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Summary8

The Woods Hole Assessment Model (WHAM) software package is being developed at the Northeast Fisheries9

Science Center to enable state-space stock assessments, i.e. where processes such as the annual transitions in10

numbers-at-age (NAA), M, and/or selectivity are treated as time- and age-varying random effects. WHAM can11

also be configured as a traditional statistical catch-at-age model in order to bridge from current assessments12

which use Age-Structured Assessment Program (ASAP).13

We fit a series of models in WHAM for butterfish and consider three in detail. The simplest model, “04-Base,”14

is similar to the final ASAP3 RUN_036 and estimates yearly recruitment as fixed effect parameters. The15

second model, “04-NAA2,”treats yearly recruitment deviations as random effects following a first-order16

autoregressive, AR(1), process. The proposed WHAM model, “17-NAA5,” estimates all numbers-at-age17

(NAA) as random effects with 2D AR(1) covariance by age and year, but where only correlation by year is18

estimated. 17-NAA5 also uses the logistic normal likelihood for age composition observations. We compare19

diagnostics for these three models, and show that 17-NAA5 has higher prediction skill (of index observations)20

and higher convergence rate in simulation self-tests. We provide reference point calculations and short-term21

projections and propose that 17-NAA5 be used for butterfish management.22
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1 Introduction23

Like most stocks with age-structured assessments in the U.S. Northeast, butterfish is currently assessed using24

ASAP, the Age-Structured Assessment Program (Legault and Restrepo, 1998; Miller and Legault, 2015).25

ASAP is a statistical catch-at-age (SCAA) model which typically only considers yearly fishing mortality (Fy)26

and recruitment (Ry) as time-varying parameters. Other parameters are assumed constant primarily because27

there are not usually enough degrees of freedom to estimate them as time-varying. ASAP can penalize28

the deviations, e.g. in recruitment as Ry ∼ N (R0, σ
2
R), although the penalty terms, σ2

R, must be fixed or29

iteratively tuned and are therefore somewhat subjective (Aeberhard et al., 2018; Methot and Taylor, 2011;30

Methot and Wetzel, 2013; Xu et al., 2020). State-space models that treat parameters as unobserved states31

can, in principle, avoid such subjectivity by estimating the penalty terms as variance parameters constraining32

random effects and maximizing the marginal likelihood (Thorson, 2019). In this way, state-space models can33

allow processes to vary in time while simultaneously estimating fewer parameters. In addition to this key34

advantage, state-space models naturally predict unobserved states, and therefore handle missing data and35

short-term projections in a straightforward way (ICES, 2020). In comparisons with SCAA models, state-space36

models have been shown to have larger, more realistic, uncertainty and reduced retrospective patterns (Miller37

and Hyun, 2018; Stock et al., 2021; Stock and Miller, 2021).38

The Woods Hole Assessment Model (WHAM) is an R package developed at the Northeast Fisheries Science39

Center (https://timjmiller.github.io/wham, Miller and Stock, 2020). It is similar to ASAP and can be40

configured to fit SCAA models nearly identically. There is functionality built into WHAM to migrate ASAP41

input files to R inputs needed for WHAM, and WHAM uses many of the same types of data inputs, such42

as empirical weight-at-age, so that existing assessments in the U.S. Northeast can be replicated and tested43

against models with state-space and environmental effects in a single framework. WHAM primarily differs44

from ASAP through inclusion of random effects options and implementation via the Template Model Builder45

package (TMB, Kristensen et al., 2016). In this respect it is similar to the State-space Assessment Model46

(SAM, Nielsen and Berg, 2014), which is currently used to manage roughly 25 stocks in the ICES region.47

To date, WHAM has not been used for management. However, it has been reviewed in the literature and48

simulation tested (Stock et al., 2021; Stock and Miller, 2021) and used as the operating model in a recently49

reviewed research track assessment (https://github.com/cmlegault/IBMWG, Legault et al., 2021). WHAM50

is also being considered in ongoing stock-specific research track assessments for Georges Bank haddock and51

American plaice.52

Here, we describe a series of WHAM models for butterfish and consider three in detail. The simplest model,53
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“04-Base,” mimics ASAP and estimates yearly recruitment as fixed effect parameters. The second, “04-NAA2,”54

treats yearly recruitment deviations as random effects following a first-order autoregressive, AR(1), process.55

The proposed WHAM model, “17-NAA5,” estimates all numbers-at-age (NAA) as random effects with AR(1)56

correlation by year, but independent across ages. The 17-NAA5 model also assumes logistic normal likelihoods57

for catch and index age composition observations. We compare diagnostics for these three models, and show58

that 17-NAA5 has higher prediction skill (of index observations) and higher convergence rate in simulation59

self-tests. We provide reference point calculations and short-term projections and propose that 17-NAA5 be60

used for butterfish management.61

2 Methods62

Stock and Miller (2021) provide a complete description of the WHAM model equations, simulation tests for 563

stocks, and demonstrations of the random effects options. Source code, documentation, vignettes, automated64

tests, issue tracking, and development news are available at https://timjmiller.github.io/wham/.65

2.1 Model configurations66

We ran all WHAM models using the input data file from the final ASAP3 model, RUN_036. We investigated67

the following:68

1. Numbers-at-age (NAA) model options69

2. Estimating catchability (q) of Index 1 (NEFSC Fall Albatross)70

3. Estimating natural mortality (M )71

4. Age composition likelihood options72

5. Estimating Beverton-Holt stock-recruitment73

6. Time-varying selectivity vs. 2 blocks for the fishery74

Table 5 lists all of the WHAM runs with description and comments. Code to run the final three WHAM models75

can be seen at /code/run_models.R. Code to extract reference point estimates and perform short-term76

projections is at /code/project_models.R.77
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2.1.1 Numbers-at-age models78

Our notation for the NAA options follows Stock and Miller (2021). The “Base” model approximates ASAP79

by estimating recruitment deviations as independent fixed effect parameters. WHAM can also treat only80

recruitment (NAA1 and NAA2) or numbers at all ages (NAA3, NAA4, and NAA5) as random effects. Models81

with only recruitment as random effects are technically state-space models, and we therefore refer to models82

with all NAA as random effects as “full state-space” models, i.e. include process error on the NAA transitions83

(akin to “survival,” Stock et al., 2021). Table 1 lists standard WHAM options for treating NAA as fixed or84

random effects.85

Table 1: Six standard numbers-at-age (NAA) models in WHAM.

Model Description Parameters estimated No.

Base as ASAP, recruitment deviations are fixed effects Ry for y > 1 nyears − 1

NAA1 Recruitment deviations are independent random effects σR 1

NAA2 Recruitment deviations are autocorrelated, AR(1), random effects σR, ρyear 2

NAA3 All NAA deviations are independent random effects σR, σa 2

NAA4 All NAA deviations are random effects with correlation by year and age, 2D AR(1) σR, σa, ρyear, ρage 4

NAA5 All NAA deviations are random effects with correlation by year only, AR(1) σR, σa, ρyear 3

We present results from Base, NAA2, and NAA5 models (the butterfish recruitment time-series exhibits strong86

autocorrelation by year). The full state-space models, NAA3–NAA5, did not converge with multinomial age87

composition likelihood but did with logistic-normal.88

2.1.2 Estimating catchability (q) of Index 1 (NEFSC Fall Albatross)89

Catchability of Index 1 (NEFSC Fall Albatross), q1, is technically estimated in the ASAP3 model, RUN_036.90

However, the very strong penalty (CV = 0.01) results in the estimate, 0.197517, remaining close to the initial91

value, 0.21. We attempted to freely estimate q1 in WHAM, i.e. without a penalty, but these models had92

issues estimating the population scale. Fixing q1 at the value estimated in RUN_036, 0.197517, resulted in a93

lower negative log-likelihood than fixing q1 at the RUN_036 initial value, 0.21. Therefore, all three WHAM94

models presented fix q1 = 0.197517.95
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2.1.3 Estimating natural mortality (M )96

The ASAP3 model, RUN_036, fixes M = 1.278 for all ages. WHAM has several options for estimating M97

(see https://timjmiller.github.io/wham/articles/ex5_GSI_M.html), and we attempted to estimate a single98

mean M . Several of these models converged and generally estimated M lower than 1.278, in the 0.9-1.099

range with 95% CI from 0.6-1.4. These models estimated lower F , higher SSB, lower recruitment, and higher100

uncertainty in all three quantities. Selectivity was more domed for the indices and shifted younger for the101

fleet. Estimating M was not supported by AIC and had lower prediction skill, so we did not pursue these102

models further.103

2.1.4 Age composition likelihood options104

ASAP assumes that the age composition (proportion-at-age) observations follow the multinomial likelihood,105

where the effective sample size must be specified by the user. Although the multinomial is commonly used, it106

has two primary drawbacks: 1) the effective sample size weights the observations and cannot be estimated107

internally, and 2) the correlations are negative and completely defined by the mean of the distribution108

(Francis, 2014). WHAM provides several alternative composition likelihoods (Appendix B in Stock and Miller,109

2021), including the Dirichlet-multinomial and logistic-normal, which have been shown to outperform the110

multinomial in simulation tests (Fisch et al., 2021; Francis, 2014; Thorson, 2019; Xu et al., 2020).111

Models using the Dirichlet-multinomial did not converge, but models with the logistic-normal were promising.112

Of the three models presented in detail below, 04-Base and 04-NAA2 retain the multinomial from the ASAP3113

model, whereas 17-NAA5 uses the logistic-normal.114

2.1.5 Stock-recruitment115

Estimating a stock-recruit function is desirable in part because it allows the use of MSY-based reference points.116

Ideally this would be done internally, within the model, but can also be done externally using estimated117

SSB and recruitment time-series. We were able to estimate Beverton-Holt parameters for some WHAM118

models. However, they are not appropriate because recruits in the butterfish assessment are age-0, and119

WHAM assumes age-1 recruits enter the population on Jan 1. Several modifications need to be made to120

allow for age-0 recruitment in WHAM, and there is no timeline for conducting this work. Thus, all three121

WHAM models presented assume recruitment deviations are random about the mean, R0, with lognormal122

bias correction. This could be reevaluated in the future if 1) an age-0 recruitment option is developed in123
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WHAM, or 2) age-0 data are removed from the model (i.e. estimate age-1 recruits instead of age-0 recruits).124

2.1.6 Time-varying selectivity vs. 2 blocks for the fishery125

The final ASAP3 model, RUN_036, has a second selectivity block for the fishery from 2014-2019 (see results126

and justification for ASAP runs 32 and 33). An alternative to this 2-block structure in WHAM is to estimate127

time-varying selectivity deviations as random effects (see https://timjmiller.github.io/wham/articles/ex4_s128

electivity.html). We fit WHAM models with time-varying age-specific and logistic selectivity parameters.129

Models with time-varying logistic selectivity did not converge, which is unsurprising given the reasonably130

strong doming when age-specific selectivity is estimated. One model with time-varying age-specific selectivity131

was promising but did not have better diagnostic performance than the proposed WHAM model, 17-NAA5.132

Models with random effects on both selectivity and all NAA did not converge.133

2.2 Diagnostic and performance metrics134

We primarily considered the following diagnostic and performance metrics:135

• Convergence136

• Trend in Index 1 residuals137

• Akaike information criterion (AIC)138

• Retrospective pattern (Mohn’s ρ)139

• Simulation self-test140

• Predictive skill141

2.2.1 Convergence142

We considered models converged if 1) the minimization algorithm, stats::nlminb, indicated successful143

completion (convergence = 0), and 2) the Hessian was positive definite and standard errors were calculated144

for all parameters.145

2.2.2 Trend in Index 1 residuals146

Some models did not fit Index 1 (NEFSC Fall Bottom Trawl Survey (BTS), Albatross years 1989-2008) well,147

which can be seen as a trend in the Index 1 residuals. Fits to Indices 2-6 were adequate for all models and148

therefore not helpful in model selection. State-space models should be diagnosed using one-step ahead (OSA)149
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residuals, which are conditioned on previous data points and independent (Berg and Nielsen, 2016; Thygesen150

et al., 2017).151

2.2.3 Akaike information criterion (AIC)152

WHAM calculates the marginal AIC, which is a useful model selection metric in some cases. Unfortunately,153

it cannot be used to select between models with different likelihood functions, e.g. multinomial versus154

logistic-normal age compositions, 17-NAA5 vs. 04-Base or 04-NAA2. It also cannot be used to compare155

models that treat the same parameters as fixed versus random effects, e.g. 04-Base vs. 04-NAA2. Therefore,156

while AIC was useful in some instances, it is not applicable to compare the three WHAM models presented157

in detail here.158

2.2.4 Retrospective pattern (Mohn’s ρ)159

We used the WHAM default of 7 peels to calculate Mohn’s ρ for recruitment, SSB, and fully-selected F . In160

addition to the Mohn’s ρ values, we considered the pattern of the peels. Absolute values of Mohn’s ρ less161

than 0.2 are not generally considered problematic. Confidence intervals to statistically test whether Mohn’s162

|ρ| are greater than 0 or different between models would be ideal but this is an open research question for163

state-space models.164

2.2.5 Simulation self-test165

We ran simulation self-tests by using each model to simulate 100 datasets keeping all fixed effect parameters166

at the MLEs. We then refit the models to these simulated datasets and calculated the convergence rate and167

relative error in SSB, F , recruitment, and predicted catch.168

2.2.6 Predictive skill169

Performance in hindcasts, or “model-free validation,” can be used more generally than AIC, e.g. regardless of170

the likelihood or treatment of parameters as fixed or random effects. Predictive skill is also a desirable metric171

because it focuses on the accuracy of future, instead of historical, estimates of stock status and is therefore172

more relevant to management. In addition, removing and predicting data is arguably more informative than173

relying on diagnostics such as residual patterns, which “can be removed by adding more parameters than174
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justified by the data,” or retrospective patterns, which can be “removed by ignoring the data” (Carvalho et175

al., 2021; Kell et al., 2021).176

We ran hindcasts by sequentially removing aggregate and age composition observations for one index at a177

time, re-fitting the models, and predicting the removed data. We calculated the mean absolute scaled error178

(MASE) of the predictions over time horizons used to provide butterfish management advice, e.g. 1-3 years.179

MASE < 1 means that the model is better than the naive/baseline forecast, and MASE = 0.5 means that180

model forecasts are 2x as accurate as naive/baseline.181

2.3 Reference points and status determination182

We calculated F50%SP R and B50%SP R internally in WHAM according to the working group’s proposed assump-183

tions: 1) average recruitment since 2011 (2011-2019), and 2) average SSB per recruit inputs (i.e. selectivity-,184

maturity-, and weight-at-age) over the last five model years (2015-2019).185

WHAM can propagate uncertainty in model parameters into uncertainty in FX%SP R and BX%SP R, and then186

into stock status. WHAM also includes estimates of covariance of F/FX%SP R and B/BX%SP R. Here, we187

have extracted the MLEs for F50%SP R and B50%SP R, but without estimates of uncertainty, as is current188

practice. Thus, we do not provide 95% CI for F50%SP R and B50%SP R, and the uncertainty in F2019/F50%SP R189

and B2019/B50%SP R results from uncertainty in F2019 and B2019 alone. We can include uncertainty estimates190

for F50%SP R and B50%SP R if desired.191

2.4 Projections192

WHAM has several options for handling short-term projections internally. Code to run short-term projections193

for the final three WHAM models can be seen at /code/project_models.R.194

Projections under alternative F for catch advice will be done in the upcoming management track assessment195

using data through 2021. Here we simply demonstrate how this would be done using WHAM. We show three196

alternative F scenarios over a 3-year projection period: F = 0, F = F2019 (terminal year F / status quo),197

and F = F50% (FMSY proxy).198

In the models that assume the NAA deviations follow an AR(1) process (04-NAA2 and 17-NAA5) we199

continued the process into the projection period for consistency. We note that assumptions in the short-term200

projections are distinct from those defining reference points, which should reflect expected stock productivity201

in the long-term. Continuing the AR(1) process is an objective way of projecting numbers at age that are202
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correlated with those in the terminal year but that correlation dampens with increased projection years. The203

rate of dampening depends on the correlation parameter, ρyear.204

04-Base treats recruitment in the model years as fixed effect parameters, as in ASAP. WHAM then treats205

recruitment in the projection years, log(Ry), as random effects following:206

log(Ry) ∼ N (µ, σ2)

where µ and σ are the mean and standard deviation of log(Ry) calculated from a specified subset of model207

years. Here, we calculate µ and σ from 2011-2019 recruitment as in the reference point definition.208

3 Results209

3.1 Convergence210

04-Base, 04-NAA2, and 17-NAA5 each converged with positive definite Hessian and maximum gradient <211

1e-11.212

3.2 Index 1 residuals213

04-Base did not exhibit a trend in the Index 1 residuals (NEFSC Fall BTS, Albatross years 1989-2008).214

04-NAA2 and 17-NAA5 had mild, insignificant trends. Some models, e.g. 25-NAA4-FAA, did not fit Index 1215

well, resulting in a significant residual trend and we removed them from consideration (Fig. 1).216

3.3 Retrospective pattern217

Mohn’s |ρ| values for F , recruitment, and SSB were 0.11 or less for all three models (Fig. 2). The last peel (to218

2013) is worse than others, likely because the second fleet selectivity block begins in 2014. For all diagnostics219

plots, see /results/model-name.220
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3.4 Numbers-at-age221

The three final models primarily differ in their assumptions about the NAA transitions (Table 2, Fig. 3).222

04-Base estimates annual recruitment deviations as independent fixed effect parameters. 04-NAA2 assumes223

recruitment is an AR(1) process, which smooths and reduces the magnitude of the deviations. 17-NAA5 is a224

full state-space model that allows for deviations in the NAA transitions at all ages with covariance by year.225

04-NAA2 and 17-NAA5 estimated positive autocorrelation by year (ρyear > 0, Table 2), which means that226

the negative recruitment deviations estimated in the terminal year propagate into the short-term projections227

(Fig. 3). 17-NAA5 estimated slightly positive survival deviations at ages 1+ in recent years, and these also228

propagate into the projections. Cohort effects can be seen in the NAA deviations estimated by 17-NAA5229

(diagonal correlation in Fig. 3). At present, WHAM does not allow for cohort effects on the NAA deviations,230

but these could be considered in the future if added to WHAM.231

Table 2: Maximum likelihood estimates of numbers-at-age (NAA) parameters in the three final WHAM
butterfish models. Standard errors are in parentheses.

Model σR σa ρyear

04-Base — — —

04-NAA2 0.17 (0.05) — 0.88 (0.19)

17-NAA5 0.32 (0.07) 0.22 (0.06) 0.43 (0.21)

3.5 Selectivity232

Fleet selectivity was estimated similarly in the three WHAM models as in ASAP RUN_036 (Fig. 4).233

Index selectivity was also estimated similarly in the three WHAM models, except that 17-NAA5 estimated234

lower selectivity of older butterfish, i.e. more doming (Fig. 5). Selectivity-at-age parameters for older ages235

(age-3 and especially the plus-group, age-4+) were not well estimated by 04-Base and 04-NAA2 (SE of several236

logit-scale parameters > 3), whereas they were for 17-NAA5 (maximum SE = 1.5).237

3.6 Simulation self-test238

When fit to data simulated from the fit models and keeping fixed effect parameters at their MLEs, 04-Base239

and 04-NAA2 converged less than half of the time. Convergence rates for 04-Base, 04-NAA2, and 17-NAA5240
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Figure 5: Index selectivity from ASAP RUN-36 and the three final WHAM models.

were 8%, 40%, and 95% respectively. None of the models exhibited bias in SSB, F, recruitment, or predicted241

catch (Fig. 6).242

3.7 Predictive skill243

Over time horizons used to provide butterfish management advice, i.e. 1-3 years, 04-NAA2 and 17-NAA5244

had slightly higher predictive skill than 04-Base (lower median MASE, Fig. 7). All three models generally245

had MASE < 1, which means that they provide more accurate forecasts than the baseline (assumes index246

observation in following year will be the same as previous). The exceptions were Index 4 (NEFSC Spring,247

Bigelow years 2009-2019) at 2-year horizon and Index 6 (young of the year survey from combined state data)248

at 3-year horizon. Across all models and time horizons, prediction skill was highest for Indices 2 (NEFSC249

Fall, Bigelow years 2009-2019), 3 (NEAMAP Fall), and 5 (NEAMAP Spring), lowest for Index 6, and variable250

for Index 4.251

3.8 Model selection252

We recommend 17-NAA5 because it had a higher convergence rate in simulation self-tests and slightly higher253

median predictive skill (Table 3). We did not investigate all simulation fits, but we hypothesize that 04-Base254
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and 04-NAA2 had poor convergence rates because the index selectivity parameters for older ages were poorly255

estimated (SE > 3 on logit-scale). None of the models have major retrospective patterns or trends in Index-1256

residuals.257

17-NAA5 is also preferred on first principles for two reasons. First, the logistic normal distribution used for258

the age compositions is self-weighting and allows more general correlation structure than the multinomial259

and it has outperformed the multinomial in simulation studies (Fisch et al., 2021; Francis, 2014). Second,260

treating recruitment as an AR(1) process is parsimonious given the decrease in butterfish recruitment over261

time, and the AR(1) propagates the expectation of less than average recruitment into short-term projections262

in an objective fashion.263

Table 3: Summary of diagnostics for the three WHAM butterfish models. Conv. = convergence rate of
simulation self-tests. ’Trend Index-1’ refers to trend in Index-1 residuals (Fig. 1).

Mohn’s ρ MASE (median)

Model NAA random effects Age comp Trend Index-1 Conv. R SSB F 1y 2y 3y

04-Base — Multinomial None 8% -0.07 0.01 -0.11 0.77 0.89 0.80

04-NAA2 Recruits, AR1 Multinomial Mild 40% 0.00 0.00 -0.08 0.80 0.79 0.80

17-NAA5 All NAA, AR1 Logistic-normal Mild 95% 0.09 0.09 0.01 0.71 0.89 0.76

3.9 Reference points and status determination264

In 2019, the butterfish stock was not overfished (B2019/B50% > 1) or experiencing overfishing (F2019/F50% <265

1) in all models (Table 4).266

Table 4: Reference points and stock status in the terminal assessment year (2019) with 95% confidence
intervals given in parentheses. B50% = spawning stock biomass at 50% of reproductive potential, i.e. spawning
potential ratio (B0). Biomass units are metric tons (mt).

Model F50% B50% F2019/F50% B2019/B50%

04-Base 4.92 29360 0.06 (0.03–0.10) 1.94 (1.20–3.14)

04-NAA2 4.74 32680 0.05 (0.03–0.10) 1.73 (0.96–3.11)

17-NAA5 6.62 37318 0.04 (0.02–0.08) 2.08 (1.20–3.63)

The three WHAM models estimated similar trends in SSB, F , and recruitment as ASAP (Fig. 8). The main267

difference is that the state-space models, 04-NAA2 and 17-NAA5, estimated less of a decrease in recruitment268

and SSB over the time-series, i.e. lower recruitment and SSB in early years and higher recruitment and SSB269

17



in later years. Recruitment in the full state-space model, 17-NAA5, was notably higher in 2008-2019 (Fig. 8),270

which corresponds to a period of negative survival deviations for fish aged 1+ (Fig. 3).271

All models estimated that the stock has never been overfished or experienced overfishing (B/B50% > 1 and272

F/F50% < 1 in all years, Fig. 9).273

3.10 Projections274

We show 3-year projections of recruitment and SSB under 3 alternative F scenarios: F = 0 (Fig. 10),275

F = F2019 (Fig. 11), and F = F50% (Fig. 12). 17-NAA5 estimates a larger population size (higher SSB) than276

the other two models, even with similar F and the same M , because survival deviations for ages 1+ were277

estimated to be positive (Figs. 3 and 10-12).278

Note the effect of treating projected recruitment as a continuation of the AR(1) process (or not, as in279

04-Base). Recruitment in 04-Base jumps immediately to the 2011-2019 average but recruitment in 04-NAA2280

and 17-NAA5 gradually approach average recruitment (Figs. 10-12).281
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Figure 8: Spawning stock biomass (SSB), fishing mortality (F), and recruitment estimated by ASAP and the
three final WHAM models.
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Figure 10: Spawning stock biomass (SSB), fishing mortality (F), and recruitment estimated by WHAM models
in the final 10 assessment years (2010-2019, left of vertical dashed line) and projection period (2020-2022,
right of vertical dashed line) under the F = 0 projection scenario. Black horizontal dashed lines indicate
F/F50% = 1 and B/B50% = 1. Red dashed line indicates B/B50% = 0.5.
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in the final 10 assessment years (2010-2019, left of vertical dashed line) and projection period (2020-2022,
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Table 5: WHAM runs with description and comments. Bold rows indicate models presented in detail for consideration.
Run Description Comments
1 As specified in asap3 RUN 36, except index 1 q is freely estimated.

Try 5 standard NAA models.
None converge.

2 As 01, except fix index 1 q at the initial value from asap3 RUN 36
(0.21). Try 5 standard NAA models.

Only NAA2 converges. Others would if index 6 (neamap-spring) selAA-3 is
fixed at 1 (estimated 15 on logit scale). Also noted selAA pars are initialized at
bound (1) instead of middle of range (0.5).

3 As 02, except fix index 6 (neamap-spring) sel-at-age-3 at 1.
Initialize selAA pars at 0.5.

Base, NAA1, and NAA2 converge with max gradient < 3e-12. Full state-space
models (NAA3 and NAA4) have estimation problems for sigma-a (goes to 0
with NaN or high SE).

4 As 03, except fix index 1 q at the estimated value from
asap3 RUN 36, 0.197517.

NLL is 0.1 lower with q1 = 0.1975 than q1 = 0.21. 04-Base and
04-NAA2 worth considering.

5 As 03, except estimate mean M. M is estimable, lower than fixed in ASAP (1.278). Mean with 95% CI: Base
1.00 (0.65-1.55), NAA1 0.92 (0.59-1.44), NAA2 0.95 (0.59-1.50).

6 Try to estimate q1 if the extra selectivity parameter is fixed and
M is estimated.

Fail.

7 Likelihood profile over q1. Fail, wants to go to -Inf.
8 As 05. Don’t fit to catch paa in years without data, 1998-2013.

Pred catch paa in those years uses selectivity shared with 89-97.
9 As 08 except without estimating M.
10 As 03. Use Dirichlet-multinomial age composition likelihood

instead of multinomial.
11 As 03. Use logistic-normal age composition likelihood instead of

multinomial.
12 As 11 but try to estimate q1 again. Fail.
13 As 11 but estimate M. All converge. Not supported by AIC for state-space models but is for NAA1.
14 As 11 but estimate Beverton-Holt stock recruitment. All converge. NAA3 best by AIC.
15 As 14 but use multinomial age comp likelihood. Fail.
16 As 14 but try initializing FMSY higher. Still only get FMSY estimates for half of years.
17 As 11 but fix q1 at value estimated in asap, 0.1975 17-Base and 17-NAA2 look good, 17-NAA5 has best AIC and

prediction skill.
18 As 17 but estimate M.
19 As 17 (logistic normal age comp for fleet, with lots of age data)

but use multinomial for indices age comp.
No models with rho < 0.05 and no index 1 trend.

20 Like 19 but swapped, multinomial fleet / logistic normal indices. No models with rho < 0.05 and no index 1 trend.
21 As 17 but pool zeros instead of treat as missing. Mohn’s rho higher.
22 Attempt to put AR1 random effects on selectivity Convergence issues.
23 Multinomial age comp, AR1 random effects on selectivity. Convergence issues.
24 As 23 but with logistic normal age comp. Issues with index 1 residual trend and retros.
25 One time-varying sel block for fishery, try age-specific and logistic

with 2D AR1 random effects.
25-NAA2-selAA looks ok but diagnostics are not as good as 17-NAA5.
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