1

#### Implications of MAFMC Risk Policy for Multi-Year ABC Recommendations

### DRAFT

#### Paul Rago

### August 15, 2021

Multi-year catch limits based on constant catches are often considered desirable by both managers and industry. The MidAtlantic Fishery Management Council has requested consideration of multi-year specifications based on average catches for a number of stocks. At the July 21-23, 2021 meeting of the SSC, two Council proposed average catch options for 2022 and 2023 could not be considered because the average catch policy resulted in an average ABC with P\* values above 0.5 in 2023. P\* is the probability of a given quota exceeding the overfishing threshold. Specifically, the 2023 quotas for scup and black sea bass, based on an average of the P\* estimates of ABC, resulted in P\*>0.5 in 2023.

It was suggested that this result is due in part to the Council's risk policy which allows P\* to be 0.49 when the B/Bmsy ratio exceeds 1.5. Compared to the previous risk policy, it allows for higher risk of overfishing for all levels of B/Bmsy ratios. As before, P\* is zero when B/Bmsy<0.1, but there are now two discontinuities at B/Bmsy=1 and 1.5 (Figure 1).

The P\* process for computation of ABCs over a multiyear period is iterative. The overfishing proxy Fmsy is applied to the current biomass to derive a catch defined as the Overfishing Limit (OFL). The OFL is adjusted downward to accommodate the uncertainty of the estimate by using the Coefficient of Variation (CV) derived by the SSC. Specifically, the derived OFL is assumed to be lognormally distributed with a mean given by the OFL from the assessment and a variance determined by the SSC's value of CV. The ABC is set to the level consistent with the Council's level of risk equal to P\* for the current value of B(t)/Bmsy. The resulting ABC is treated as a quota to update the population status. The Fmsy proxy is then applied to the updated population to estimate a new OFL for the next time step. The new OFL is then reduced to an ABC as described before.

The P\* approach has the desirable property that catches are consistent with the Council's risk policy at each time step. Does an average ABC derived from the P\* approach have the same property? From first principles one would not expect this to be true unless there was little or no variation in the ABC(t) estimates. Irrespective of slight violations of risk policy induced by an average ABC, the larger question is whether the average ABC results in P\*>0.5. This working paper addresses the implications of imposing an average catch based on the derived sequence of ABCs based on P\* estimates.





## **Operating Model**

None of the finfish stocks in the Northeast US use a parametric model for stock recruitment. Stochastic projections of future stock sizes in response to fishing mortality rates are typically modeled by randomly selecting recruitment levels from the empirical CDF from the assessment model. Although density independence is assumed, the consequence of this assumption is that maximum possible size of the future population, in the absence of fishing mortality, is determined by the average recruitment in the empirical CDF. Despite all the accounting for agespecific attributes of life history and fishery performance, the stock dynamics can be described by a linear mass balance equation:

$$B(t+1) = B(t) + f(B(t)) - Catch(t) - Loss(t)$$
(1)

Where B(t) =biomass at time t, f(B(t))=change in stock size as a result of change in average weight and prior recruitment, Catch(t) =landings + discards and Loss(t)= natural mortality.

The population equilibrium occurs when B(t+1)=B(t) or when f(B(t)) exactly balances total removals. Under an assumed constant average recruitment, f(B(t)) also becomes a constant.

For the purpose of illustration and to make things more interesting, Equation 1 can be generalized by assuming that f(B(t)) is proportional to stock size such that  $f(B(t))=\lambda B(t)$ . Using the catch equation, the Catch(t) and Loss(t) values can be written

Catch(t)=
$$F/Z$$
 (1-e<sup>-Z</sup>) B(t)  
=  $\alpha$  B(t)  
Loss(t)= $M/Z^*(1-e^{-Z})$  B(t)

 $=\beta B(t)$ 

Substituting these concepts into Equation 1 leads to

$$B(t+1) = (1+\lambda) B(t) - Catch(t) - Loss(t)$$
(2)

The P\* approach used by the Council and SSC modifies this process by decreasing  $\alpha$  in response to the risk of overfishing. The basis for this approach is summarized in the SSC documentation (2016, p 8)

"A central part the first three categories of ABC specification of the MAFMC ABC control rule is the determination of the uncertainty of the OFL. The MAFMC probabilistic approach begins with an estimate of the distribution of catch that can be taken when the population is fished at the fishing mortality threshold (FMT) given expected biomass when the catch limit will be implemented (OFL). The ABC is then determined by choosing the catch associated with a percentile (P\*) of the distribution, such that the ABC achieves a pre-specified probability of overfishing. The P\* represents the acceptable probability of overfishing, and the catch associated with a given percentile has a P\* probability of overfishing. In principle, this approach requires an accurate description of the OFL distribution. If the distribution of OFL is not accurate, the meaning of the P\* parameter is no longer the acceptable probability of overfishing – instead it simply is an ad hoc method for providing a buffer between ABC and OFL."

The ABC estimate based on P\*, denoted as  $C_{abc}(t)$  is computed by first finding the appropriate P\* from Figure 1 based on B(t)/Bmsy. The catch associated with application of Fmsy is the OFL and can be denoted as  $C_{ofl}(t)$ . The natural log of this estimate =  $\ln(C_{ofl}(t))$  serves as the mean of the log normal distribution function and the CV, determined by the SSC, defines the variance = $\ln(CV^2+1)$ . In words, this means find the  $C_{abc}(t)$  corresponding to the P\* percentile of a log normal distribution with mean =  $\ln(C_{ofl}(t))$  and variance =  $\ln(CV^2+1)$ . Or more mathematically,

$$C_{abc}(t) = \int_0^{P^*} LogNormal(x|\mu = \ln(C_{ofl}(t)), \sigma^2 = \ln(CV^2 + 1)) dx$$
(3)

The relationship between  $C_{abc}(t)$  and  $C_{ofl}(t)$ ) as defined by ratio B/Bmsy and the Council's risk policy (i.e., Figure 1) for varying levels of CV is shown in Figure 2. The effects of the change in risk policy at B/Bmsy =0.1, 1.0 and 1.5 are clearly evident.



Figure 2. Relationship between ratio ABC/OFL and B/Bmsy under the MAFMC's revised risk policy (Fig. 1) for OFL CV levels (60,100,150%) commonly used by the SSC.

## **MULTIYEAR PROJECTIONS BASED ON P\***

A multiyear projection using the P\* requires iterative application of the Council's risk policy. The steps in this iteration are

- 1. Compute  $C_{ofl}(t)$  based on B(t) and Fmsy
- 2. Update P\* given B(t)/Bmsy per Figure 1
- 3. Find  $C_{abc}(t)$  based on Equation 3.
- 4. Plug C<sub>abc</sub>(t) into the mass balance Equation 1
- 5. Update B(t+1) in response to the reduced value of  $C_{abc}(t)$
- 6. Compute  $C_{ofl}(t+1)$  based on B(t+1) and Fmsy
- 7. Go to step 2 and repeat.

To beat this dead horse further, the equation sequence for a T-year projection is

$$C_{ofl}(t) = \frac{F_{msy}}{Z} (1 - e^{-Z}) B_t$$
(4)

Update  $P^{*}(t)$  per Figure 1 for B(t)/Bmsy (5)

$$C_{abc}(t) = \int_{0}^{P^{*}(t)} LogNormal(\mu = \ln (C_{ofl}(t)), \sigma^{2} = \ln(CV^{2} + 1)) dx \quad (6)$$
$$L(t) = \frac{M}{Z} (1 - e^{-Z})B(t) \quad (7)$$
$$B(t+1) = B(t)(1+\lambda) - C_{abc}(t) - L(t) \quad (8)$$

$$C_{ofl}(t+1) = \frac{F_{msy}}{Z}(1-e^{-Z})B_{t+1}$$
(9)

Continue with Equation 5 until t=T.

#### MULTIYEAR PROJECTIONS BASED ON AVERAGE OF Cabc(t) for t=1,2, ..T

The average of the  $C_{abc}(t)$  has been endorsed by the Council as a reasonable balance between risk and desired aspects of fishery performance. The average,  $C_{abc\_avg}$  is computed as a simple average of the estimated  $C_{abc}(t)$ . The resulting P\* estimates derived using the updating process above will not be the same as the original P\*(t) unless the population is at equilibrium with no trend. If the stock is trending upward the application of  $C_{abc\_avg}$  will initially impede this growth because  $C_{abc\_avg}(t) > C_{abc}(t)$  but accelerate in later periods by reducing the catches, i.e.,  $C_{abc\_avg}(t+\Delta t) < C_{abc}(t+\Delta t)$ . If the stock is trending downward the reverse will be true. There is no guarantee however that you will get the same endpoint, B(T) given these different harvest scenarios, i.e., B(T|  $C_{abc\_avg}$ ) = B(T|  $C_{abc}(t)$ ). Moreover, Council policy allows for the relaxation of its risk policy under these circumstances such that the revised set of P\*'(t) given  $C_{abc\_avg}(t)$  can exceed the P\*(t) specified under the risk policy for B(t)/Bmsy. The underlying concept is the offsetting effects by paying on Tuesday for today's hamburger (Popeye, 1929, Wimpy op cit). However, under current understanding of Magnuson Stevens Act guidance, the upper bound on P\*(t) is a legal constraint equal to 0.5 as defined by US Court rulings. Hence any  $C_{abc\_avg}(t)$  that gives a P\*'(t)>0.5 is infeasible.

#### WHEN ARE MULTIYEAR PROJECTIONS BASED ON Cabc avg FEASIBLE?

The above equations allow for a simple parametric examination of the average ABC approach. Mike Wilberg's original spreadsheet for computation of ABCs and P\*s was modified to examine multiyear projections based on P\* and compare them to the realized P\* under the average of  $C_{abc}(t)$ . I also added a worksheet for finding an optimal average ABC that did not violate the P\*>0.5 criterion.

Here's a simple example based on an initial B(0)/Bmsy value of 2.0 and a value of  $1+\lambda=1.25$  and CV=60%. The P\* for this population is 0.49 or just under the legal limit of 0.5. In this scenario, the average ABC is computed as 123.13 and none of the P\*(t) are above 0.5. When this average

is substituted for the original  $C_{abc}(t)$  the P\* is 0.33 in year 1 since 123.13<154.94 in the P\* scenario. However, by year 3 the ABC = 123.31 gives a P\*=0.586. To facilitate comparison across multiple scenarios, the scenario is scored with respect to number of times the P\*>0.5 threshold was triggered and the last time period in which the violation occurred. In this example, the P\* criterion was triggered once in the third year

|                  | P_star scenario |         | Aver  | age Catch S | cenario |       |                          |                   |
|------------------|-----------------|---------|-------|-------------|---------|-------|--------------------------|-------------------|
| Time             | Biomass         | ABC     | Pstar | Biomass     | ABC     | Pstar | Scoring for P*>0.5       | Rank<br>Violation |
| 0                | 500.00          | 154.94  | 0.490 | 500.00      | 123.13  | 0.330 | 0                        | 0                 |
| 1                | 395.60          | 121.74  | 0.490 | 427.41      | 123.13  | 0.438 | 0                        | 0                 |
| 2                | 313.86          | 92.71   | 0.470 | 347.49      | 123.13  | 0.586 | 1                        | 3                 |
| 3                | 252.87          |         |       | 259.49      |         |       |                          |                   |
| Average          |                 | 123.129 | 0.483 |             | 123.129 | 0.451 | 1                        | 3                 |
|                  |                 |         |       |             |         |       | Scoring: n=# years P>0.5 |                   |
|                  |                 |         |       |             |         |       |                          |                   |
|                  |                 |         |       |             |         |       |                          |                   |
| Model Parameters | Value           |         |       |             |         |       |                          |                   |
| М                | 0.2             |         |       |             |         |       |                          |                   |
| Fmsy             | 0.422           |         |       |             |         |       |                          |                   |
| Lambda           | 1.25            |         |       |             |         |       |                          |                   |
| B(0)/Bmsy        | 2               |         |       |             |         |       |                          |                   |
| CV               | 60%             |         |       |             |         |       |                          |                   |

In the above scenario, the population biomass is decreasing from 500 to 252.9 because Fmsy +M is too large relative to 1+ $\lambda$ . From Eq. 1, the exact equilibrium occurs when  $(1+\lambda -\alpha -\beta)=1$ . This reduces to  $\lambda=(1-e^{-Z})$  or  $1+\lambda=2-e^{-Z}$ . This principle is shown in the following table where M=0.2, Fmsy=0.422 and  $1+\lambda = 1.46313$ .

|                  | P_star scenario |         | Aver  | age Catch S | cenario |       |                          |           |
|------------------|-----------------|---------|-------|-------------|---------|-------|--------------------------|-----------|
|                  |                 |         |       |             |         |       |                          | Rank      |
| Time             | Biomass         | ABC     | Pstar | Biomass     | ABC     | Pstar | Scoring for P*>0.5       | Violation |
| 0                | 500.00          | 154.94  | 0.490 | 500.00      | 155.00  | 0.490 | 0                        | 0         |
| 1                | 502.17          | 154.53  | 0.490 | 502.11      | 155.00  | 0.487 | 0                        | 0         |
| 2                | 505.43          | 155.53  | 0.490 | 504.88      | 155.00  | 0.483 | 0                        | 0         |
| 3                | 508.71          |         |       | 508.52      |         |       |                          |           |
| Average          |                 | 155.000 | 0.490 |             | 155.000 | 0.487 | 0                        | 0         |
|                  |                 |         |       |             |         |       | Scoring: n=# years P>0.5 |           |
|                  |                 |         |       |             |         |       |                          |           |
|                  |                 |         |       |             |         |       |                          |           |
| Model Parameters | Value           |         |       |             |         |       |                          |           |
| М                | 0.2             |         |       |             |         |       |                          |           |
| Fmsy             | 0.422           |         |       |             |         |       |                          |           |
| Lambda           | 1.46313038      |         |       |             |         |       |                          |           |
| B(0)/Bmsy        | 2               |         |       |             |         |       |                          |           |
| CV               | 60%             |         |       |             |         |       |                          |           |

It is now possible to examine the behavior of the average ABC for a wide range of parameters (Table 1). Results suggest that when the population is declining (i.e.,  $1+\lambda < 1.46313$ ) there is at most 1 violation of the P\*>0.5 criteria and that it occurs in the last year of the projection. When the population is exactly balanced (i.e.,  $1+\lambda = 1.46313$ ) no violations occur, as expected. When the population is growing (i.e.,  $1+\lambda > 1.46313$ ) there will be one or two violations. Single violations occur when B/Bmsy<1 and the violation occurs in the first year. At higher levels of population growth, violations occur in the first and second year of the projection. These conclusions are highly dependent on the parameters chosen, especially M and Fmsy but the

general principles can be established. The average ABC policy can induce violations of risk policy at all levels of B/Bmsy and population growth rates.

# Finding an Average ABC Based on P\* that Satisfies P\*(t)<0.5 for t=1,...T

The above analyses suggest that the average ABC approach can be problematic over a broad range of B/Bmsy and Population growth rate values. One way to eliminate this problem is pose it as a constrained optimization such that Copt<Cabc\_avg and P\*(t)<0.5 for t=1,2, ...T. The case below assumes the stock is at B/Bmsy=2 and declining with  $1+\lambda=1.25$ . The average catch of 123.13 creates a P\* violation in year 3.

|         | P_star scenario |         | Average Catch Scenario |         |         |       |                          |           |
|---------|-----------------|---------|------------------------|---------|---------|-------|--------------------------|-----------|
|         |                 |         |                        |         |         |       |                          | Rank      |
| Time    | Biomass         | ABC     | Pstar                  | Biomass | ABC     | Pstar | Scoring for P*>0.5       | Violation |
| 0       | 500.00          | 154.94  | 0.490                  | 500.00  | 123.13  | 0.330 | 0                        | 0         |
| 1       | 395.60          | 121.74  | 0.490                  | 427.41  | 123.13  | 0.438 | 0                        | 0         |
| 2       | 313.86          | 92.71   | 0.470                  | 347.49  | 123.13  | 0.586 | 1                        | 3         |
| 3       | 252.87          |         |                        | 259.49  |         |       |                          |           |
| Average |                 | 123.129 | 0.483                  |         | 123.129 | 0.451 | 1                        | 3         |
|         |                 |         |                        |         |         |       | Scoring: n=# years P>0.5 |           |

The optimal solution, based upon minimizing (Copt<Cabc avg)<sup>2</sup> is

| Average P*                                                             | 0.483                                           |                                                                                                                                                     |                                           |                        |                                                 |                                                      |                                           |                                        |
|------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------|----------------------------------------|
| Average C_abc                                                          | 123.13                                          | <used a<="" in="" td=""><td>ve Catch So</td><td>enar</td><td>io</td><td></td><td></td><td></td></used>                                              | ve Catch So                               | enar                   | io                                              |                                                      |                                           |                                        |
| Opt ave C_abc                                                          | 114.730327                                      | <decision td="" v<=""><td>variable for</td><td>root</td><td>finder.</td><td></td><td></td><td></td></decision>                                      | variable for                              | root                   | finder.                                         |                                                      |                                           |                                        |
| (delta ave C)^2                                                        | 70.5345531                                      | <min td="" this="" v<=""><td>alue, subje</td><td>ct to</td><td>P*&lt;0.5 and</td><td>Opt<avera< td=""><td>ige ABC</td><td></td></avera<></td></min> | alue, subje                               | ct to                  | P*<0.5 and                                      | Opt <avera< td=""><td>ige ABC</td><td></td></avera<> | ige ABC                                   |                                        |
|                                                                        |                                                 |                                                                                                                                                     |                                           |                        |                                                 |                                                      |                                           |                                        |
|                                                                        |                                                 |                                                                                                                                                     |                                           |                        |                                                 |                                                      |                                           |                                        |
|                                                                        | P_                                              | star scenario                                                                                                                                       |                                           | Average Catch Scenario |                                                 |                                                      |                                           |                                        |
|                                                                        |                                                 |                                                                                                                                                     |                                           |                        |                                                 |                                                      |                                           |                                        |
| Time                                                                   | Biomass                                         | ABC                                                                                                                                                 | Pstar                                     |                        | Biomass                                         | ABC                                                  | Pstar                                     | Scoring for P*>0.5                     |
| Time<br>0                                                              | Biomass<br>500.00                               | ABC<br>154.94                                                                                                                                       | Pstar<br>0.490                            |                        | Biomass<br>500.00                               | ABC<br>114.73                                        | Pstar<br>0.285                            | Scoring for P*>0.5<br>0                |
| Time           0           1                                           | Biomass<br>500.00<br>395.60                     | ABC<br>154.94<br>121.74                                                                                                                             | Pstar<br>0.490<br>0.490                   |                        | Biomass<br>500.00<br>435.81                     | ABC<br>114.73<br>114.73                              | Pstar<br>0.285<br>0.375                   | Scoring for P*>0.5<br>0<br>0           |
| Time           0           1           2                               | Biomass<br>500.00<br>395.60<br>313.86           | ABC<br>154.94<br>121.74<br>92.71                                                                                                                    | Pstar<br>0.490<br>0.490<br>0.470          |                        | Biomass<br>500.00<br>435.81<br>365.13           | ABC<br>114.73<br>114.73<br>114.73                    | Pstar<br>0.285<br>0.375<br>0.500          | Scoring for P*>0.5<br>0<br>0<br>0      |
| Time<br>0<br>1<br>2<br>3                                               | Biomass<br>500.00<br>395.60<br>313.86<br>252.87 | ABC<br>154.94<br>121.74<br>92.71                                                                                                                    | Pstar<br>0.490<br>0.490<br>0.470          |                        | Biomass<br>500.00<br>435.81<br>365.13<br>287.31 | ABC<br>114.73<br>114.73<br>114.73                    | Pstar<br>0.285<br>0.375<br>0.500          | Scoring for P*>0.5<br>0<br>0<br>0      |
| Time           0           1           2           3           Average | Biomass<br>500.00<br>395.60<br>313.86<br>252.87 | ABC<br>154.94<br>121.74<br>92.71<br>123.129                                                                                                         | Pstar<br>0.490<br>0.490<br>0.470<br>0.483 |                        | Biomass<br>500.00<br>435.81<br>365.13<br>287.31 | ABC<br>114.73<br>114.73<br>114.73<br>114.730         | Pstar<br>0.285<br>0.375<br>0.500<br>0.387 | Scoring for P*>0.5<br>0<br>0<br>0<br>0 |

The net loss in average catch is 123.13-114.73 or 6.8% each year. Note that the projected biomass at the end of the simulation is slightly higher 287.3 vs 252.87 due to the deferred catches. Interestingly, the biggest losses in yield are in the first year so this averaging policy might be less appealing.

## Discussion

Analyses suggest that performance of multiyear quotas depends not only on the ratio of current stock size to Bmsy but also the underlying trend in overall abundance. Rapid increases or decreases in stock size can increase the probability that an average ABC ( $C_{abc_avg}$ ) can lead to a P\*(t)>0.5 violation of policy. When the stock is declining, the violation will occur at the end of

the averaging period T. When the stock is increasing, the violation can occur in the middle or end of the averaging period. Given the simplicity of the operating model used in this exercise, more complex patterns of violations are certainly possible. Density-dependent process are not considered in these simulations, nor are effects of strong year classes, changes in average weight, maturation, and so forth. However, the model is sufficient for capturing the basic principles affecting the performance of average quotas over short periods. The optimization approach for finding a feasible multiyear quota could be approximated in an actual application by using a trial and error (or Newton Raphson) method for finding an average ABC that has  $P^*(t)<0.5$  for t=1,...,T.

# References

Scientific and Statistical Committee. 2016. Description and Foundation of the Mid-Atlantic Fishery Management Council's Acceptable Biological Catch Control Rule. Council web page link <u>https://www.mafmc.org/ssc</u>

Table 1. (A) Summary of number of times that an average ABC based on a P\*-based projection induces a P\* above 0.5 in a 3 year projection given F=0.422, M=0.2, CV=60%. Initial conditions for each scenario (B/Bmsy) define the row elements and the underlying rate of population growth (1+1) define the columns. Table elements indicate the number of times that the P\* exceeds 0.5. Table B shows the last year in which the P\* violation occurred.

|                    | violation                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                       |                                                                                          |                                                                                                                                           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| A                  | Score                                                                                                                                                                                            | decreasing}                                                                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+ Lamb                                                                           | da growth                                             | rate>                                                                                    | {increasing                                                                                                                               |
|                    | 1                                                                                                                                                                                                | 0.9                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 25                                                                              | 1 46313                                               | 1 75                                                                                     | 2                                                                                                                                         |
|                    | 0.25                                                                                                                                                                                             | 0.5                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 0                                                                                        | 1                                                                                                                                         |
|                    | 0.25                                                                                                                                                                                             | 0                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 1                                                                                        | 2                                                                                                                                         |
|                    | 0.5                                                                                                                                                                                              | 0                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 0.75                                                                                                                                                                                             | 1                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 0.83                                                                                                                                                                                             | 1                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 0.9                                                                                                                                                                                              | 1                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 0.95                                                                                                                                                                                             | 1                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1                                                                                                                                                                                                | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.05                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.1                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.15                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.2                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
| B/Bmsy             | 1.25                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
| . ,                | 1.3                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.35                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.4                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.45                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.5                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.55                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.6                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.65                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.7                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.75                                                                                                                                                                                             | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 1.8                                                                                                                                                                                              | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    | 2                                                                                                                                                                                                | 1                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                 | 0                                                     | 2                                                                                        | 2                                                                                                                                         |
|                    |                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                       |                                                                                          |                                                                                                                                           |
|                    |                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                       |                                                                                          |                                                                                                                                           |
|                    |                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                       |                                                                                          |                                                                                                                                           |
|                    |                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                       |                                                                                          |                                                                                                                                           |
|                    | Max Rank                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                       |                                                                                          |                                                                                                                                           |
| В                  | Max Rank<br>violation                                                                                                                                                                            | decreasing}                                                                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+ Lamb                                                                           | da growth                                             | rate>                                                                                    | {increasing                                                                                                                               |
| В                  | Max Rank<br>violation                                                                                                                                                                            | decreasing}                                                                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+ Lambo<br>1.25                                                                  | da growth                                             | rate>                                                                                    | {increasing                                                                                                                               |
| В                  | Max Rank<br>violation<br><u>3</u><br>0 25                                                                                                                                                        | decreasing}                                                                                        | <<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+ Lambo<br>1.25                                                                  | da growth<br>1.46313                                  | rate><br>1.75                                                                            | {increasing,                                                                                                                              |
| В                  | Max Rank<br>violation<br><u>3</u><br>0.25                                                                                                                                                        | decreasing}                                                                                        | <<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+ Lambo<br>1.25<br>0                                                             | da growth<br>1.46313<br>0                             | rate><br><u>1.75</u><br>0                                                                | {increasing                                                                                                                               |
| В                  | Max Rank<br>violation<br><u>3</u><br>0.25<br>0.5                                                                                                                                                 | decreasing}                                                                                        | <<br>1<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1+ Lambo<br>1.25<br>0<br>0                                                        | da growth<br>1.46313<br>0<br>0                        | rate> 1.75 0 1 2                                                                         | {increasing                                                                                                                               |
| В                  | Max Rank<br>violation<br><u>3</u><br>0.25<br>0.5<br>0.75                                                                                                                                         | decreasing}                                                                                        | <<br>1<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1+ Lambo<br>1.25<br>0<br>0<br>0                                                   | da growth 1.46313 0 0 0 0 0                           | rate><br>1.75<br>0<br>1<br>2<br>2                                                        | {increasing,<br>2<br>1<br>2<br>2<br>2                                                                                                     |
| В                  | Max Rank<br>violation<br><u>3</u><br>0.25<br>0.5<br>0.75<br>0.85                                                                                                                                 | <i>decreasing}</i> 0.9 0 0 0 3 2                                                                   | <<br>1<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0                                              | da growth<br>1.46313<br>0<br>0<br>0<br>0<br>0         | rate> 1.75 0 1 2 2 2 2                                                                   | <i>{increasing,</i><br>2<br>1<br>2<br>2<br>2                                                                                              |
| В                  | Max Rank<br>violation<br><u>3</u><br>0.25<br>0.55<br>0.75<br>0.85<br>0.99                                                                                                                        | decreasing}                                                                                        | <<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | {increasing,<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                                                                                      |
| В                  | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95                                                                                                                         | decreasing}                                                                                        | < 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate><br>1.75<br>0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | {increasing<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                             |
| В                  | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.5<br>0.5<br>0.85<br>0.9<br>0.95<br>1<br>1.05                                                                                                      | decreasing}                                                                                        | < 1 0 0 0 0 0 0 0 0 0 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lamba<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate><br>1.75<br>0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | {increasing,<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                   |
| В                  | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05                                                                                                            | decreasing}                                                                                        | <<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>3<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | {increasing<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                |
| В                  | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.11                                                                                                    | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 3 3 3 3 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | {increasing,<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| В                  | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.1<br>1.15                                                                                             | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 3 3 3 3 3 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | {increasing,<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| B                  | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.95<br>0.95<br>1.1<br>1.05<br>1.11<br>1.15<br>1.2                                                                                  | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | {increasing,<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.99<br>0.95<br>1<br>1.05<br>1.1<br>1.15<br>1.2<br>1.25                                                                             | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | {increasing,<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1.1<br>1.05<br>1.15<br>1.2<br>1.25<br>1.25<br>1.3                                                                    | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1.05<br>1.15<br>1.15<br>1.2<br>1.25<br>1.3<br>1.35                                                                   | decreasing}<br>0.9<br>0<br>0<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | <pre>&lt; 1 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.15<br>1.25<br>1.25<br>1.3<br>1.35<br>1.4                                                              | decreasing}<br>0.9<br>0<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 1       0       0       0       0       0       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| <b>B</b><br>B/Bmsy | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.15<br>1.15<br>1.25<br>1.3<br>1.35<br>1.4<br>1.45                                                      | decreasing} 0.9 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lamba<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.11<br>1.15<br>1.22<br>1.25<br>1.3<br>1.35<br>1.4<br>1.45<br>1.5                                       | decreasing}<br>0.9<br>0<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | < 1 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lamba<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre>  |
| <b>B</b><br>B/Bmsy | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.12<br>1.25<br>1.33<br>1.35<br>1.4<br>1.45<br>1.55                                                     | decreasing}<br>0.9<br>0<br>0<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | < 1 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lamba<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing;<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.15<br>1.22<br>1.25<br>1.33<br>1.35<br>1.4<br>1.45<br>1.55<br>0.1.6                                    | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| <b>B</b><br>B/Bmsy | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.1<br>1.15<br>1.25<br>1.3<br>1.35<br>1.4<br>1.45<br>1.55<br>1.65                                       | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | < 1 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.1<br>1.15<br>1.25<br>1.33<br>1.35<br>1.4<br>1.45<br>1.55<br>1.65<br>1.65                              | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <tr< td=""><td>1+ Lambo<br/>1.25<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>rate&gt; 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td><pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre></td></tr<> | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.1<br>1.15<br>1.2<br>1.25<br>1.35<br>1.35<br>1.4<br>1.45<br>1.55<br>1.55<br>1.66                       | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <tr< td=""><td>1+ Lambo<br/>1.25<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>rate&gt; 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td><pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre></td></tr<> | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |
| B<br>B/Bmsy        | Max Rank<br>violation<br>3<br>0.25<br>0.5<br>0.75<br>0.85<br>0.9<br>0.95<br>1<br>1.05<br>1.1<br>1.05<br>1.2<br>1.25<br>1.3<br>1.35<br>1.45<br>1.55<br>1.55<br>1.66<br>1.65<br>1.7<br>1.75<br>1.8 | decreasing} 0.9 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                              | 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <tr< td=""><td>1+ Lambo<br/>1.25<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>rate&gt; 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td><pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre></td></tr<> | 1+ Lambo<br>1.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | da growth 1.46313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | rate> 1.75 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       | <pre>{increasing,<br/>2<br/>1<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</pre> |