is a
statistical length-based age-structured population modeling framework. It is one of the most
widely used stock assessment packages in the U.S. and globally (Dichmont 2016, 2021) and
has many essential features of next-generation stock assessment models (Punt et al. 2020).
Unlike most age-structured stock assessment models, SS3 can tune directly to length data,
which is necessary when age data are lacking, as in Atlantic spiny dogfish. Additionally,
SS3 can model sexes separately, an essential feature for a sexually dimorphic species such as
spiny dogfish where the fishery targets only females. SS3 was recently used to assess Pacific
spiny dogfish (Gertseva and Taylor 2021).

A sex-specific SS3 model was constructed for the Atlantic spiny dogfish to account for the life
history and fishing differences between sexes. The SS3 runs were conducted solely on length
data with assumed/estimated growth parameters within the model, without age data. While
there was an effort to age Atlantic spiny dogfish and provide up-to-date age information for
this assessment, due to several potential issues for the new age data, the Working Group
decided not to use it for this assessment (Passerotti and McCandless 2022). Since growth is
likely the primary uncertainty of this assessment, extensive sensitivity and profile analyses
on various growth assumptions were conducted.

2 Model Configuration

2.1 Time Series Data

2.1.1 Catch

Commercial catch data (metric tons) available for SS3 modeling including U.S. and distant
water commercial fisheries and U.S. recreational landings from 1962 to 2019, and discards
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from U.S. commercial fisheries and U.S. recreational landings from 1989 to 2019 (see TOR2).
Both landings and discards data are available by gear type and summarized in Table 1.
The discards were converted into dead discards using gear-specific discard mortalities and
modeled as ”catch” in SS3 (see TOR2). The commercial data by gear were aggregated into
five modeling fleets (two fleets for landings and three fleets for discards) based on examining
the similarities of their length compositions (Table 1 and Figures 1-2).

2.1.2 Abundance and Biomass Indices

The Northeast Fisheries Sciences Center (NEFSC) bottom trawl survey data was used as
the primary abundance index for the SS3 modeling since it is the only resource-wide survey
available for this stock (see TOR3). The survey has operated in the spring and fall since
1968. Like the previous assessments, only the spring bottom trawl data were used because a
portion of dogfish are outside of the bottom trawl survey domain in the fall due to seasonal
migrations. The 2014 spring bottom trawl survey data were excluded from SS3 modeling
because of missing data from critical survey strata in the Mid-Atlantic region. The annual
stratified mean number per tow index was expanded using a factor of 5,260,450, the ratio of
the total area surveyed divided by the swept area of a tow (wings only), the same expansion
factor used in the Stochastic Estimator. This expansion allows the survey catchability q
estimated in SS3 to be interpretable as gear efficiency combined with availability.

Additional abundance/biomass indices considered in SS3 modeling were the NEFSC bottom
longline survey data (2014-2021; Nieland and McElroy 2022) and a vector auto-regressive
spatio-temporal model-based index (VAST) that combined four trawl surveys from NEFSC
(1980-2021), Massachusetts Division of Marine Fisheries (1980-2021); Maine/New Hampshire
(2005-2021); and Northeast Area Monitoring and Assessment Program (NEAMAP; 2007-
2021; Hansell and McManus 2022; see TOR3). These abundance/biomass indices, along
with the NEFSC fall bottom trawl survey index, were included in SS3 as sensitivity runs.

The abundance/biomass indices are assumed to have a lognormal error structure, and the
standard error of

√
ln(1 + (CV)2 where CV is the coefficient of variation. A constant pa-

rameter added to the inputted standard error of the survey indices was estimated in SS3 for
each survey.

2.1.3 Length Composition

Sex-specific length composition data from catch and survey for all fleets and years, except
for the 2014 NEFSC spring bottom trawl survey, were available for this assessment. Total
length data were partitioned into 31 length bins, from 20 to 110+ cm with a 3 cm increment.
The SS3 estimated population numbers at length (population length bins) were structured
the same as the length composition data. Length composition data were excluded and not
used in the modeling when the effective sample size was one, or the number of length bins
covered was less than five, as they are less credible (Figure 2). Comparing preliminary model
runs using the complete data versus the reduced data showed no difference in population
estimates, suggesting that the excluded data were not informative.
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2.2 Initial Population State

SS3 model runs started in 1989, the first year quantitative discards information was available
from observer data. Discards before 1989 were a significant source of mortality for spiny
dogfish (NEFSC 1994); thus, the Working Group was reluctant to start the model before
1989 without accurate discards information. Since fishing for dogfish occurred before 1989,
an initial equilibrium catch was assumed, and initial fishing mortality was estimated for each
fleet in SS3. The initial equilibrium catch by fleet was estimated using an average of the
1962-1988 catch data. Total landings from 1962 to 1988 were obtained from Sosebee (2019).
Total discards from 1962 to 1988 were hindcasted using the observed ratio of discarded
dogfish to landings of all species in 1989 from otter trawl and gill nets fishery (NEFSC
2006). Hindcasted total discards are likely underestimated because they only rely on two
types of gears. Total landings and hindcasted total discards were assigned to each fleet using
the averaged by-fleet proportion from the 1989-1993 catch data. An SS3 run of starting the
model from 1962 and assuming fishing morality to be negligible prior to 1962 was conducted
in the sensitivity analysis.

2.3 Life History

Life history characteristics, including sex-specific length-weight relationship, female maturity,
and fecundity relationship, were updated using NEFSC bottom trawl survey data during
this assessment and fixed at the updated values in SS3 (Hart and Sosebee 2022; Sosebee
2022). During the preliminary model explorations, the Working Group found evidence of
changing life history characteristics, including growth, maturity, and fecundity for Atlantic
spiny dogfish in recent years. In particular, the estimated length at 50% maturity declined
from 80 cm in 1998-2011 to 73 cm during 2012-2019 (Sosebee 2022). Therefore, time blocks
of 1989-2011 and 2012-2019 (referred to as biology blocks) were implemented in SS3 to
allow growth, maturity, and fecundity to vary through time. Different growth, maturity, and
fecundity parameter values were assumed/estimated for each block in SS3. Several sensitivity
runs were conducted to examine the biology block assumption.

2.3.1 Growth

In the past assessments, the sex-specific growth for Atlantic spiny dogfish was assumed to
follow a von Bertalanffy (VB) relationship estimated by Nammack et al. (1985; Table 2).
A new growth study was conducted during this assessment to provide up-to-date growth
information for this stock (Passerotti and McCandless 2022). During the preliminary model
explorations, the new age data was compiled as conditional distributions of age-at-length,
and VB growth parameters were estimated for each sex in SS3 (Figure 3). However, due
to the high variability in length by age classes, especially for older females (Figure 3), the
estimated standard deviations around the estimated growth curve were unrealistically large.
As a result, the estimated selectivities for landings and surveys became dome-shaped, which
the Working Group found to be unreasonable. SS3 runs that fixed the growth parameters at
the values estimated by Passerotti and McCandless (2022) using the new growth data were
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also conducted. However, the results were similarly unrealistic. Given the uncertainties of
the new growth data identified in Passerotti and McCandless (2022), and the unrealistic SS3
model results, the new growth data were not used in this assessment.

Performances of the model using Nammack et al. (1985) growth and models with time-
varying growth where the VB parameters were estimated for the biology block 2012-2019
were examined during the preliminary model explorations. The results showed a significant
improvement in Akaike information criterion (AIC), resulted from the reduced VB asymp-
totic length (L∞), especially for the females (Table 2). The reduction of L∞ reflects the
absence of large females in both catch and survey data for recent years (Figure 4). The
Working Group decided to estimate L∞ for both sexes in SS3 for the 2012-2019 period but
fix the VB length at age-0 (LAmin) and growth coefficient (k) at the values of Nammack
et al. (1985) for the base case model. Sensitivity and profile analyses with various growth
assumptions were conducted. The maximum age in SS3 was fixed at 50 yr based on the
approximate maximum age observed (Passerotti and McCandless 2022).

2.3.2 Length-Weight, Maturity, and Fecundity Relationships

Sex-specific length-weight relationships in SS3 were estimated using NEFSC bottom trawl
survey data from 1993 to 2019 from generalized linear mixed-effects models (Hart and Sosebee
2022; Figure 5):

W = 1.899348e− 06L3.188 for females, (1)

W = 3.656515e− 06L3.006 for males, (2)

where W is total weight (kg) and L is total length (cm).

Female maturity relationships were estimated for 1998-2011 and 2012-2019, respectively,
using NEFSC bottom trawl survey data and used in SS3 (Sosebee 2022; Figure 6):

Mat =
1

1 + exp(−0.4098361(79.9 − L))
for biology block: 1989-2011, (3)

Mat =
1

1 + exp(−0.2832861(73.1 − L))
for biology block: 2012-2019, (4)

where Mat is proportion mature and L is total length (cm).

Fecundity relationships were estimated for 1998-2011 and 2012-2019, respectively, using the
pups/embryo data found in a subsample of female dogfish in the NEFSC bottom trawl survey
and used in SS3 (Hart and Sosebee 2022; Figure 7):

P = 5.525074e− 06L3.046335 for biology block: 1989-2011, (5)

P = 7.893089e− 06L2.950182 for biology block: 2012-2019, (6)
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where P is number of pups (age-0) and L is total length (cm).

2.4 Natural Mortality

The past Atlantic spiny dogfish assessments assumed a natural mortality (M) of 0.092
(Hoenig 1983; Rago et al. 1998). For this assessment, sex- and age-specific natural mortality
was fixed at values derived using Lorenzen (1996) method and scaled to the average of Then
et al. (2015) estimate (M = 0.102; Anstead 2022; Figure 8). Sensitivity runs were conducted
to examine various M assumptions.

2.5 Spawner-Recruitment Relationship

Stock-recruit (SR) relationship in SS3 models the relationships between age-0 fish and spawn-
ing output, i.e., the number of pups the mature females produced (1,000s) at the beginning
of each year (Methot et al. 2021). Ricker, Beverton-Holt, and survivorship SR relationships
were explored during this assessment. The survivorship SR relationship developed by Taylor
et al. (2013) is an SR model that explicitly models the survival between embryos and age-0
recruits, which is particularly useful for low fecundity species that produce fewer offspring
per litter and exhibit a more direct relationship between spawning output and recruitment
(Taylor et al. 2013; Methot et al. 2021). The survivorship SR relationship was assumed for
the Pacific spiny dogfish assessment (Gertseva et al. 2021) and is parameterized as (Taylor
et al. 2013):

Ry = SSBye
ln(S0)(1−Zfrac(1−

SSBy

SSB0

β

))

, (7)

where Ry is recruitment in year y, SSBy is spawning output in year y, S0 = R0

SSB0
is survival

of per-recruit individuals at unfished equilibrium, R0 is unexploited equilibrium recruitment,
SSB0 is the corresponding equilibrium spawning output, β is a shape parameter controlling
the shape of the density-dependent relationship between SSBy

SSB0
and S0 (with limit β > 1),

and Zfrac is a fraction of pre-recruit instantaneous mortality rate at equilibrium (−ln(S0))
and range 0 < Zfrac < 1.

During the preliminary model explorations, the parameters for all three SR models were
estimated within SS3, and model results were compared. The SS3 model with the Beverton-
Holt SR relationship failed to converge, and the models that assumed Ricker and survivorship
SR relationships showed very differently estimated stock trajectories. Thus, the Working
Group decided to estimate the SR relationship outside of SS3, fix the SR parameters in SS3
at these values, and then compare their model performances.

The Ricker and Beverton-Holt SR relationships parameterized by a and b were estimated
using the NEFSC bottom trawl survey data (McManus et al. 2022). The survivorship SR
relationship was explored using the same data set (with S0 and SSB0 estimated by averages
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of various SS3 preliminary runs) but failed to converge because the two parameters Zfrac

and β are highly correlated. Therefore, the survivorship SR parameters estimated in a
preliminary model run (Zfrac = 0.93 and β = 1.6) were assumed for exploratory SS3 runs.

In SS3, the Ricker and Beverton-Holt SR models were parameterized using ln(R0), the
steepness parameter (h; Methot and Wetzel 2013). To estimated the Ricker and Beverton-
Holt steepness from the a and b form models, S0 is required (Miller and Brooks 2021):

h =
aφ0

4 + aφ0

for Beverton-Holt SR model, (8)

h =
(aφ0)

4/5

5
for Ricker SR model, (9)

where φ0 = 1
S0

can be interpreted as unexploited spawning per recruit. The survivorship SR
relationship is not parameterized in the form of steepness in SS3, but steepness was calculated
for comparison purposes. S0 is also required to estimate steepness for the survivorship SR
parameters (Taylor et al. 2013):

h = 0.2eS0Zfrac(1−0.2β) (10)

To get an estimate of S0, various preliminary SS3 runs were examined. The estimated
S0 in SS3 is invariant with different model settings, e.g., growth, maturity, fecundity, SR
relationships, etc., but varies with natural mortality. Therefore, three S0 values derived
using three M assumptions, static M = 0.092 (Hoenig 1983), static M = 0.102 (Then et al.
2015), and Lorenzen (1996) M scaled to an average of 0.102, were assumed, steepness were
estimated from these values for the Ricker and Beverton-Holt SR models, and SS3 runs were
conducted with the fixed steepness values. For the survivorship SR relationship, parameters
were fixed at Zfrac = 0.93 and β = 1.6, and model runs were conducted with three different
M assumptions.

The estimated steepness was around 0.4 for M = 0.092, around 0.3 for M = 0.102, and
around 0.2 for scaled Lorenzen (1996) M for both Ricker and Beverton-Holt SR models.
However, the steepness is around 1 for M = 0.092, around 0.8 for M = 0.102, and around
0.6 for scaled Lorenzen M for the survivorship SR models. AIC values from these runs
suggested that survivorship SR outperformed Ricker and Beverton-Holt models regardless
of M assumptions; the survivorship SR model coupled with M = 0.102 performed the best,
followed by the scaled Lorenzen (1996) M . These conclusions were the same with or without
estimating recruitment deviations in the model.

Because assuming M = 0.102 resulted in an unrealistically high steepness/productivity for
spiny dogfish, a long-lived and low fecundity stock, the Working Group decided to assume
a survivorship SR relationship, coupled with the Lorenzen (1996) M scaled to an average of
0.102 as the base case model configuration. The survivorship SR parameters were updated
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based on a profile analysis and fixed at Zfrac = 0.9, β = 1.5, and σR = 0.3 (standard
deviation of log recruitment deviations) for the base case model. Recruitment deviations
were estimated for the entire time series and bias-adjusted so that the estimated recruitments
are mean unbiased (Methot and Taylor 2011; Methot et al. 2021). Uncertainty of the SR
relationship assumptions were further explored in the sensitivity and profile analysis.

2.6 Selectivity

A double normal selectivity function was assumed for all six fleets in SS3 to fit the length
composition data for its ability to estimate either an asymptotic or a domed-shaped selec-
tivity pattern from data (Methot and Wetzel 2013; Methot et al. 2021). The double normal
selectivity function has six parameters: p1 - peak value, p2 - top logistic, p3 - ascending
width, p4 - descending width, p5 - selectivity at first length bin, and p6 - selectivity at last
length bin. The sex-specific selectivity was estimated using a parameter offset approach with
a maximal selectivity greater than or equal to one for the dominant sex and an additional
parameter to determine the relative apical selectivity value for the offset sex. The selectivity
parameters allowed to be offset in SS3 are p1, p3, p4, and p6. For the catch fleets 1-5, male
selectivity was estimated as an offset from the female parameters, so the maximum selectiv-
ity for both sexes is one; thus, the resulting apical fishing mortality is comparable among
fleets. The shape of the selectivities was freely estimated in SS3 for all fleets. Parameters p5
and p6 were skipped for all fleets, except for p5 for the discard fleet 5 and survey because
they caught small dogfish. The offset of descending parameter p4 for landings fleets and
the survey was turned off because it was estimated at zero during the preliminary model
explorations. Selectivity time blocks were implemented for the NEFSC spring bottom trawl
survey to estimate different selectivities for the two different research vessels conducting the
survey: RV Albatross IV (1989-2008) and FRV Henry B. Bigelow (2009-2019). A sensitivity
run was conducted to examine the selectivity time block assumption.

2.7 Data Weighting

Three data weighting approaches, McAllister-Ianelli, Francis, and Dirichlet-Multinomial
(McAllister and Ianelli 1997; Francis and Hilborn 2011; Thorson et al. 2017), were ex-
plored to rescale the effective sample size to reduce conflicts between data sources during the
preliminary model exploration. The scalers estimated using McAllister-Ianelli and Francis
data weighting approach significantly down-weighted the survey length composition data
relative to the catch length composition data. Thus, the Working Group decided to use the
Dirichlet-Multinomial data weighting approach, which involves estimating a parameter (θ)
to scale each fleet’s inputted effective sample size. For comparison purposes, the θ param-
eter was fixed at the base case value for the jitter and profile analysis but re-estimated for
the retrospective analysis. Sensitivity analysis was conducted without weighting the length
composition data.
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2.8 Parameters

In summary, the parameters fixed in SS3 include length-weight, maturity, fecundity, SR re-
lationships, growth for the first biology block, and the fixed p4-6 parameters mentioned in
the selectivity paragraph above. Within the estimated parameters, the peak, ascending, and
apical selectivity parameters were time-varying for fleet 6, and L∞ for both sexes were esti-
mated for biology block 2012-2019. Non-informative priors were used for all the parameters
except for the θ parameter for the Dirichlet-Multinomial error distribution used to weight
the length data. A Normal N(0, 1.813) prior was assumed for ln(θ) to counteract the log
transformation effect between θ and data weighting (Methot et al. 2021).

3 Model Convergence and Diagnostic

The model convergence was evaluated based on whether the final gradient is < 0.0001 and
whether the Hessian matrix for the parameter estimates is positive definite. Parameters
estimated at a bound were examined, and correlations between estimated parameters were
produced to see if highly correlated parameter pairs or non-informative parameters exist
for possible unstable model or model misspecification. The residual analysis proposed by
Carvalho et al. (2021) was performed on indices and length composition data to check for
model fits. Profile of R0, jitter, and retrospective analyses were also conducted to check for
data consistency and model stability (Carvalho et al. 2021).

4 Model Results

4.1 Base Case Model

4.1.1 Convergence

The base case model converged (gradient 2.3 × 10−5) and the Hessian matrix was positive
definite. All parameters were estimated within their bounds, correlations between parameters
were low (< 0.95), and all parameters were informative (correlation > 0.01). The 100
iterations of jittering the starting values by 10% resulted in 60% of the runs converging at
the total likelihood value of the base case (-23409.9) and above the base case total likelihood
value for the rest of the runs with a maximum change of 36.6 in likelihood. This result
indicated that the base case model is slightly sensitive to starting values but stable and is
likely to converge at a global rather than a local minimum.

4.1.2 Overall Goodness of Fit

The overall model fit of the abundance index data and length composition data was evaluated
using joint-index residual plots from the fit to the index data and the mean length of the
length composition data (Carvalho et al. 2021). The residual plot for the NEFSC spring
bottom trawl survey index showed a residual pattern where the residuals are positive during
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the 1990s, negative during the 2000s, and positive in recent years, with RMSE = 39.6%
(Figure 9). The residual plot for mean length of the length composition data showed a good
fit with RMSE = 6.3%. The loess-smoother of this plot indicated a positive residual pattern
at the beginning of the time series but no apparent residual pattern for recent years (Figure
10). The above analysis indicated a reasonably good overall fit to the data for the base case
model.

4.1.3 Growth

The time-varying growth curve and the assumed/estimated VB growth parameters by sex
are shown in Table 2 and Figure 11. The estimated L∞ for the biology block 2012-2019
were smaller than those estimated by Nammack et al. (1985) for both sexes. The reduction
is more significant for females (11.26 cm) than males (3.35 cm) and is likely reflecting the
absence of large females in both catch and survey data (Figure 4).

4.1.4 Abundance Index

The observed and model-predicted NEFSC spring bottom trawl abundance index is shown
in Figure 12. The predicted index is within the 95% uncertainty level, except for 2004. The
estimated catchability q was 0.83 for this survey.

4.1.5 Selectivity

The estimated selectivities by sex and fleet are shown in Figures 13-18. The estimated
selectivities were asymptotic (logistic) for all landings fleets and NEFSC spring bottom trawl
survey (fleets 1, 2, and 6) and dome-shaped for all discard fleets (3-5; Table 1). Estimated
apical male selectivity was smaller than females for landings and discard fleets (1-5; Table
1), which is reasonable for a female-targeted fishery. Time-varying selectivity for the NEFSC
spring bottom trawl survey showed an increased selectivity for small dogfish and reduced
selectivity for the large females during the Bigelow period (2009-2019), which is consistent
with the survey data. Figure of length compositions from 2005 to 2012 showed systematic
changes between the Albatross to Bigelow period for both sexes (Figure 19).

4.1.6 Length Composition

The observed and model-predicted length compositions aggregated by fleet, year, and sex
are shown in Figure 20. The fits to the aggregated length compositions appear to be fairly
accurate, suggesting that the estimated fisheries and survey selectivities are reasonable.

The observed and model-predicted annual length composition data and the residuals from
the fits by fleet and sex are shown in Figures 21-32. Fit to the annual length composition
data showed some systematic poor fit for the large females for the landings fleets (1 and 2)
and the survey, as well as the median size males for the survey. There were large residuals
for small (around 30 cm) dogfish for fleets 1, 3, and 4 and large dogfish for fleets 3 and 4.
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4.1.7 Recruitment

The fixed survivorship SR relationship, along with the estimated recruitment from both
the SR relationship and recruitment deviations, are shown in Figure 33. The estimated
recruitment decreased from 1989 to the early 2000s, when the lowest recruitments of the
entire time series were estimated, followed by a large increase through 2010, and then dropped
to half of the peak value and stayed stable since (Table 4 and Figure 34).

4.1.8 Total Biomass and Spawning Output

The estimated time series of total biomass by sex and spawning output are provided in Table
4 and Figure 35. The estimated spawning output declined during the beginning of the time
series, increased starting in the early 2000s, peaked in 2012, and then decreased since.

4.1.9 Fishing Mortality

The estimated annual fishing mortality, which is defined as the number-based exploitation
rate for age 12+ dogfish (roughly age at 50% fishery selectivity), peaked around 1989 to
1990, decreased to the lowest point in 2003, and stayed below 0.02 since 2003, except for
2014, which is slightly above 0.02 (Table 4 and Figure 35).

4.2 Sensitivity Analysis

4.2.1 Growth for 2012-2019 Period

For the base case model, L∞ was the only growth parameter estimated for the biology block
2012-2019. The sensitivity of this assumption was examined with three additional runs:

• estimating L∞ and k but fixing LAmin at the Nammack et al. (1985) values,

• estimating all three growth parameters L∞, k, and LAmin, and

• fixing L∞, k, and LAmin at the Nammack et al. (1985) values

for both sexes for the biology block 2012-2019. The estimated spawning output from the
two growth scenarios with estimating two or all three VB parameters are similar to the
estimates from the base case model, with slightly higher terminal spawning outputs (Figure
36). However, the run assuming Nammack et al. (1985) growth produced a very different
spawning output trajectory than the base case model (Figure 36).

The estimated L∞ is similar with or without estimating k and LAmin (Table 2). The estimated
k is slightly higher than that k estimated by the Nammack et al. (1985) study. Although
runs estimating two or all three VB parameters performed better than the base-case model,
the differences in AIC were small (Table 3). When the VB growth parameters were fixed
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at the Nammack et al. (1985) values, the AIC was much worse. These results support the
Working Group’s decision on estimating the L∞ for the biology block 2012-2019 for the base
case model.

4.2.2 Natural Mortality

Sensitivity runs were performed assuming:

• M = 0.092 (Hoenig 1983) for all ages and sexes, as used in the previous assessments,

• M = 0.102 for all ages and sexes derived using Then et al. (2015) method, and

• the sex- and age-specific Lorenzen (1996) M scaled to asymptote at 0.102.

There were compared to the base case model where the sex- and age-specific Lorenzen (1996)
M was scaled to an average of 0.102. A summary of performance statistics and several critical
parameter estimates for these runs can be found in Table 3. The two static natural mortality
runs performed better than the base case in AIC, likely contributed by the higher M for
older dogfish (Figure 37). However, the estimated NEFSC spring bottom trawl survey q and
steepness h were both over 1 for the static natural mortality runs, indicating possible model
misspecifications. This supports the Working Group’s decision not to use static natural
mortality for the base case model. The run with Lorenzen (1996) M scaled to asymptote at
0.102, which assumed the highest natural mortality at age of all the runs, performed worse
than the base case. The estimated spawning output for this run is much higher than the two
static M runs and the base case model (Figure 38).

4.2.3 Spawner-Recruitment Relationship

The performance of the base case model with a fixed survivorship SR relationship and
estimated recruitment deviations was compared to two additional sensitivity runs:

• fixed Ricker SR parameters with recruitment deviations and

• fixed Beverton-Holt SR parameters with recruitment deviations.

The Ricker and Beverton-Holt SR relationship parameters were derived from the NEFSC
bottom trawl survey and translated into steepness using the φ0 estimated from the base case
model. The estimated steepness was 0.28 for both Ricker and Beverton-Holt SR and 0.68 for
the survivorship SR from the base case model. Different SR assumptions resulted in different
trajectories of spawning output and likely different management advice (Figure 39). These
two SR sensitivity runs performed worse than the base case model in terms of AIC (Table
3). The recruitment likelihood increased when assuming a Ricker (recruitment likelihood =
126.99) or a Beverton-Holt (recruitment likelihood = 107.97) SR relationship, reflecting a
poorer fit to the recruitment data compared to the base case model (recruitment likelihood
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= 0.24). The recruitment time series estimated from the Ricker and Beverton-Holt models
were far from what was observed in the NEFSC spring bottom trawl survey (Figure 40; see
McManus et al. 2022, Figure 1). In both cases, the estimated NEFSC spring bottom trawl
survey q was over 1, which indicated possible model misspecifications (Table 3).

4.2.4 Time Block

Sensitivity runs were conducted with different time block assumptions:

• biology block 2011-2019,

• biology block 2013-2019,

• no biology block, and

• no survey block.

These were compared to the base case model where the biology block 2012-2019 and survey
block 2009-2019 was assumed. For the runs with plus and minus one year of the base case
biology block (2012-2019), the maturity and fecundity relationships remain the same as the
base case model, and L∞ was estimated for both sexes within the model. The run with no
biology block, maturity, fecundity, and growth was assumed to be the same as the settings
for the biology block 1989-2011 in the base case model.

The model run with no biology block could not track the large population increases observed
in surveys around 2010, and performed worse in terms of AIC (Table 3 and Figure 41; see
TOR3). Assuming different lengths of the biology block only affected the earlier years’
spawning output and did not change the terminal estimates (Figure 41). Therefore, even
though the 2011-2019 biology block slightly outperformed the base case model, given that
the terminal year estimates are insensitive to this assumption, the Working Group decided
to proceed with the base case model configuration. The fit for length composition data was
worse with no survey blocks in the model (Table 3).

4.2.5 1962-2019 Model

A sensitivity run was conducted that examined a longer time series 1962-2019. The popula-
tion is assumed to be unfished prior to 1962. Landings and discards from 1962 to 1988 were
estimated using the same method used to derive the initial equilibrium catch for each fleet
in the base case model. NEFSC spring bottom trawl survey time series data were available
from 1979 for this run. The estimated spawning output is smaller for the 1962-2019 model;
however, the trend is similar to the base case model (Figure 42).

4.2.6 Survey Data

Sensitivity runs were conducted using different survey data:
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• NEFSC fall bottom trawl survey (as an additional abundance index),

• NEFSC spring longline survey (as an additional abundance index),

• NEFSC fall longline survey (as an additional abundance index), and

• VAST spring index (as the sole biomass index).

These were compared to the base case model that used only the NEFSC spring bottom trawl
survey index. The estimated spawning output trend is similar to the base case model in all
cases (Figure 43). The NEFSC fall bottom trawl survey was split into Albatross and Bigelow
time series and entered as separate fleets in the model because their length composition is
distinctly different (see TOR3). The estimated survey q for the NEFSC fall bottom trawl is
much smaller than the spring survey (Table 3), reflecting the seasonal migration of dogfish
out of the survey domain in the fall. The estimated selectivity for the NEFSC fall bottom
trawl survey is logistic for the Albatross years but flat domed-shaped for the Bigelow period.
Further investigations regarding the fall survey data and the model are required to examine
whether this result is reasonable. Adding the NEFSC longline survey to the model did not
change the spawning output (Figure 43). The model constructed using the model-based
VAST index performed worse than the base case model in AIC (Table 3). The VAST length
composition was estimated at a 6 cm length bin and was interpolated to a 3 cm length bin
using a moving average method. It is not clear whether this mismatch is the cause of its low
performance. The Working Group suggested continuing to develop the VAST index, and
this index should be reevaluated in future assessments.

4.3 Profile Analysis

4.3.1 R0

For the R0 profile analysis, the ln(R0) parameter was fixed at values above and below the
value estimated by the base case model (9 to 15 with an increment of 0.5, base case ln(R0) =
12) and the models were refitted. The results indicated that the length composition data
was the most informative and the survey index was the least informative for estimating R0

(Figure 44). Among the length composition data, the catch data support the base case
R0; however, the survey data slightly favored a smaller R0 value (Figure 45). This result
indicated a slight conflict between catch and survey length composition data and that the
maximum likelihood estimate of R0 landed at the spot where conflicts between different
sources of data were balanced (Figure 45).

4.3.2 Female Growth for 2012-2019 Period

Likelihood profiling was conducted over a wide range of values for the female VB growth
parameters L∞ and k while the rest of the VB parameters were fixed at the Nammack et al.
(1985) values. The model had a tendency to favor smaller L∞ and slightly larger k values
compared to Nammack et al. (1985; Figure 46). The run with the smallest total likelihood
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was L∞ = 88 and k = 0.12, which is close to the maximum likelihood estimates (Tables 2-3
and Figure 46), suggesting that the estimated growth parameters in the base case model or
sensitivity analysis are likely global instead of local minimums.

4.3.3 Survivorship Spawner-Recruitment Parameters

The survivorship SR parameters, Zfrac, β, and σR were profiled over a wide range of values,
and the resulting total likelihoods are in Figure 47. Among the combination of parameters
tested, the parameter values fixed in the base case model (Zfrac = 0.9, β = 1.5, and σR = 0.3)
produced the smallest total likelihood. The β parameter is the least influential to the model,
which is likely why this parameter is hard to estimate in SS3. The model performance is the
most sensitive to Zfrac, where larger Zfrac values were favored.

4.4 Retrospective Analysis

A 7-year peel retrospective analysis was conducted for the base case model. The results
indicated that the model has a minor retrospective pattern with Mohn’s ρ = 0.06 for the
spawning output and -0.05 for the fully recruited fishing mortality (Figures 48-49).
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Table 1: Summary of Atlantic spiny dogfish data by gear and fleet used in SS3.

Type Gear Fleet Label in SS3

Landings
Sink Gill Net + Others

1 Landings SGN Rec Others
Recreational

Landings
Longline

2 Landings LL OT ForeignOtter Trawl + Foreign Fleet

Discard
Sink Gill Net

3 Discard SGN SD
Scallop Dredge

Discard
Longline

4 Discard LMOT LL RecLarge Mesh Otter Trawl
Recreational

Discard Small Mesh Otter Trawl 5 Discard SMOT
Survey NEFSC Spring Bottom Trawl 6 NEFSC Spring BTS
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Table 2: Summary of von Bertalanffy (VB) growth parameters assumed/estimated in SS3
for Atlantic spiny dogfish. Shaded cell indicated an estimated value.

Sex
VB Base Case 1989-2011 Base Case 2012-2019 Sensitivity

Parameters Nammack et al. (1985) Est L∞ Est L∞ and k Est L∞, k, and LAmin

Female
L∞ 100.50 89.24 88.64 88.67
k 0.1057 0.1057 0.1258 0.1259

LAmin 26.53 26.53 26.53 27.33

Male
L∞ 82.49 79.14 78.02 78.02
k 0.1481 0.1481 0.1657 0.1666

LAmin 26.94 26.94 26.94 27.46
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Table 3: Summary of Atlantic spiny dogfish SS3 model runs.

Version Sensitivity Category Scenario AIC Delta AIC Catchability q Steepness h

3.6.2 1.5
Base Case Model

Dirichlet-Multinomial Data Weighting -46624 - 0.83 0.68
3.6.2 1 No Data Weighting 5504 0 0.88 0.68
3.6.2 2

Growth
Nammack et al. (1985)/Est L∞ and k 5488 -17 0.85 0.68

3.6.2 3 Nammack et al. (1985)/Est L∞, k, and LAmin 5485 -19 0.85 0.68
3.6.2 4 Nammack et al. (1985) 5931 427 1.03 0.68
3.6.2 8.1

Natural Mortality
M = 0.092 (Hoenig 1983) 5108 -396 1.11 1.23

3.6.2 8 M = 0.102 (Then et al. 2015) 5059 -446 1.13 1.01
3.6.2 8.2 Lorenzen (1996) scaled asymptote 0.102 5938 433 0.47 0.36
3.6.2 6

SR Relationship
Ricker SR with recruitment deviation 5833 328 1.21 0.28

3.6.2 5 Beverton-Holt SR with recruitment deviation 5804 300 1.18 0.28
3.6.2 10

Time Block

Biology Block 2011-2019 5387 -117 0.86 0.68
3.6.2 11 Biology Block 2013-2019 5601 96 0.89 0.68
3.6.2 1.2 No Biology Block 5938 434 1.02 0.68
3.6.2 9 No Survey Block 5648 143 0.95 0.68
3.6.2 13.1 Model Starting Year 1962-2019 Model 6974 - 0.87 0.68
3.6.2 14

Survey Data

Additional NEFSC fall bottom trawl survey 7202 - 0.94/0.33/0.48 0.68
3.6.2 15 Additional NEFSC spring longline survey 5606 - 0.89/0.0004 0.68
3.6.2 16 Additional NEFSC fall longline survey 5590 - 0.89/0.0002 0.68
3.6.2 18 VAST spring index 5778 274 0.03 0.68
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Table 4: Summary of total biomass by sex, spawning output, recruitment (in 1,000, age 0+)
and fishing mortality (age 12+) by year estimated by SS3 for Atlantic spiny dogfish.

Year
Total Biomass (mt) Spawning Recruitment

F
Male Female Output (1,000s)

1989 379672 432328 228469 218249 0.076
1990 386663 437351 232245 223706 0.118
1991 382068 440461 221779 213925 0.087
1992 384717 447807 217034 209429 0.170
1993 373117 447218 199000 192048 0.107
1994 371731 453841 187884 181317 0.084
1995 376160 461839 183010 176608 0.109
1996 375467 466877 174570 168454 0.101
1997 373842 472231 165600 159660 0.068
1998 380404 478322 167817 156426 0.079
1999 381356 480471 169694 102990 0.067
2000 384201 480566 178975 99774 0.044
2001 389329 478825 196331 73343 0.031
2002 395526 474807 219984 76663 0.029
2003 398997 468448 244437 74109 0.017
2004 403791 461401 271988 87065 0.020
2005 405289 452780 296758 85641 0.016
2006 406741 444746 319904 115680 0.020
2007 406047 436859 338467 122918 0.024
2008 404749 431073 351125 176522 0.019
2009 406500 429058 360845 196595 0.023
2010 410016 430333 364526 234935 0.017
2011 418240 435756 365877 235805 0.026
2012 425115 444996 388326 288488 0.029
2013 409991 443991 353179 120648 0.027
2014 401195 445024 325491 167354 0.041
2015 389002 444033 296337 123237 0.028
2016 383112 444474 276850 137889 0.039
2017 375398 444646 256708 159111 0.032
2018 371603 444323 245197 136947 0.026
2019 371635 445385 239877 176963 0.032
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Figure 1: Time series of Atlantic spiny dogfish catch by fleet.
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Figure 2: Catch and survey data by year for each fleet used in SS3. Circle area is relative
within a data type. Circles are proportional to total catch for catches, to precision for
indices, and to total sample size for length compositions. Note that since the circles are
scaled relative to the maximum within each type, the scaling within separate plots should
not be compared.
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Figure 3: Conditional age-at-length data from NEFSC spring bottom trawl survey.
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Figure 4: Proportion of 90+ cm females by fleet and year.
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Figure 5: Length-weight relationships for females (red solid line) and males (blue dash line).
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Figure 6: Maturity at length for biology blocks 1989-2011 (red solid line) and 2012-2019
(blue dash line).

27



Figure 7: Fecundity at length for biology blocks 1989-2011 (red solid line) and 2012-2019
(blue dash line).
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Figure 8: Natural mortality estimates explored in SS3 for Atlantic spiny dogfish.
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Figure 9: Joint residual plot from fit to annual index data.
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Figure 10: Joint residual plot from fit to annual mean length from length composition data.
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Figure 11: Surface plot of time-varying growth for females (top) and males (bottom) from
1989 to 2019.
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Figure 12: Observed and model-predicted abundance index (1,000s) for the NEFSC spring
bottom trawl survey. Lines indicate 95% uncertainty interval around index values based on
the model assumption of lognormal error. Thicker lines indicate input uncertainty before
addition of estimated additional uncertainty parameter.
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Figure 13: Estimated selectivity for females (top) and males (bottom) for fleet 1: Land-
ings SGN Rec Others.

34



Figure 14: Estimated selectivity for females (top) and males (bottom) for fleet 2: Land-
ings LL OT Foreign.
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Figure 15: Estimated selectivity for females (top) and males (bottom) for fleet 3: Dis-
card SGN SD.
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Figure 16: Estimated selectivity for females (top) and males (bottom) for fleet 4: Dis-
card LMOT LL Rec.
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Figure 17: Estimated selectivity for females (top) and males (bottom) for fleet 5: Dis-
card SMOT.
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Figure 18: Surface plot of time-varying selectivity for females (top) and males (bottom) from
1989 to 2019 for NEFSC spring bottom trawl survey.
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Figure 19: Observed length composition data from 2005 to 2012 for the NEFSC spring
bottom trawl survey by Albatross and Bigelow period.
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Figure 20: Observed (shaded) and model-predicted (line) length compositions, aggregated
across time by fleet and sex.
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Figure 21: Fit to length compositions by year and sex for fleet 1: Landings SGN Rec Others.
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Figure 22: Fit to length compositions by year and sex for fleet 2: Landings LL OT Foreign.

43



Figure 23: Fit to length compositions by year and sex for fleet 3: Discard SGN SD.
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Figure 24: Fit to length compositions by year and sex for fleet 4: Discard LMOT LL Rec.

45



Figure 25: Fit to length compositions by year and sex for fleet 5: Discard SMOT.
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Figure 26: Fit to length compositions by year and sex for NEFSC spring bottom trawl
survey.
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Figure 27: Pearson residuals for the fit to length compositions by year and sex for fleet 1:
Landings SGN Rec Others. Closed bubbles are positive residuals (observed > expected) and
open bubbles are negative residuals (observed < expected).
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Figure 28: Pearson residuals for the fit to length compositions by year and sex for fleet 2:
Landings LL OT Foreign. Closed bubbles are positive residuals (observed > expected) and
open bubbles are negative residuals (observed < expected).
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Figure 29: Pearson residuals for the fit to length compositions by year and sex for fleet
3: Discard SGN SD. Closed bubbles are positive residuals (observed > expected) and open
bubbles are negative residuals (observed < expected).
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Figure 30: Pearson residuals for the fit to length compositions by year and sex for fleet 4:
Discard LMOT LL Rec. Closed bubbles are positive residuals (observed > expected) and
open bubbles are negative residuals (observed < expected).

51



Figure 31: Pearson residuals for the fit to length compositions by year and sex for fleet
5: Discard SMOT. Closed bubbles are positive residuals (observed > expected) and open
bubbles are negative residuals (observed < expected).
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Figure 32: Pearson residuals for the fit to length compositions by year and sex for NEFSC
spring bottom trawl survey. Closed bubbles are positive residuals (observed > expected)
and open bubbles are negative residuals (observed < expected).
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Figure 33: Fixed survivorship spawner-recruitment relationship, estimated age-0 recruitment
(1,000s), and estimated spawning output by year for Atlantic spiny dogfish.
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Figure 34: Estimated age-0 recruitment (1,000) by year for Atlantic spiny dogfish.
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Figure 35: Estimated spawning output and fishing mortality (age 12+) by year for Atlantic
spiny dogfish.
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Figure 36: Spawning output estimated using different growth assumptions.
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Figure 37: Observed (shaded) and model-predicted (line) length compositions by sex and
natural mortality assumptions, aggregated across time.
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Figure 38: Spawning output estimated using different natural mortality assumptions.
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Figure 39: Spawning output estimated using different spawner-recruitment relationship as-
sumptions.
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Figure 40: Recruitment (1,000) estimated using different spawner-recruitment relationship
assumptions.
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Figure 41: Spawning output estimated using different time block assumptions.
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Figure 42: Spawning output estimated using different starting year assumptions.
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Figure 43: Spawning output estimated using different survey data.

64



Figure 44: Log-likelihood profiles for R0 for various data components.
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Figure 45: Log-likelihood profiles for R0 for various source of length composition data.
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Figure 46: Total log-likehood surface from profiling female L∞ and k von Bertalanffy growth
parameters. The box indicated the run with the smallest total likelihood.

67



Figure 47: Total log-likehood surface from profiling survivorship spawner-recruitment pa-
rameters Zfrac, β, and σR. The box indicated the run with the smallest total likelihood.
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Figure 48: Retrospective plot for spawning output.

Figure 49: Retrospective plot for fishing mortality (age 12+).
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