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Basic Rationale/Considerations 

Our goal was to develop a comprehensive habitat modeling framework that could 1) be used to assess 

historical patterns of habitat use for marine species on the Northeast Shelf, and 2) be adapted to 

generate long-term projections of habitat use based on projected future climate scenarios. 

While traditional species distribution models (SDMs) explain patterns of habitat use as a function of 

environmental predictors, other factors such as biotic interactions can give rise to correlations in the 

occurrence or abundance of species that are not explained by the environment.  By modeling species 

environmental responses as well as their “residual” covariances in space and time, spatiotemporal joint 

SDMs (JSDMs) may offer benefits over traditional, single species models that do not attempt to control 

for these factors.   These gains can include less biased estimates of species environmental responses 

and/or the uncertainty around them, the pooling of information across species to improve parameter 

estimation (i.e., borrowing strength) and the resolution of underlying or “latent” gradients, and the 

option to predict joint occurrences and/or condition upon the occurrence states or abundances of other 

species, producing more realistic predictions of species assemblages.  Finally, the residual correlations 

estimated by JSDMs (and/or the partial correlations derived from them) may provide insights on 

potentially important ecological processes, such as biotic interactions or unmeasured “missing” 

predictors. 

Because basic ecological requirements, species interactions, and habitat use patterns can vary over 

ontogeny, we chose to model adults and juveniles of each species as distinct groups, based on length at 

maturity (when data was available). 

Due to the dynamic nature of the marine environment, whenever possible we used time-varying 

measurements for covariates.   In addition to considering water depth as a covariate, we also sought to 

explore the role of other correlates of depth, such as gradients in hydrodynamic stress or in the quality 

of  underwater light, which may be linked more mechanistically to organismal function.   

Community-level basis function model (CBFM) – a novel approach to joint SDMs 

Most existing implementations of joint SDMs represent adaptations of the latent variable model (LVM; 

Warton et al. 2015, Hui 2016, Ovaskainen et al. 2016) and employ a Bayesian framework that depends 



on computationally expensive Markhov chain Monte Carlo (MCMC) sampling for parameter estimation.  

This computational burden is compounded in a spatio-temporal context, where the estimation of 

spatially and/or temporally structured latent fields means that model complexity scales rapidly with the 

number of observational units.  As such, fitting spatiotemporal JSDMs to large datasets (such as ours) 

can involve processing times that make this approach largely impractical.   

We (with collaborator Dr. Francis Hui at Australian National University and others) developed a novel 

approach to fitting JSDMs, the community-level basis function model (CBFM). In lieu of spatially 

structured latent variables, CBFM employs a pre-specified set of fixed spatial (and/or temporal) basis 

functions that are common (i.e., shared) across all species.   Species’ covariances in space, time, and 

with each other are then modeled via their respective basis function coefficients (i.e., weights or 

loadings), which are treated as random slopes drawn from a common distribution.   This approach can 

be seen as a parallel of LVM but offers several advantages, including better scaling for datasets with 

many observations, because the “randomness” is integrated at the species, instead of observation, level.  

Additionally, the basis function approach relaxes assumptions about stationarity, so that the strength of 

correlations between two points in spacetime is not just a function of their distance from one another, 

but also their specific locations. Moreover, because the basis function approach is closely related to 

generalized additive models (GAMs), CBFM can model species responses to covariates as smooth terms, 

whereas most existing JSDM frameworks are limited to linear or quadratic/polynomial terms.  This was 

particularly convenient in the context of NRHA, where the flexibility and data-driven nature of GAMS 

had made them a method of choice for single-species models, and permitted straightforward 

comparisons of the two.  REFER TO CBFM MS for additional information…… 

 

Biological response data 

We examined abundance data from the NMFS Spring & Fall Bottom trawl surveys for the time period 

between 2000-2019.  This limited timeframe was selected because: (1) recent patterns of habitat use 

are likely the most informative/relevant for identifying habitat suitability at present or in the future, 

and, (2) prior to this period, data for many satellite-derived covariates are not available.  For assessing 

out-of-sample predictive performance, the dataset was split, with 15 years used for training (2000-2014) 

and 5 years held out for testing (2015-2019).  The model(s) included response data for NRHA species of 



interest, as well as other dominant community constituents (i.e., those with high rates of occurrence) 

and taxa thought to constitute important prey for species of interest, based on the literature. 

While calibration factors have been estimated (i.e., Miller et al. 2010) to account for the 2009 change in 

vessel and sampling gear from the RFV Albatross IV to the RFV Henry Bigelow, they do not exist for all 

species and are rarely stage specific.  Moreover, in the case of presence-absence models, the 

calibrations can induce false “absences” in samples where species were in fact present.  To circumvent 

these issues, we used raw (un-calibrated) count data, estimating a species-specific (and stage-specific 

where appropriate) “VESSEL” effect to attempt to control for the gear change.   

Stage-specific counts were generated using length information collected during the surveys along with 

estimated length at maturity data (L50s) collected from the literature. For a given tow, each observed 

length-class bin was classified as either “adult” or “juvenile”, and then the counts for each applicable 

length-class bin were summed for each life stage.  Finally, the proportion of measured individuals 

comprising each life stage was multiplied by the total abundance of each species to obtain estimates of 

stage-specific abundance. 

When maturity information was not available for a given species, all individuals were treated as a single 

group.   Likewise, if either life stage of a species had fewer than 500 nonzero counts, the two stages 

were pooled into a single group.  Species with fewer than 500 nonzero counts altogether (i.e., across 

stages) were not considered in the model.  Species were also assigned to functional groups based on 

water column use (i.e., demersal, pelagic, or benthic in the case of epifaunal or infaunal invertebrates). 

 

Basic modeling framework 

Because some species overlap in their use of benthic/demersal and pelagic habitats, members of all 

three water column use groups are being combined in a single model.   However, discrete models for 

benthic/demersal and pelagic communities are also being developed, permitting covariate sets to be 

more custom-tailored for each group (as the number of covariates that can be considered 

simultaneously in the model is limited).  At present, the model includes 97 different species-stages.  

Benthic invertebrates (primarily molluscs and crustaceans) were not included in the presented model 

fits, but will be included in model runs that are currently in preparation. 



We also opted to model the Spring and Fall surveys together, pooling the tow-level observations into a 

single model, instead of fitting to the data from each season separately.  This was based on the 

reasoning that species’ niches (i.e., responses to covariates) would be more completely represented by 

observations spanning a broader range of environmental conditions.  In the case of temperatures, this 

might be particularly important for long-term projections based on climate model outputs.  Moreover, 

preliminary comparisons indicate that the combined-season model performs comparably to (i.e., 

typically as well as or better than) single-season models for out-of-sample prediction. 

Models were fitted to both binary presence-absence and abundance (count) response data.  The 

overdispersed nature of counts and high proportion of zeros for many species necessitated (as indicated 

by model residuals) a more flexible mean-variance relationship than that of the negative binomial error 

distribution. To accommodate this, we are presently comparing two different approaches: (1) a stepwise 

“hurdle” model, first fitting to presence-absence data with binomial error and then fitting to counts 

conditional on presence using a zero-truncated negative binomial error distribution; and (2) a covariate-

dependent zero-inflation model, fitting to counts (including “true” zeros) with negative binomial error, 

while the probability of observing “false” zeros is likewise modeled as a function of the covariates.  

Accordingly, the former (hurdle) approach assumes that detectability/catchability is somewhat invariant 

(with the exception of estimated vessel effects), while the latter (zero-inflation) assumes that detection 

efficiency can vary with environmental factors.  (At present, results are only available for the hurdle 

model). 

Species responses to continuous predictor variables were modeled as smooth terms using thin-plate 

regression splines, while the effect of vessel was modeled as a parametric term.  In the presented 

models, the vessel effect is estimated for each species independently as a fixed effect; however, we are 

exploring the potential for drawing vessel effects randomly from a shared (i.e., species-common) 

distribution.   

Spatiotemporal covariance was modeled using a tensor product of 50 multi-resolution thin-plate spline 

(MRTS) spatial basis functions and 3 temporal (gaussian) basis functions associated with month of the 

year (i.e., from 1-12; akin to using a smooth on “month”).  This structure allows the effect of space to 

evolve over the year, with observations falling closer together in space-time (within the course of a year) 

more closely correlated, while also helping to account for seasonal patterns that may not be explained 

by measured covariates.  Meanwhile, longer-term (i.e., interannual) temporal variability was modeled 

via a gaussian process smooth for “year” (with exponential dependency), drawn from a species-common 



distribution.  This approach was selected after exploring several other alternatives, including  a random 

“year” effect, an additional set of species-common temporal basis functions, and a tensor product 

(interaction) of spatial and long-term temporal (i.e. year) basis functions.  However, the random effect 

tended to estimate unrealistically large year-to-year variation for some species, while the latter (more 

complex) approaches tended to lead to overfitting and poorer out-of-sample prediction in both CBFM 

and single-species GAMs.   

As a point of comparison, we also fitted “stacked” single-species GAMs using the same covariate set, as 

well as stacked GAMS with an analogous spatiotemporal structure (which included a tensor-product 

smooth for latitude, longitude, and month, with a separate gaussian process smooth for year).  Again, 

more complex spatiotemporal structures did not improve out-of-sample prediction performance for 

single-species GAMs, and often hindered it.  

Uncertainty in species responses to covariates is measured via 95% confidence intervals, with 

corresponding uncertainty in predictions quantified via 95% prediction intervals.  If estimates of 

uncertainty are available for predictor variables, additional model runs that incorporate this uncertainty 

(by including the upper/lower bounds of predictors and iterating over different combinations thereof) 

can be conducted.  

Covariates & Covariate Selection 

 

Physicochemical covariates included the following: 

Surface temperature (monthly mean)  

Bottom temperature (monthly mean)  

Surface salinity (monthly mean)  

Bottom salinity (monthly mean)  

Annual minimum surface temperature (i.e., for the 12 months prior to an observation)  

Annual maximum surface temperature (i.e., for the 12 months prior to an observation) 

Annual minimum bottom temperature (i.e., for the 12 months prior to an observation)   

Annual maximum bottom temperature (i.e., for the 12 months prior to an observation) 

Sea surface height anomaly (monthly mean)  

Bottom stress (95th quantile, static) 

PAR (at 0.5* depth - monthly mean, modeled as a tensor product with hue angle) 



Hue angle (at 0.5* depth - monthly mean, modeled as a tensor product with PAR)  

Bathymetric Position Index (or BPI; broad scale, static) 

Topographic complexity (Standard deviation of fine-scale BPI)  

Mean sediment grain size (in phi units) 

 

Temperatures, salinities, and sea surface height were obtained from the GLORYS 12v1 reanalysis (Jean-

michel et al. 2021), which provides spatially and temporally continuous data at a spatial resolution of 

1/12 degree (~ 9km) daily and corresponds closely to measured observations on the NE shelf (Chen et al. 

2021).  In addition to monthly mean surface and bottom temperatures and salinities, we also included 

long-term (annual) temperature extremes (i.e., min and max), which can be important drivers for many 

taxa (Morley et al. 2018).  Sea surface height variations related to circulatory features such as fronts and 

eddies are often associated with productivity, making them a valuable predictor for many species as well 

(McHenry et al 2019).  If desired, data from other circulation models (i.e., ROMS/HYCOM) could be 

substituted here, and it may be worth performing some type of bias correction for these predictors, 

based on the instantaneous point measurements taken during NMFS surveys.   

Sea Bottom Stress (95th quantile, annual) was sourced from the USGS Sea Floor Stress and Sediment 

Mobility database (Dalyander et al., 2012), with spatial resolutions ranging from 3.5 to 5 km.  As time-

varying data were not available, this was treated as a static variable.   A measure of the strength of 

hydrodynamic forcing due to waves and currents at the seabed, bottom stress is a close correlate of 

water depth that has direct physical implications for locomotion, resource acquisition, and energetic 

costs of marine organisms, and may indirectly reflect other aspects of the benthic environment (e.g., 

epifaunal or infaunal community composition).  Rather than a mean or median, we opted to use 95th 

quantile values to capture the magnitude of more extreme events, which are often more ecologically 

relevant determinants of habitat use (Denny et al. 2009).  

Water column optical characteristics were estimated from remote sensing data with a horizontal 

resolution of 4km, following the methods of  Lee et al. (2021) and Lee et al. (2005) for hue angle and 

photosynthetically-active radiation (PAR) at depth, respectively (in collaboration with Dr. ZhongPing Lee 

at UMass Boston).   PAR measures the intensity of light (largely without regard for the spectral 

distribution), with high values indicating greater levels of illumination, such as those that would be 

experienced in clearer waters or shallower depths where attenuation by the water column is limited.   

Alternatively, hue angle quantifies the spectral distribution (i.e., the “color”) of light, ranging from 



roughly 40 deg in shallow, “red” estuarine waters with high levels of dissolved and suspended 

substances, to 120 deg in oceanic surface waters, and up to 240 deg at the lower end of the photic zone 

in clear, deep “blue” oceanic waters.    

Together, these two variables describe the basic quality of underwater illumination, which is closely 

related to both water depth and distance to the coastline, but may be a more proximal driver of habitat 

selection given it can be directly observed or sensed by (most) organisms occupying the photic zone (i.e., 

most of the modeled species).  Moreover, because vision is the primary sensory mechanism through 

which many of these organisms perceive and navigate their surroundings, identify resources, capture 

prey, and detect and avoid predators, the surrounding optical environment may have more direct 

ecological relevance than water depth; indeed, the ocular systems of fish and invertebrates exhibit 

physiological specializations adapted to the intensity and spectral composition of light in the habitats 

they occupy (de Busserolles et al.  2017, Cortesi et al 2020).  To capture the suitability of this “optical 

habitat”, we modeled the interaction between PAR and hue angle via a tensor product smooth, 

producing a 2-D response surface. 

Because most spectral attenuation (and consequently the change in light quality) occurs in the upper 

levels of the water column, near-surface and bottom values of hue angle, and to a lesser extent PAR, are 

correlated.  To limit the number and collinearity of predictor variables, while also accommodating the 

fact that our model includes both demersal and pelagic functional groups, we estimated “generalized” 

optical parameters at the midpoint of the water column (i.e., 0.5 * depth).  In the case of discrete 

demersal and pelagic models (where covariates could be more tailored to the functional group of 

interest), we estimated these parameters at some fixed near-surface depth (10m for pelagic species) or 

at the seabed (for demersals). 

Hue angle is closely correlated with remotely sensed Chlorophyll A (CHLA) concentration (a covariate 

often taken to be representative of productivity), however our exploratory analyses indicated that the 

former was more informative, and thus CHLA was omitted from model fits that included optical 

parameters.  However, for the sake of completeness and comparison, we are fitting  alternative models 

that include water depth and mean monthly CHLA concentration in lieu of optical parameters and 

seabed stress (i.e., correlates of depth). 

Benthic habitat characteristics related to topography (bathymetric position or complexity) and to 

substrates (e.g., sediment type or grain size) can be important environmental predictors for demersal 



species.  Bathymetric data for the study area were derived in combination from the USGS Coastal Relief 

Model (CRM90), the Nature Conservancy’s NAMERA dataset, and NOAA’s BlueTopo source bathymetry.  

We attempted to capture spatial variation in the nature/character of seafloor habitats through three 

different variables.  Bathymetric Position Index (BPI) reflects the elevation of a given locale relative to 

the surrounding seascape, with more positive values indicating locally raised areas, more negative 

values indicating local depressions, and values near 0 signifying regions of more uniform slope.  To 

capture broad-scale topographic features (i.e., seamounts, ridges, etc.) we estimated BPI from 100 

meter resolution bathymetric data using NOAA’s Benthic Terrain Modeler in ARCGIS with an inner radius 

of 900 m and an outer radius of 9000 m (following previous work).  Topographic complexity related to 

finer-scale seafloor features was quantified as the standard deviation of fine scale BPI (estimated with 

an inner radius of 300 m and outer radius of 1500 m), and then averaged within a 10 km radius of each 

100 m grid cel (again following previous work).  Finally, the character of benthic sediments was 

quantified through mean sediment grain size,  extracted from the TNC’s  NAMERA soft-sediment map 

layer.  

Covariates with heavily skewed distributions were log-transformed, and all were standardized (centered 

and scaled) for numerical stability.  Covariate selection is carried out during the model-fitting process, 

wherein an additional penalty associated with each smooth term serves to shrink the effect of any non-

informative covariates to zero, effectively removing them from the model.   

To manage model complexity and reduce the potential for multicollinearity, we have limited the 

predictor variables considered to those that are broadly influential across the overall species pool.  

Likewise, we have (at present) limited explanatory variables to those that are measured (or estimated) 

at relatively fine spatio-temporal scales, and as such, we have not included region-wide indices or 

coarsely interpolated (i.e. over several years) spatial fields.  However, we will continue to explore the 

utility of additional explanatory variables in the model.   

*Due to time constraints, the current model runs did not include the additional shrinkage penalty (which 

extends model run times considerably), however prior experimentation shows this has little to no effect 

on prediction. 

 

 

 



Model Assessment 

Out-of-sample prediction performance was assessed by training on 15 years of data (2000-2014) and 

extrapolating to 5 years (2015-2019).  For presence-absence models, classification and discrimination 

performance were quantified using AUC and Tjur R^2, while predictive deviance and RMSE were used to 

assess error/precision.  For count models, we used pseudo R^2  (the spearman correlation between 

predicted and observed counts) and RMSE.   

 

PRELIMINARY RESULTS: 

Model Checking 

Residual checks indicate that with the exception of a few extreme values (~4 SDs), overall  distributional 

assumptions were met.  There is evidence of a strong pattern for one species in the residual vs fitted 

values plot; we are presently diagnosing this issue.  Refer to PLOTS/MODEL_CHECKING to view. 

Predictive Performance 

Considered across the species pool, the CBFM presence-absence fit had somewhat greater classification 

(AUC) and notably better discrimation (Tjur R^2) performance than single-species spatiotemporal GAMS 

(and much more so than GAMS that did not consider space and time), with comparable levels of error 

(RMSE).  The median AUC was 0.93 (ranging from 0.78 - 0.99), the median Tjur R2 was 0.50 (0.1 - 0.75), 

and median RMSE was 0.28 (0.09 - 0.42).  Refer to PLOTS/MODEL_PERFORMANCE to view.  

COUNT MODEL PERFORMANCE to be included 

For example species (Summer flounder and winter flounder): 

Summer Flounder: AUC = 0.94 and 0.93, Tjur R2 = 0.62 and 0.30, RMSE = 0.34 and 0.22, for adults and 

juveniles, respectively. 

Winter Flounder: AUC = 0.95 and 0.96, Tjur R2 =  0.66 and 0.65, RMSE = 0.30 and 0.26, for adults and 

juveniles, respectively. 

COMMUNITY-LEVEL METRIC PERFORMANCE to be included 

Predictor Significance 



Across the two models (P/A and count), no covariate was significant for fewer than 31 spp.  In both 

models, optical parameters were significant for the greatest number of spp (92 and 75 spp, for P/A and 

count, respectively), followed by bottom shear stress (75 and 61 spp, respectively).  Every species had at 

least 2 significant predictors.  Refer to PLOTS/ALL_SPECIES/PREDICTOR_SIGNIFICANCE to view  

Species Response to Predictors 

Vessel effects were significant for 47 spp in the P/A model and 54 spp in the count model, and were 

reasonably similar (i.e.,correlated) across the two count models (Spearman’s R = 0.75).  The work of 

Miller et al 2010 indicate that the Henry Bigelow (HB) is generally more efficient than the Albatross (AL).  

Consistent with this, the estimated effect of vessel (with AL being the baseline) was positive for the vast 

majority of species.  There were, however, a few exceptions to this that require additional exploration.   

We are looking into the possibility of drawing  vessel effects from a species-common, non-zero mean 

distribution which may enhance their estimation (they are presently estimated independently at the 

species level).  To provide an additional point of comparison, we may also run equivalent fits omitting 

the vessel effect and using the pre-calibrated count data. 

For smooth terms, the majority of estimated smooths appear reasonable and resemble the 

characteristic “niche” model (however there are some particularly “wiggly” smooths that deserve 

further exploration, and may require adjustments to wiggliness penalties, etc).  Note that the tensor 

product for optical parameters (hue angle and PAR) is plotted as a 2-dimensional response surface, 

where PAR is on the Y axis and Hue angle is on the X axis, with the color gradient fill reflecting the 

overall effect magnitude.   Higher values of PAR correspond with greater levels of illumination.  Low hue 

angles typically indicate an optical environment on the “redder” (more estuarine or coastal) end of the 

spectrum, whie higher angles correspond to a “bluer” (more offshore) environment.  

In future model outputs, covariate values/plot axes will be back-transformed to their original (un-

standardized) units. 

Refer to PLOTS/ALL_SPECIES/SPECIES_RESPONSE to view by predictor type (note the y-axis scale varies 

by sp. to exaggerate the shape of the response). 

Refer to PLOTS/EXAMPLE_SPECIES/SPECIES_RESPONSE to view by species (note the y-axis scale is fixed 

so that effect magnitudes are comparable across predictors). 

Variance Partitioning 



Variance partitioning plots show the proportion of variance explained by each of the environmental 

predictor variables, by species. 

Refer to PLOTS/ALL_SPECIES/VARIANCE_PARTITIONING to view plots for the entire community or 

PLOTS/EXAMPLE_SPECIES/VARIANCE_PARTITIONING to view subsets for summer and winter flounder. 

Predictions 

Predictions of presence/absence and of abundance were generally consistent with observations across 

the 20-year period, and appeared to resolve seasonal differences well.  In the case of hurdle count 

models, some spuriously high predicted counts occur (for a few species) at the extremes of covariate 

space (most often for depth and/or optical parameters), usually near the shelf break where observed 

data were very sparse.  These erroneous predictions are arising when the presence/absence component 

of the model estimates mean probabilities of occurrence to be very low (but not exactly zero), yet the 

count model estimates very high mean counts.  We are in the process of addressing this issue. 

Refer to PLOTS/EXAMPLE_SPECIES/PREDICTIONS to view 

ADD PLOTS TO  PLOTS/ALL_SPECIES/PREDICTIONS WHEN READY 

Correlations 

Residual correlations reflect the estimated residual covariance between species, or correlations in 

presence/absence or abundance that are not explained by species responses to the predictor variables.  

These may reflect the effects of missing predictor variables, dispersal processes, or biotic interactions.   

Partial correlations are obtained by inversion of the residual correlation matrix and control for indirect 

effects (e.g., if two species are positively correlated due to their shared negative correlations with 

another species) and therefore are considered to be a better indicator of “direct” biotic interactions.  

Still, correlations should be interpreted with caution/skepticism.  

Across the community, the most noticeable general pattern is a tendency for strong positive correlations 

between adults and juveniles of the same species, which may reflect their common responses to 

unmeasured environmental variability but may also be indicative of dispersal processes/limitations. 

Refer to PLOTS/ALL_SPECIES/CORRELATIONS to view the full matrices for the entire community   

Refer to PLOTS/EXAMPLE_SPECIES/CORRELATIONS to view subsets for summer and winter flounder 

 


