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The Harvest Control Rule Amendment  consists of five options for setting recreational harvest controls.  
Four of these methods rely on quantitative scoring to assign population status into multiple categories.   
Example categories include overfished vs not overfished, overfishing occurring vs overfishing not 
occurring, and so forth.  Cut points of the categories are used to create up to 8 different bins of 
population status.  Within each bin, a homogeneous set of recreational effort measures (e.g., bag limit, 
size limit, season length) is assigned to control fishing mortality.  In theory, the measures would exert a 
constant fishing mortality on the population while it was in a given population state (i.e., bin).   When 
the population changes state, another set of HCRs would be applied.  For example, if the population 
went from not overfished to overfished, allowable effort would be reduced to help restore the 
population to the “not overfished” bin.  

The HCR policies could have important implications for controlling the population and the variability of 
catch.  The simulation study herein examines those possible effects for a population with a constant 
average recruitment, independent of stock size.   This is the assumption used in nearly all of the stock 
assessments in the Northeast.  The hypothesis implies a steepness of 1.0.  The basis of this pattern has 
been the inability to define a parametric stock recruitment relationship in most assessments.    

Model 

Let Bt represent the  stock biomass at time t, Z represent the total mortality on the stock (Z= fishing 
mortality F + natural mortality M) and Rt  equal the recruitment to the stock biomass at time t. 

The basic dynamics are thus governed by  

𝑩𝑩𝑡𝑡+1 = 𝐵𝐵𝑡𝑡𝑒𝑒−𝑍𝑍 + 𝑅𝑅𝑡𝑡  (1) 

Recursive application of Eq. 1 yields 

𝑩𝑩𝑡𝑡+1 = 𝐵𝐵𝑡𝑡𝑒𝑒−𝑍𝑍 + 𝑅𝑅𝑡𝑡 

𝑩𝑩𝑡𝑡+2 = 𝐵𝐵𝑡𝑡+1𝑒𝑒−𝑍𝑍 + 𝑅𝑅𝑡𝑡+1 

𝑩𝑩𝑡𝑡+3 = 𝐵𝐵𝑡𝑡+2𝑒𝑒−𝑍𝑍 + 𝑅𝑅𝑡𝑡+2 

… 

𝑩𝑩𝑡𝑡+𝑇𝑇 = 𝐵𝐵𝑇𝑇−1𝑒𝑒−𝑍𝑍 + 𝑅𝑅𝑇𝑇−1  (2) 

The limit of this process as T approaches infinity converges to  

𝐵𝐵∞ = 𝑅𝑅
1−𝑒𝑒−𝑍𝑍

  (3) 

In the absence of fishing, the maximum population size is defined as  

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅
1−𝑒𝑒−𝑀𝑀

   (4) 
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If we apply the usual convention that Bmsy=1/2 Bmax, a little algebra will show that Fmsy is defined as 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑙𝑙𝑙𝑙(2𝑒𝑒−𝑀𝑀 − 1) −𝑀𝑀  (5) 

Applying the catch equation give MSY as  

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚+𝑀𝑀
�1 − 𝑒𝑒−(𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚+𝑀𝑀�𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚  (6) 

The behavior of a population governed by Eq. 1 is similar to a population governed by a logistic 
equation, although the density dependence is not explicit.   Note also that the above definition of MSY is 
determined by the assumption that Bmsy is ½ Bmax1.    

Harvest control rules, in general terms, are designed to achieve some objective, subject to constraints.  
If a population is overfished, control rules should allow the population to increase to Bmsy over some 
defined time period T.   If a population is well above Bmax, the objective is to allow as much fishing as 
possible subject to a constraint that Ft<Fmsy.  In all other cases, a common objective is to move the 
population toward Bmsy.   For the sake of this analysis, I assumed that the objective of the HCR was to 
achieve Bmsy in some time period T subject to the constraint that Ft<Fmsy.    

Under these conditions the optimal fishing mortality is defined as the fishing mortality rate necessary to 
move the population from its current state to Bmsy in a time horizon T.   This can be written as two-
point boundary value problem to find the solution to Eq 2 where Bt+T=Bmsy.   Thus 

𝑩𝑩𝑡𝑡+1 = 𝐵𝐵𝑡𝑡𝑒𝑒−𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜−𝑀𝑀 + 𝑅𝑅𝑡𝑡 

𝑩𝑩𝑡𝑡+2 = 𝐵𝐵𝑡𝑡+1𝑒𝑒−𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜−𝑀𝑀 + 𝑅𝑅𝑡𝑡+1 

𝑩𝑩𝑡𝑡+3 = 𝐵𝐵𝑡𝑡+2𝑒𝑒−𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜−𝑀𝑀 + 𝑅𝑅𝑡𝑡+2 

… 

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝑡𝑡+𝑇𝑇 = 𝐵𝐵𝑇𝑇−1𝑒𝑒−𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜−𝑀𝑀 + 𝑅𝑅𝑇𝑇−1  (7) 

 

The optimal fishing mortality can be found numerically by setting finding Fopt such that Bmsy-Bt+T=0.  Two 
special conditions apply. First, it may not be possible to achieve Bmsy even when F=0.  Second,  Council 
policy and National Standards do not allow F to exceed Fmsy.   Hence Fopt has a maximum value of Fmsy.   
Under condition 1 the Fopt is infeasible; under condition 2, the population will exceed Bmsy at the end of 
the horizon t+T.  An important aspect of Eq. 7 is that the future dynamics are not affected by the current 
level of F.  Fopt is a function of Bt, Bt+T, R and M only.   

See Table 1 for a list of all model parameters. 

 

 
1 In a population truly governed by Eq. 1, the maximum sustainable yield would be to harvest the entire 
recruitment at each time period.  No sense letting the biomass degrade in the Bt pool!  
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Table 1. Summary of model parameters and derived quantities used in simulations. 

Parameter Variable Value 
Natural Mortality M 0.2 
Initial Biomass B0 300 
Recruitment Rt 100 
Planning Horizon (years) T 5 
Range of Recruitment Rmin, Rmax 50, 150 
Derived Quantities   
Maximum Biomass Bmax 551.6 
Biomass at MSY Bmsy 275.8 
Fishing Mortality for MSY Fmsy 0.2503 
Maximum Sustainable Yield MSY 55.6 
HCR Bins   
Biomass: Very High >1.5 Bmsy 413.7 
Biomass: High [Bmsy,1.5 Bmsy) [275.8, 413.7) 
Biomass: Low [0.5 Bmsy, Bmsy) [137.9, 275.8) 
Biomass: Too Low <0.5 Bmsy <137.9 

 

 

Figure 1. Optimal F to achieve Bmsy given initial biomass level Bt.  See Eq. 7.  Red line is 
Fmsy.  Solid blue vertical line is Bmsy, dashed vertical line is ½ Bmsy. 

As shown in Fig. 1 the optimal policy does not depend on whether fishing mortality is, or is not occurring 
at time t.  However, the magnitude of change in F for a given population state (Bt, Ft) does depend on Ft 
(i.e., Ft-Fopt).   To illustrate this further, consider the Bt, Ft phase plane used for Option D. 
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Figure 2.  Optimal F response surface vs biomass and fishing mortality.    

Effects of Binning 

Equation 7 defines an optimal fishing mortality rate for every value of Bt.  However, the HCR is based on 
the use of a common F strategy within bins of population states.  These states include intervals of 
biomass, fishing mortality, biomass rates of change, a linear scoring approach, and expected differences 
between recent catch and RHL.    One way of dealing with this binning is to use a measure of central 
tendency for all possible observations within the HCR category.  For example, one could compute the 
average Fopt for all possible values of Bt in the interval [Bmsy, Bmax]  or in the interval [0.5 Bmsy, Bmsy] etc. 
This process is illustrated in Fig. 3. 
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Figure 3.  Binned optimal F values representing the average Fopt within each population 
state defined by the horizontal and vertical cut points. Lighter colors represent lower 
average fishing mortality rates. 

Figure 3 illustrates that under a given population state, a common F would be applied.  The use of 
averages of Fopt for each bin implies slightly different cumulative catches over the period T.   Figure 4 
shows the cumulative catches with unique Fopt values.  Figure 5 shows the same response given average 
Fopt values within bins.  

 

Figure 4. Response surface for cumulative catches over a T=5 yr period give Fopt for each 
level of initial biomass Bt and initial Fishing mortality Ft . See Fig. 2.    Note that 
cumulative catch is unaffected by Ft.  

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00

#1.5 BINNED Optimal F estimates Density IN  

Fishing Mortality

B
io

m
as

s

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00

#2 Cumulcatch estimates given  Fopt and   

Fishing Mortality

B
io

m
as

s



P a g e  | 6 
 

 

Figure 5. Response surface for cumulative catches over a T=5 yr period given BINNED Ft 
for category.  See levels in Fig. 3.  Note that cumulative catch is unaffected by Ft.  

Effects of Random Recruitment and Binning 

Results thus far have considered a deterministic model only.  Random recruitment, combined with 
binned HCR might be expected to increase the variability of the catches.  Recruitment was modeled as a 
uniform random number between R.min and R.max.  See Table 1 for list of all model parameters.  

First, consider the implications of random recruitment on cumulative catch (Fig. 6 top).  
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Figure 6.  Cumulative catch as a function of initial density with random recruitment only 
and  optimal F based on initial density (top).  Cumulative catch with random recruitment 
AND binned F control (Bottom). 

The mean and variance of cumulative catch did not change appreciably under the random Recruitment  
vs random recruitment with binned controls.    

The efficacy of control measures can also be examined with respect to their ability to achieve target 
biomass levels.  In this case the target was defined as being 90% or more of the Bmsy.  In other words, 
successes were defined as outcomes where Bt>0.9 Bmsy. 
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Figure 7. Difference in terminal biomass Bt+T and Bmsy as a function of initial density 
with random recruitment only and  optimal F based on initial density (top).  Cumulative 
catch with random recruitment AND binned F control (Bottom). 

Are Binned Measures Sufficient? 

One measure of the efficacy of binned controls is whether or not the measures achieve the desired 
target of achieving Bmsy over the planning horizon T.  This property was tested by comparing the initial 
state of the population with the final state of the population after 5 years.   Ideally, the derived Fopt 
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should be sufficient to achieve Bmsy irrespective of the binning or magnitude of random recruitment.  For 
the deterministic case, Fopt was sufficient to return the population to a not overfished state. 

The rows below represent the initial state of the biomass, the columns represent the final state of the 
population after 5 years of applying Fopt for every biomass value or an average Fopt depending on the 
initial bin.   

> tapply(HCR.opt$F.opt,list(HCR.opt$B.status, HCR.opt$B.poststatus.det),length ) 

           Not Overfished 

Overfished            300 

Low                   300 

High                  350 

Very High            1550 

> tapply(HCR.opt$F.opt,list(HCR.opt$B.status, HCR.opt$B.poststatus.det.bin),length ) 

           Not Overfished 

Overfished            300 

Low                   300 

High                  350 

Very High            1550 

The  effects of random variation in recruitment on the ability to recover the population degraded as 
shown in the table below. Note that populations that were initially overfished remained overfished in 69 
of 300 cases (23% failure rate).  A similarly high rate of failure occurred for populations that were low, 
but not overfished.  Perhaps more disturbing, populations  that were high had a 21% failure rate.   Only 
3.6% of the very high abundance populations became overfished. 

> tapply(HCR.opt$F.opt,list(HCR.opt$B.status, HCR.opt$B.poststatus.ran),length ) 

           Not Overfished Overfished 

Overfished            231         69 

Low                   231         69 

High                  287         63 

Very High            1494         56 

 

The joint effects of random variation and binned controls are shown below.  The success rate for 
achieving a not overfish population declined to 61.7% vs 77% when binning did not occur.   The failure 
rate for stocks that were not initially overfished increased significantly with binned controls.   For 
example, 19.1% of the populations initially at very high levels fell into an overfished condition.   The ratio 
of failures when binned to unbinned controls is 296/56=5.3x.   The odds ratio for this comparison is 6.3 
=(1494*296)/(1254*56). The odds ratio for populations initially in a high population state is 
2.5=(287*125)/(225*63). 
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> tapply(HCR.opt$F.opt,list(HCR.opt$B.status, HCR.opt$B.poststatus.ran.bin),length ) 

           Not Overfished Overfished 

Overfished            185        115 

Low                   186        114 

High                  225        125 

Very High            1254        296 

 

The following graphs illustrate the effects random Recruitment and binning on variation in Bdelta are shown below.  
Note that the effect of binning is to result in negative population trends when biomass is low within the bin. 
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When random variation is added to recruitment, the patterns become more interesting. 

 

Note that the general “lazy J” pattern evident it the deterministic patter is preserved but the number 
and magnitude of population declines increases, especially when B is less than Bmsy.    Superposition of 
binning on top of random variation (shown below) dramatically alters the resulting pattern with more 
“structure” induced by the bins and more failures.   

 

Preliminary Conclusions 

A simple population model was used to characterize the magnitude of uncertainty induced by binning of 
control rules.  When combined with random variation, there was a marked increase in the failure rate of 
controls.  Populations were not rebuilt as frequently as occurred with population specific optimal fishing 
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mortality rates.  Perhaps more importantly, a greater fraction of populations that were previously above 
Bmsy  fell below ½ Bmsy when controlled with a binned HCR.    

The model used herein, although highly simplified, has properties similar to models used for stock 
assessments in the Mid Atlantic regions.  The HCR implementation is highly simplified and ignores the 
potential changes in population state that might occur when a population is driven by random 
recruitment.  Specifically, one could adjust the fishing mortality to different population states within the 
5-yr projection period.   However, it should be noted that neither of the scenarios with random 
recruitment made such adjustments.  

The simulations are indicative but not definitive.  I did not evaluate Options B, C or E and the simulation 
of Option D does not include the additional considerations of whether B or R are increasing or 
decreasing.   Option D includes 13 possible controls rather than the 8 used in this exercise.   The 
simulations may be sufficient to justify the general hypothesis that binning of controls could be 
problematic if the bins are too wide and the duration between updated of controls is too long.  

 

 

 


