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Abstract
Fishery management frequently involves precautionary buffering for scientific uncer-
tainty. For example, a precautionary buffer that scales with scientific uncertainty is 
used to calculate the acceptable biological catch downward from the overfishing limit 
in the US federal fishery management system. However, there is little empirical guid-
ance to suggest how large buffers for scientific uncertainty should be. One important 
component of uncertainty is variation among different assessments of the same stock 
in estimates of management- relevant quantities. We analysed commercially exploited 
marine fish and invertebrate stocks around the world and developed Bayesian hier-
archical models to quantify inter- assessment variation in terminal year biomass and 
fishing mortality estimates, reference points, relative biomass and fishing mortality 
estimates, and overfishing limits. There was little evidence of inter- assessment bias; 
stock assessment estimates in the terminal year of the assessment were not consist-
ently higher or lower than estimates of the same quantities in future years. However, 
there was a tendency for extreme values from the terminal year to be pulled closer to 
the mean in future years. Inter- assessment variation in all estimates differed across 
regions, and a longer inter- assessment interval generally resulted in greater variation. 
Inter- assessment uncertainty was greatest for estimates of the overfishing limit, with 
coefficients of variation ranging from 17% in Europe (non- EU) to 107% for Pacific 
Ocean pelagic stocks. Because inter- assessment variation is only one component of 
scientific uncertainty, we suggest that these uncertainty estimates may provide a 
basis for determining the minimum size of precautionary buffers.

K E Y W O R D S
annual catch limits, fisheries management, probability of overfishing, scientific uncertainty, 
stock assessment consistency
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1  |  INTRODUC TION

Stock assessments, mathematical models of the population dynam-
ics of harvested fish and invertebrates, provide key inputs used to 
guide decision- making within many fishery management systems. 
Most notably, they provide estimates of biological reference points 
and stock status with respect to these reference points, as well as 
an estimate of the target or limit harvest that can be taken in the 
following year or years. The efficacy of stock assessments in guiding 
fisheries management is challenged by uncertainties inherent to the 
ecosystem and management process (Garcia, 2000; Mildenberger 
et al., 2022). Uncertainties originate from biological, economic, and 
political factors that influence fisheries and interface with the abil-
ity to develop effective management measures. Such uncertainties 
in fisheries stem primarily from these inescapable facts: unstable 
and unpredictable states of nature, observational errors, model mis-
specification, and multiple, sometimes conflicting, scientific and eco-
nomic goals (Charles, 1998; Hanna, 1997; Hilborn, 1987; Sethi, 2010; 
Sissenwine, 1984). Errors in the management advice provided by 
stock assessments have been implicated in overfishing and the fail-
ure of some depleted stocks to recover (Brooks & Legault, 2016; 
Wiedenmann & Jensen, 2018). Identifying and quantifying uncer-
tainty helps to estimate the probability that different harvest levels 
will prevent overfishing (Edwards, 2016), and many fishery man-
agement systems include buffers in harvest levels to explicitly ac-
count for scientific uncertainty. However, despite previous reviews 
and simulation studies (Ralston et al., 2011; Privitera- Johnson & 
Punt, 2020a), there remains much that is unknown regarding both 
the magnitude of scientific uncertainty in different stock assessment 
outputs and the potential for systematic bias (i.e., a non- zero mean 
difference between a stock assessment output and a future under-
standing of the value of this same quantity).

The fisheries management process is composed of the following 
steps: data collection, data analysis, harvest control rule specifica-
tion, and regulation implementation. Uncertainty may occur in any 
component of this cycle. For example, process uncertainty underlies 
changes in population dynamics, such as variation in growth and nat-
ural mortality (Edwards, 2016). Observation uncertainty is produced 
from variation in measurement during data collection (Rosenberg 
& Restrepo, 1994). Another source, model uncertainty, can come 
from misspecification of model parameters (e.g., fixed natural mor-
tality rate or catchability) or model structure (e.g., age- aggregated 
or age- structured), and retrospective biases (i.e., systematic 
changes in model outputs that may arise when additional periods 
of data are added to or removed from a stock assessment) (Brooks 
& Deroba, 2015; Dorn & Zador, 2020; Hurtado- Ferro et al., 2015; 
Legault, 2009; Mohn, 1999; Privitera- Johnson & Punt, 2020a). 
Lastly, estimation uncertainty, such as inaccurate and imprecise esti-
mates from model fitting (Francis & Shotton, 1997), can manifest in 
the data analysis step and undermine the efficacy of fisheries man-
agement. Process, observation, model, and estimation uncertainties 
are collectively called scientific uncertainty (Privitera- Johnson & 
Punt, 2020b).

Recognition of uncertainties throughout the fisheries man-
agement process led to the widespread adoption of a precau-
tionary approach to fisheries management in the 1990s (Hilborn 
et al., 2001). Precautionary fishery management requires an un-
derstanding of the magnitude of scientific uncertainty in estimates 
of stock status, biological reference points, and harvest levels that 
will achieve management goals (Dettloff, 2020; Hilborn et al., 2001; 
Ralston et al., 2011). Application of the precautionary approach is 
perhaps most formalized in the US federal fishery management 
system where it follows a multistep process. First, the overfishing 
limit (OFL), the best estimate of the maximum amount of a stock 
that can be caught without resulting in overfishing, is estimated 
in a stock assessment (Shertzer et al., 2010). Next, an acceptable 
biological catch (ABC) is set at or below the OFL to account for 
scientific uncertainty (Prager & Shertzer, 2010). One approach 
used by a number of US Regional Fishery Management Councils 
(“Councils” hereafter) for setting the ABC is the p* (pronounced 
“p- star”) method developed by Shertzer et al. (2008). Under this 
approach, a distribution of the OFL is assumed to be centred on 
the assessment's OFL point estimate with an assumed level of vari-
ation to account for scientific uncertainty. In some regions of the 
US, the OFL is assumed to follow a lognormal distribution with a 
coefficient of variation (CV) that is specified by scientific advisory 
committees which review the stock assessments and provide an 
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128  |    BI et al.

ABC recommendation to managers (MAFMC, 2011; PFMC, 2010). 
The target probability of overfishing (p*), is then selected by fish-
eries managers (Shertzer et al., 2008) and the resulting ABC is cal-
culated. For example, with a p* = .4, the 40th percentile of the 
OFL distribution, corresponding with a 40% chance of overfishing, 
is selected as the ABC. Regulations promulgated for implement-
ing National Standard 1 of the US Magnuson- Stevens Fishery 
Conservation and Management Act mandate that p* must never 
exceed .5 (Federal Register, 2009, 2016). Finally, the annual catch 
limit (ACL) is set equal to or lower than the ABC to account for 
conservation objectives, socioeconomic concerns, management 
goals and implementation uncertainty (the uncertainty associated 
with achieving a certain target catch). Because uncertainty in the 
ABC setting step propagates through to final harvest rules and 
implementation, quantifying scientific uncertainly is important to 
develop appropriate management limits, and to properly specify 
the risk of overfishing.

Beyond setting the ABC, there are other reasons for trying 
to quantify and understand uncertainty and bias in stock assess-
ment estimates. Large changes in estimates between assessments 
can lead to a lack of trust in the scientific process amongst stake-
holders and reduced catch levels. For example, Wiedenmann 
and Jensen (2018) found that for many species of groundfish in 
New England, although the fishery typically stayed within annual 
catch limits, overestimation of abundance led to continued over-
fishing. Changes to the overfished status could invoke rebuilding 
plans which typically require large reductions in fishing mortality 
to enable the population to recover. Large changes in assessment 
estimates could also result in a high- level bias in stock status in-
dicators (i.e., is the stock overfished or experiencing overfishing?) 
and negatively impact effectiveness of fish stock rebuilding plans 
(Parma et al., 2013). For example, some overfished stocks were 
previously misclassified as not overfished, and the inverse may 
also have occurred, a consequence of uncertainties in estimating 
fish stock biomass or fishing mortality (Parma et al., 2013). Besides 
the catch limits, reference points to safeguard against low bio-
mass or high fishing mortality in the face of high uncertainty have 
been recommended and implemented in precautionary fishery 
management (Da- Rocha et al., 2016; Mildenberger et al., 2022). 
Understanding uncertainty in assessment outputs can also improve 
the performance of Management Strategy Evaluation (MSE) which 
often attempt to mimic realistic levels of scientific uncertainty in 
order to evaluate the performance of different harvest strategies 
(Mildenberger et al., 2022; Punt et al., 2016).

There are several ways to quantify scientific uncertainty in 
stock assessments. One way is to calculate uncertainty estimates 
such as standard errors and confidence/credible intervals from 
stock assessment models. But such methods would underestimate 
the true uncertainty as they are conditional on the assumption that 
the underlying model is an accurate and complete representation 
of the system (i.e., population; Brodziak & Walsh, 2013; Stewart & 
Hicks, 2018). Another approach uses simulation methods, in which 

the dynamics of a population are simulated, observations (with 
error) are extracted, and assessment models are fit to these ob-
servations (Conn et al., 2010; Magnusson & Hilborn, 2007; Yin & 
Sampson, 2004). However, the extent to which uncertainty esti-
mates derived from simulation studies represent the uncertainty 
to be expected in real assessments depends on the extent to which 
the simulation model represents the dynamics of the real popu-
lation. A third approach is to compare outputs between different 
assessments of the same stock (Ralston et al., 2011; Wiedenmann 
& Jensen, 2018; Privitera- Johnson & Punt, 2020b; Silvar- Viladomiu 
et al., 2021). The variation in historical estimates among multiple 
stock assessments for the same stock can be used to evaluate 
bias and uncertainty in assessment outputs. For example, Ralston 
et al. (2011) quantified the variation in historical time series of 
spawning biomass estimates among multiple assessments of the 
same stock based on US West Coast groundfish and coastal pelagic 
species stocks using this approach. Although estimating scientific 
uncertainty in stock assessment outputs will always be hindered by 
the fundamental fact that the true values of these outputs can never 
be known for real fish populations, this latter approach improves on 
previous methods and is a useful way to quantify precision, but not 
accuracy, among stock assessments in model estimates.

In this study, we expanded on previous studies quantifying inter- 
assessment variation, analysed multiple commercially exploited ma-
rine fish and invertebrate stocks around the world and quantified 
inter- assessment variations in biomass and fishing mortality esti-
mates, reference point estimates, relative biomass and fishing mor-
tality estimates, as well as catch limits. In doing so, we provide a basis 
for determining the minimum buffer limit for scientific uncertainty in 
fisheries management.

2  |  METHODS

2.1  |  Stock selection

We made use of the RAM Legacy Stock Assessment Database 
(RAMLDB, v4.491, https://www.ramle gacy.org/), an open- access 
compilation of data- rich stock assessment output for commercially 
exploited marine fish and invertebrate populations from around 
the globe (Figure S1 in the Appendix S1; Ricard et al., 2012). Data 
retrieved from the assessments included time series of catch and 
model- estimated biomass and fishing mortality rates as well as refer-
ence points such as maximum sustainable yield (MSY), the expected 
equilibrium biomass 

(
BMSY

)
 for a stock harvested at MSY, and the 

fishing mortality rate that results in BMSY and MSY at equilibrium (
FMSY

)
. For many stocks, the RAMLDB contains model estimates 

from multiple, sequential assessments. We chose stocks with more 
than one assessment in the database for our analysis (Table S1 in 
the Appendix S1) and augmented the data available in the RAMLDB 
through the addition of data from 34 assessments for 14 stocks 
that were taken directly from stock assessment documents. A total 
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    |  129BI et al.

of 838 assessments of 277 stocks were included in our analysis 
(Figure 1, Table S1 in the Appendix S1).

2.2  |  Assessment output comparison

For each stock, we conducted pairwise comparisons among model 
estimates from all available assessments, ranging from 2 to 8 assess-
ments for a given stock. For each comparison, we determined the 
target year (ty) as the final (terminal) year in older assessments and 
obtained biomass and fishing mortality estimates in the target year 
(Bty and Fty) from all available assessments. The total number of pair-
wise comparisons was 1 for a stock with 2 assessments, and 3, 6, 10, 
15, 21 or 28 for a stock with 3, 4, 5, 6, 7, or 8, respectively. For ex-
ample, Argentine anchoita (Engraulis anchoita, Engraulidae) in South 
America has three assessments with terminal years of 2007 (A1), 
2015 (A2), and 2016 (A3). We conducted pairwise comparisons be-
tween model estimates in 2007 from A1 and A2, between estimates 
in 2007 from A1 and A3, and between estimates in 2015 from A2 
and A3. We chose to focus on terminal year estimates as these are 
the most relevant to management decision- making. Pairwise model 
estimates among assessments for the same stock were fitted with 
linear regressions to detect if the slopes were different from 1 or the 
intercepts were different from 0, to assess patterns of the variations 
and evaluate the presence of systematic bias.

We also compared reference points at MSY (BMSY and FMSY) or 
their proxies; some were provided in the RAMLDB, and others were 
found in the assessment documents, relative biomass and fishing 
mortality rate in the target year (Bty ∕BMSY and Fty ∕FMSY), and the 
OFL in the target year (OFLty) from all available assessments for each 
stock. The OFLty was a function of Bty and FMSY:

The biomasses used in the OFL calculation were sometimes de-
fined differently for different stocks (e.g., spawning stock biomass 
or total biomass), but were consistent across assessments for the 

same stock. Thus, the OFL calculated for this analysis was not always 
equal an OFL calculated for use in management.

We gathered information for each stock on its region, manage-
ment council (for federally managed US stocks), assessment model 
structure (e.g., age- aggregated or age- structured), model assump-
tion (e.g., fixed or time- varying parameters like catchability), data 
input (e.g., changed time- series catch data, changed time- period of 
data input), and natural mortality (M) for all available assessments. 
For assessments without information on assessment model, data 
input, or M in the RAMLDB, we obtained the information from the 
corresponding stock assessment documents.

We also evaluated inter- assessment consistency in threshold- 
based categorization of stock status: Fty ∕FMSY> 1 indicated that the 
stock was experiencing overfishing, Bty ∕BMSY < 0.5 indicated that 
the stock was overfished. This is a definition typically used in the 
US and several other countries (Hilborn et al., 2020). For overfished 
status, we defined a binary outcome (OB

ty
) that = 0 if Bty ∕BMSY from 

the newer assessment ≥0.5, and =1 if Bty ∕BMSY from the newer as-
sessment <0.5 (indicating overfished). For overfishing status, we 
defined a binary outcome (OF

ty
) that = 0 if Fty ∕FMSY from the newer 

assessment ≤1, =1 if Fty ∕FMSY from the newer assessment >1 (indi-
cating overfishing). Pairwise comparisons among assessments were 
conducted for each stock. Logistic regression curves were fitted to 
Bty ∕BMSY from the older assessment and OB

ty
, and Fty ∕FMSY from the 

older assessment and OF
ty

, separately, using the glm function in R.

2.3  |  Model framework

We assumed that the Bty, Fty, BMSY, FMSY, Bty ∕BMSY, Fty ∕FMSY, and OFLty 
estimates from all available assessments for each stock followed log-
normal distributions. We chose this distribution because the distri-
bution of estimated biomass, fishing mortality and other quantities 
in assessment models are bounded by zero and often exhibit a long 
right tail, and the lognormal distribution had been widely adopted 
for the OFL estimate (MAFMC, 2011; PFMC, 2010). The lognormal 
distribution was characterized by a mean and a CV. In the follow-
ing section, we present different scenarios based on the hierarchi-
cal structures of the CV. We first developed a model with globally 

OFLty =

⎧
⎪⎨⎪⎩

FMSYBty, whenFMSYisadiscrete rate

FMSY

FMSY+M
Bty

�
1−e−M−FMSY

�
, whenFMSYis an instantaneous rate

F I G U R E  1  A map of stocks 
incorporated in this analysis. Each stock 
is assigned to a large marine ecosystem 
(LME), which encompass the continental 
shelves of the world's oceans and 
represent the most productive areas 
of the oceans. Large highly migratory 
oceanic species, such as tuna, are assigned 
to high seas areas (represented by 
ovals) that are not included in the LME 
classification. Map is built based on LME 
classification by Ricard et al. (2012) and 
using QGIS3.10.
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constant CV, which assumed that the lognormal distributions for all 
stocks have the same CV, against which different scenarios of varied 
CV were compared. And then we developed models with CVs vary-
ing across regions and time periods between assessments. Symbols 
used in model equations are defined in Table 1. Model equations are 
displayed in Table 2.

2.3.1  |  Common coefficient of variation

In the constant CV scenario (termed M1), the log- transformed esti-
mates in year ty from the two assessments under the jth comparison 
for stock i  (Yi,j,ty) were modelled as normally distributed with a mean 
�i,ty and a globally constant variance parameter �2

g
 (Equation 1.1). The 

CVg of log- normal distribution was derived from �2
g
 (Equation 1.2). 

For BMSY or FMSY, there was no subscript about year (ty), so �i would 
be the same for a certain stock.

2.3.2  |  Varied coefficient of variation across regions

Next, because CV might differ across regions, instead of independent 
uniform priors, we modelled a second scenario (termed M2) where 
log- transformed Yi,j,ty were modelled as normally distributed with a 
mean �i,ty and a region (r)- specific variance parameter �2

r
 (Equation 

2.1). The region- specific CVr was derived from �2
r
 (Equation 2.2). 

The logarithms of CVr were modelled as normally distributed with a 
global mean log

(
CVg

)
 and a common variance parameter �r (Equation 

2.3). For US stocks, region was further classified to management 
council.

2.3.3  |  Varied coefficient of variation across 
regions and time periods

In the third scenario, we not only included the variations on CV 
across regions, but also considered the impacts of the time elapsed 
between two assessments on the magnitude of CV estimates. When 
the time period between the terminal years of the two assessments 
was larger, it was hypothesized to have a greater CV estimate (Van 
Beveren et al., 2021). We defined different CVs (i.e., CVlong and 
CVshort) based on the time period (Equation 3.1).

To better understand how to define CVlong and CVshort, especially 
for stocks with more than two assessments, we provide an example 
here. The Argentine anchoita in South America has three assess-
ments with terminal years of 2007 (A1), 2015 (A2), and 2016 (A3). 
We conducted pairwise comparisons and assumed that model es-
timates in 2007 from A1 and A2 followed a lognormal distribution 
with a mean of �2007 and a CVlong, estimates in 2007 from A1 and A3 
followed a lognormal distribution with a mean of �2007 and a CVlong , 
and estimates in 2015 from A2 and A3 followed a lognormal distri-
bution with a mean of �2015 and a CVshort.

Symbol Description

Indicator variables

i Stock

j Comparison for a stock

ty Target year

r Region

tp Time periods (long = more than 5 years, short = less than or equal to 
5 years)

Observed data

Yi,j,ty One of the 7 model estimates in target year ty (i.e., Bty, BMSY, Bty ∕BMSY, 
Fty, FMSY, Fty ∕FMSY and OFLty) from the two assessments in the jth 
comparison for stock i

Estimated parameters

�i,ty Mean of log- transformed model estimates in year ty for stock i

�g Globally constant standard deviation of log- transformed model estimates

CVg Globally constant CV of model estimates

�r Region- specific standard deviation of log- transformed model estimates

CVr Region- specific CV of model estimates

�r Variance of log- transformed CVr deviation

�r,tp Region and time period- specific standard deviation of log- transformed 
model estimates

CVr,tp Region and time period- specific CV of model estimates

�tp Variance of log- transformed CVr,tp deviation

� Difference between CVlong and CVshort in M3- b

TA B L E  1  Symbols used in model 
equations
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    |  131BI et al.

The log- transformed Yi,j,ty were modelled as normally distrib-
uted with a mean �i,ty and a region (r) and time period (tp)- specific 
variance parameter �2

r,tp
 (Equation 3.2). The region and time period- 

specific CVr,tp was derived from �2
r,tp

 (Equation 3.3). We developed 
two models to estimate CV in this scenario. In the first model 
(termed M3- a), the CV parameter was indexed by both region (r) 
and time period (tp). Region- specific CV (CVr) were modelled as log- 
normally distributed with a global mean CVg and a common vari-
ance parameter �r (Equation 3.4). Time period variations in CV were 
nested in regions, and region and time period- specific CV (CVr,tp) 
were modelled as log- normally distributed with a region- specific 
CVr and a common variance parameter �tp (Equation 3.5). In the 
second model (termed M3- b), region- specific CVshort (CVr,short) were 
modelled as log- normally distributed with a global mean CVg and a 
common variance parameter �r (Equation 3.6), and the difference 
between CVlong and CVshort was assumed to be a positive constant (�
; Equation 3.7). In this way, we decreased the number of parameters 
in the model.

2.4  |  Model fitting and comparison

We used Bayesian estimation methods because of their conveni-
ence for specifying hierarchical models. The Bayesian models in-
corporated prior probability distributions, modelled dynamics and 
structured the likelihood and finally used posterior distributions to 
quantify uncertainty. Uniform prior probability distributions were 
adopted (for details, please see Table S2 in the Appendix S1).

To simulate Markov Chain Monte Carlo (MCMC) samples from 
the posterior, we used JAGS 4.0 (Plummer, 2003) with the R packages 
rjags (Plummer, 2016) and runjags (Denwood, 2016) implemented in 
R (R Core Team, 2019). For each model, five chains with different 
initial conditions were simulated, and the convergence of different 

chains was checked by Gelman- Rubin convergence diagnostics 
(Gelman & Rubin, 1992) and trace plots (Giudici & Castelo, 2003).

We compared model performance using the deviance informa-
tion criterion (DIC; Spiegelhalter et al., 2002), Watanabe- Akaike 
information criterion (WAIC; Watanabe, 2010), and leave- one- out 
cross- validation (LOO; Vehtari et al., 2017).

The DIC is defined as:

where D is the posterior mean of the deviance of the model, and pD is 
the effective number of parameters in the model.

The WAIC is defined as:

where LPPD is the log posterior predictive density.
The LOO is defined as:

where y−i denotes the observations y with the ith component removed. 
It expresses the posterior probability of observing the value of yi when 
the model is fitted to all data except yi.

The WAIC and LOO were computed with R package loo (Vehtari 
et al., 2016). The WAIC is known to be more stable than DIC because 
it is fully Bayesian and uses the entire posterior distribution (Vehtari 
et al., 2017). The LOO was computed using Pareto smoothed im-
portance sampling that provides a more accurate and reliable esti-
mate by applying a smoothing procedure to the importance weights 
(Vehtari et al., 2017; Vehtari & Gelman, 2015). A smaller value of 
DIC, WAIC, or LOO indicates a better model performance. If all 

DIC = D + PD

WAIC = − 2∗
(
LPPD − PD

)

LOO =

n∑
i=1

logp
(
yi |y−i

)

TA B L E  2  Model equations

Model Description Equation Eq.

M1 Common coefficient of variation log
(
Yi,j,ty

)
∼N

(
�i,ty, �

2
g

)
1.1

�2
g
= log

(
CV

2

g
+ 1

)
1.2

M2 Varied coefficient of variation across regions log
(
Yi,j,ty

)
∼N

(
�i,ty, �

2
r

)
2.1

�2
r
= log

(
CV

2

r
+ 1

)
2.2

log
(
CVr

)
∼N

(
log

(
CVg

)
, �r

)
2.3

M3 Varied coefficient of variation across regions and 
time periods CVtp =

{
CVlong, if time period>5

CVshort, if time period≤5

3.1

log
(
Yi,j,ty

)
∼N

(
�i,ty�

2
r,tp

)
3.2

�
2
r,tp

= log
(
CV

2

r,tp
+ 1

)
3.3

M3- a log
(
CVr

)
∼N

(
log

(
CVg

)
, �r

)
3.4

log
(
CVr,tp

)
∼N

(
log

(
CVr

)
, �tp

)
3.5

M3- b log
(
CVr,short

)
∼N

(
log

(
CVg

)
, �r

)
3.6

CVr,long = CVr,short + � 3.7
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132  |    BI et al.

three criteria showed the same preference for a model, we had more 
evidence that the preference was correct. If they showed different 
preferences, we picked the best model based on WAIC and LOO.

3  |  RESULTS

3.1  |  Inter- assessment variations and potential 
causes

Pairwise comparisons on log- transformed model estimates (i.e., Bty, 
Fty, BMSY, FMSY, Bty ∕BMSY, Fty ∕FMSY, and OFLty) among assessments for 
the same stock were displayed in Figure 2. Fitted linear regressions 
were, in general, visually similar to the one- to- one line. However, 
except for OFLty, the slopes of the regression lines were signifi-
cantly lower than 1 with the 95% credible intervals (CIs) below 1. 
The intercepts of fitted linear regressions for Bty and BMSY were sig-
nificantly greater than 0 with the 95% CIs above 0; the intercepts 
of fitted linear regressions for Bty ∕BMSY, Fty, and FMSY were signifi-
cantly lower than 0 with the 95% CIs below 0; the intercepts of fit-
ted linear regressions for Fty ∕FMSY and OFLty were not significantly 
different from 0 because the 95% CIs overlapped 0. Although fish-
ing mortality- related estimates (i.e., Fty, FMSY, and Fty ∕FMSY) appeared 
unbiased overall, there was some tendency for unusually low values 
from the older assessment to be adjusted upward in the more recent 
assessment and high values to be adjusted downward. Some visu-
ally obvious outliers were observed in biomass- related estimates, 
especially, Bty ∕BMSY. Many of these variations or biases were asso-
ciated with changes in the underlying assessment model structure, 
assumed values of natural mortality, definitions of reference points, 
and input data.

Changes in the input data were sometimes implicated in 
larger changes in model estimates. For example, for bight redfish 
(Centroberyx gerrardi, Berycidae) in Southeast Australia, a 27% de-
crease in log

(
BMSY

)
 was associated with a marked increase in the 

number of data sources included in the assessment (Figure 2, point 
1; Haddon, 2016).

Changes in the underlying model structure were associated with 
some of the largest inter- assessment differences (e.g., Figure 2, 
points 2 and 3; ICES, 2013a, 2015a; SEDAR, 2017). For example, 
for Atlantic herring (Clupea harengus, Clupeidae) in the International 
Council of the Exploration of the Sea (ICES) 5a- 7bc region, a 47% 
increase in log

(
Fty

)
 was associated with a change in assessment 

method from a trends- based exploratory assessment to an age- 
based analytical assessment in 2015 (Figure 2, point 2).

Changes in the assumed value of natural mortality also led 
to changes in model estimates, especially F- related estimates. 
For example, for Alaska plaice (Pleuronectes quadrituberculatus, 
Pleuronectidae) in the Bering Sea and Aleutian Islands, the natural 
mortality rate assumed in the assessment decreased from 0.25 y−1 in 
the 2009 assessment to 0.13 y−1 in later assessments and led to large 
changes in FMSY, Fty ∕FMSY, and OFLty (Figure 2, point 4; Wilderbuer 
et al., 2010).

Changes in definitions of reference points led to changes in BMSY , 
FMSY, and related model estimates (e.g., Figure 2, points 5, 6 and 7; 
Chute et al., 2013; ICES, 2012a, 2012b, 2013b, 2014, 2015b, 2016). 
For example, for the US Atlantic stock of ocean quahog (Arctica 
islandica, Arcticidae), more conservative reference points for the 
biomass threshold, fishing mortality threshold and target fishing 
mortality were implemented in 2009 (Figure 2, point 5).

Changes in inter- assessment model estimates might also be in-
duced by the estimation procedure. For example, for Atlantic cod 
(Gadus morhua, Gadidae) in the Irish Sea, the estimation procedure 
was changed from the state- space to conventional likelihood, and 
new reference points were estimated from the EqSim simulation, 
a stochastic equilibrium software used to explore MSY reference 
points, in the 2017 assessment (Figure 2, point 8; ICES, 2017).

3.2  |  Model comparisons and results

For all models, the Gelman- Rubin statistics for all the posterior sam-
ples were found to be smaller than 1.1, and the trace plots showed 
that the chains mixed well and moved back and forth over the space, 
both suggesting that the convergence of the posteriors was validated. 
The DIC, WAIC, and LOO results for the four models with different 
CV configurations for the seven model estimates are presented in 
Table S3 in the Appendix S1. For Bty, Fty, BMSY, and FMSY, model with 
a varied CV across regions and time periods (M3- a) achieved better 
performance than other models in terms of the smallest WAIC and 
LOO values. For Bty ∕BMSY, Fty ∕FMSY, and OFLty, model with a varied 
CV across regions and time periods but CVlong − CVshort was a posi-
tive constant (M3- b) achieved better performance.

The estimated global mean CVs of Fty and OFLty were greatest, 
followed by Fty ∕FMSY and Bty; the global mean CVs of BMSY, Bty ∕BMSY, 
and FMSY were smaller (Table 3). The region- specific CV of Bty derived 
from model M3- a was greatest for the US Gulf of Mexico Fishery 
Management Council (GMFMC; Figure 3a). The region- specific 
CV of BMSY derived from model M3- a was greatest for the Pacific 
Ocean High Seas (POHS), followed by the US GMFMC (Figure 3a). 
The region- specific CV of Bty ∕BMSY derived from model M3- b was 
greatest for Australia, followed by the US Mid- Atlantic Fishery 
Management Council (MAFMC; Figure 3a). The region- specific CV 
of Fty derived from model M3- a was greatest for the US GMFMC 
(Figure 3b). The region- specific CV of FMSY derived from model 
M3- a was greatest for the US MAFMC and GMFMC (Figure 3b). The 
region- specific CV of Fty ∕FMSY derived from model M3- b was great-
est for the US MAFMC (Figure 3b). The region- specific CV of OFLty 
derived from model M3- b was greatest for the POHS, followed by 
the US MAFMC, and lowest in Europe (Figure 3c).

Regression analyses on the average frequency of assessment up-
dates and estimated CVlong and CVshort in each region suggested that 
CV (i.e., uncertainty) increased with increased assessment update 
intervals, except for CVshort of Bty (Figure 4). That is, a region with 
a less frequent assessment update (greater update interval) would 
have a greater uncertainty.
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    |  133BI et al.

F I G U R E  2  Estimates from more recent assessment against estimates from older assessment. Estimates are on log scale. The red line 
in each panel is the 1:1 line. The blue line in each panel is the fitted linear regression line. The equation is the fitted linear regression with 
posterior means of intercept and slope. The values in the brackets are the 95% credible intervals for intercept and slope. The plot numbers 
correspond to stocks with obvious variations in model estimates from different assessments: (1) Bight redfish in the Southeast Australia; (2) 
Herring in the ICES 5a- 7bc, managed by the International Council of the Exploration of the Sea (ICES); (3) Blueline tilefish in the US South 
Atlantic, managed by the South Atlantic Fishery Management Council (SAFMC); (4) Alaska plaice in the Bering Sea and Aleutian Islands, 
managed by the North Pacific Fishery Management Council (NPFMC); (5) Ocean quahog in the Atlantic Coast, managed by the Mid- Atlantic 
Fishery Management Council (MAFMC); (6) Atlantic cod in the Western Baltic, managed by the ICES; (7) Whiting in the West of Scotland, 
managed by the ICES; (8) Atlantic cod in the Irish Sea, managed by the ICES. Abbreviations for management councils or regions represent 
the following: GMFMC, Gulf of Mexico Fishery Management Council; MAFMC, Mid- Atlantic Fishery Management Council; NEFMC, New 
England Fishery Management Council; NPFMC, North Pacific Fishery Management Council; PFMC, Pacific Fishery Management Council; 
SAFMC, South Atlantic Fishery Management Council; CA, Canada; AOHS, Atlantic Ocean High Seas; IOHS, Indian Ocean High Seas; POHS, 
Pacific Ocean High Seas; MBS, Mediterranean- Black Sea.
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134  |    BI et al.

3.3  |  Inter- assessment uncertainty in stock status

Comparison of stock status (i.e., whether a stock is overfished or 
experiencing overfishing) determined in the recent assessment 
and the Bty ∕BMSY and Fty ∕FMSY estimated in the older assessment 
revealed considerable uncertainty but was centred on the nominal 
values. For example, when Bty ∕BMSY from the older assessment 
equalled 0.5, that is the critical value used in the US to define if a 
stock is overfished, there was a 48% probability (95% CI: 42%– 54%) 
that the stock was overfished based on the more recent assessment 
(Figure 5a). When Bty ∕BMSY from the older assessment equalled 1, 
indicating that the stock was not overfished, there was still a 7% 
probability (95% CI: 5%– 10%) that the stock was overfished based 
on the more recent assessment (Figure 5a). When Fty ∕FMSY from the 
older assessment equalled 1, there was a 49% probability (95% CI: 
45%– 53%) that the stock was experiencing overfishing based on the 
more recent assessment (Figure 5b). When Fty ∕FMSY from the older 
assessment equalled 0.5, indicating the stock was not experiencing 
overfishing, there was still a 15% probability (95% CI: 11%– 18%) that 
the stock was experiencing overfishing based on the more recent 
assessment (Figure 5b).

4  |  DISCUSSION

This study quantifies inter- assessment uncertainty around 
management- relevant model outputs from multiple stock assess-
ments in different regions. Uncertainty differed by assessment es-
timates and regions. The OFLty was a most uncertain model output 
because the variation in OFLty captures both uncertainties in Bty and 

FMSY. The FMSY estimate was the least uncertain assessment output. 
The variations in Bty ∕BMSY and Fty ∕FMSY reflect uncertainties in Bty 
and BMSY, and uncertainties in Fty and FMSY, but variations may be 
counteracted when both Bty and BMSY, or both Fty and FMSY, change 
in the same direction, which potentially explain why the global mean 
CV of Bty ∕BMSY was lower than those of Bty and BMSY (Figure S2 in 
the Appendix S1).

4.1  |  Overall variability in estimates of stock status 
on overfished and overfishing

Stock status determinations from two assessments for each stock 
may be different. The probability for the newer assessment to deter-
mine that the stock is overfished or experiencing overfishing is close 
to 50% when Bty ∕BMSY = 0.5 or Fty ∕FMSY = 1 in the older assessment 
(Figure 5). However, when the older assessment determines that the 
stock is not overfished nor experiencing overfishing, there is still 
a non- zero probability that the newer assessment determines that 
the stock was actually overfished or was experiencing overfishing 
(Figure 5). The variability in estimates of stock status with respect to 
overfished status and overfishing reveals the importance of incorpo-
rating scientific uncertainty in fisheries management.

4.2  |  Implications for fisheries management

Fishery management bodies currently use a variety of different 
approaches to set scientific uncertainty buffers. For example, the 
MAFMC classifies stocks into three uncertainty categories based on 
scoring of a table of stock attributes. These categories correspond 
to assumed CVs of the OFL of 60%, 100%, or 150%. The PFMC used 
Ralston et al. (2011) meta- analysis of historical time- series of spawn-
ing biomass estimates to define a lower bound on the uncertainty 
buffer, but uses uncertainty estimates directly from the stock as-
sessment if they exceed this value. In practice, a minimum CV of 36% 
is used for data- rich stocks (Category 1), and a higher value of 50% 
is used for an extra buffer for staleness. Data- limited and data- poor 
stocks (Categories 2 and 3) are deemed to have increasing levels of 
uncertainty and therefore higher CVs. The US New England Fishery 
Management Council (NEFMC) uses 75% of the FMSY proxy to set 
the ABC, that is ABCt = 0.75 × FMSY × Bt, which corresponds to an 
equivalent OFL CV of approximately 162% with a p* = .4 (Figure S3 
in the Appendix S1). If the stock is in a rebuilding plan, the NEFMC 

TA B L E  3  Global mean CV for each model estimate (results only 
for the selected model). Median values and 95% credible intervals 
(in the brackets) are listed

Estimate Selected model Global mean CV (%)

Bty M3- a 39 (29, 52)

Fty M3- a 46 (36, 59)

BMSY M3- a 31 (21, 49)

FMSY M3- a 23 (14, 38)

Bty ∕BMSY M3- b 25 (18, 35)

Fty ∕FMSY M3- b 43 (29, 64)

OFLty M3- b 45 (31, 69)

F I G U R E  3  CV estimates for the seven assessment estimates. (a) CV estimates for biomass- related assessment estimates (Bty, BMSY

, Bty ∕BMSY) from the best models. (b) CV estimates for fishing mortality- related assessment estimates (Fty, FMSY, Fty ∕FMSY) from the best 
models. (c) CV estimates for OFLty from the best model. Whiskers, boxes, and horizontal middle lines are 95% and 50% interquartile ranges, 
and medians of posterior distributions. Blue and pink boxplot shading correspond to short and long- time period, respectively. Blue and pink 
numbers show the number of stocks with estimates available for each time period group in each region, respectively. Groups in which there 
are zero stocks with the corresponding model estimate are not displayed. Abbreviations for management councils or regions are defined in 
the caption for Figure 2.
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136  |    BI et al.

uses the lesser of 75% FMSY or Frebuild, a fishing mortality rate as-
sociated with a specific rebuilding trajectory. For depleted stocks 
that are projected to increase, the ABC is fixed across years at the 
ABC estimated in the first year of the projection interval. The North 
Pacific Fishery Management Council (NPFMC) once empowered as-
sessment authors to decide the buffer individually based on their 
expert opinion, and now assessment authors create a risk table, 
and the most “risky” score determines the buffer automatically. The 

SAFMC uses a Monte Carlo Bootstrap Ensemble approach to esti-
mate the uncertainty associated with the OFL and the p* distribution 
is set based on assessment information, productivity and suscepti-
bility analysis of the stock, stock status, and uncertainty characteri-
zation. Our analyses of the data- rick stocks in the RAMLDB reveal 
that the OFL CVs calculated from interassessment uncertainty are 
83% and 62% (CVshort) and 92% and 71% (CVlong) for the MAFMC 
and PFMC, respectively. These CVs are greater than the currently 

F I G U R E  4  Regional CV estimates compared to the average time interval between assessment updates in each region. For each model 
estimate, a linear regression is fitted to CVlong and CVshort estimates, separately. Abbreviations for management councils or regions are 
defined in the caption for Figure 2.
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    |  137BI et al.

used minimum CVs in these regions suggesting a possible need to 
reconsider the minimum CV values used to determine the buffer for 
scientific uncertainty in the OFL.

Although we estimated region- specific measures of assessment 
uncertainty, the CVs reported here should be considered a lower 
bound in the context of setting management advice for a given stock 
in a region. There is an additional component of the catch- setting pro-
cess that can lead to scientific uncertainty in achieving management 
objectives. We focused on the terminal estimates from an assessment, 
but projections are typically used to calculate the OFL and ABC for 
a number of years in the future. Projections are generally even more 
uncertain than terminal year estimates (Wiedenmann & Jensen, 2018). 
Uncertainty in the terminal year estimates can have a large impact on 
the accuracy of the projections, but the projections also rely on assump-
tions about stock productivity in the future (e.g., recruitment, growth). 
Deviations in future productivity from what was assumed in the pro-
jection (e.g., poorer than average recruitment) can lead to large differ-
ences in the projected and realized stock size or OFL (Wiedenmann & 
Jensen, 2018). Our analyses were based on data- rich stocks from the 
RAMLDB, and greater uncertainties are expected for data- moderate 
and data- poor stocks (Ralston et al., 2011). Our models assumed that 
the truth was essentially the mean estimate and assessment results 

were random and independent samples from an underlying distribu-
tion. Other options, such as that the last assessment is the best, are 
possible. Models that set the model estimate from the last assessment 
as the mean value of the underlying distribution resulted in similar but 
slightly greater CV estimates (Table S4 in the Appendix S1).

4.3  |  Factors associated with higher variability

Previous studies have shown that there are numerous potential 
causes for variations in stock assessment outputs over time 
(Hurtado- Ferro et al., 2015; Punt et al., 2018; Ralston et al., 2011; 
Silvar- Viladomiu et al., 2021; Wiedenmann & Jensen, 2018). 
Potential factors include, but are not limited to, changes in model 
assumptions or structure (e.g., age- aggregated or age- structured, 
changes in the shape of the selectivity curve, fixed vs. time- varying 
parameters like catchability), changes in data inputs (e.g., revised 
survey data, changed time- series catch data, changed time- period 
of data input), changes in how a stock is defined spatially (which im-
pacts the specific inputs), changes in life history information (e.g., 
natural mortality, length-  and mass- at- age), or changes in how ref-
erence points are defined (Hurtado- Ferro et al., 2015; Magnusson 

F I G U R E  5  Inter- assessment variation in threshold- based categorization of stock status. (a) The probability that a subsequent assessment 
will consider the stock to have been overfished for different values of Bty ∕BMSY. (b) The probability that a subsequent assessment will 
consider the stock to have been experiencing overfishing for different values of Fty ∕FMSY. Pairwise comparisons on stock status among 
assessments are conducted for each stock. For panel a, the x- axis is Bty ∕BMSY from the older assessment in a pairwise comparison, y- axis 
is a binary outcome that equals 0 if Bty ∕BMSY from the newer assessment in the pairwise comparison ≥0.5, equals 1 if Bty ∕BMSY from the 
newer assessment in the pairwise comparison <0.5 (indicating overfished). For panel b, the x- axis is Fty ∕FMSY from the older assessment in a 
pairwise comparison, y- axis is a binary outcome that equals 0 if Fty ∕FMSY from the newer assessment in the pairwise comparison ≤1, equals 
1 if Fty ∕FMSY from the newer assessment in the pairwise comparison >1 (indicating overfishing). To get a better visualization, there are 24 
points at Bty ∕BMSY > 5 that are not shown in the panel a. The red curves are the fitted logistic regression curves, and the grey ribbons are 
the 95% confidence intervals. The blue dashed vertical lines separate the standard breakpoints for overfished and overfishing status (0.5 in 
panel a, and 1 on panel b).
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138  |    BI et al.

& Hilborn, 2007; Punt et al., 2002; Silvar- Viladomiu et al., 2021; 
Wiedenmann & Jensen, 2018). These changes between assessments 
produce variations in assessment outputs and represent multiple 
forms of scientific uncertainty.

A full exploration of each factor and its impact on inter- 
assessment variation in model estimates is beyond the scope of 
this work, but we provide some examples. For herring in the ICES 
5a- 7bc area, the assessment model changed from a trends- based 
exploratory assessment to an age- based analytical assessment, 
resulting in an approximately 75% decrease in Fty from the 2010 
assessment to the 2015 assessment. For ocean quahog in the US 
Atlantic Coast, FMSY was revised from F25% (i.e., the fishing mortality 
rate that reduces lifetime egg production to 25% of its potential) to 
a more conservative reference point (F45%, egg production at 45% 
of potential) in 2009 (Chute et al., 2013), which led to large changes 
in the OFL as well as the reference points. For Alaska plaice in the 
Bering Sea and Aleutian Islands, the natural mortality rate was 
re- estimated and a fixed M = 0.13 y−1 was used for both sexes in 
2010, in comparison with M = 0.25 y−1 in the previous assessments 
(Wilderbuer et al., 2010). Many stocks in Europe also experienced 
changes in reference points. For example, for Atlantic cod in the 
Western Baltic, advised reference points were based on the EU man-
agement plan (EC 1098/2007) in the 2012 and 2013 assessments, 
and changed to be based on the MSY approach in assessments from 
2014 (ICES, 2012a, 2013b, 2014); for Whiting (Merlangius merlan-
gus, Gadidae) in the West of Scotland, the basis of advised reference 
points changed from the precautionary approach in assessments 
from 2012 to 2015 to the MSY approach in assessments of 2016 
and 2017 (ICES, 2012b, 2015b, 2016). A previous study found that 
the reference point definition and the technical basis for estimation 
were the most important reason for reference point changes (Silvar- 
Viladomiu et al., 2021).

High inter- assessment uncertainty can also reflect a culture of 
willingness to revise the assumptions and reanalyse the underly-
ing assessment data within an assessment, or a willingness of man-
agers to adjust the target reference points (see examples above). 
For example, in the US Northeast, South Atlantic, Gulf of Mexico 
and Caribbean regions, assessments for a given stock are grouped 
into two broad categories. In the first category, called management 
track assessments (previously called updates), the existing model 
structure remains the same but the models are updated with more 
recent data. In research track assessments (previously called bench-
mark assessments), a wide range of changes to the model may be 
explored. Although large changes can occur between assessments 
with just updated data (e.g., Wiedenmann & Jensen, 2018), it is more 
likely that the large- scale changes to the model structure which 
may happen during research track assessments will result in greater 
changes in estimates between assessments. We did not character-
ize the degree of changes across assessment in this work, but larger 
changes typically require more time between assessments, and our 
finding that there was greater uncertainty in model estimates for 
longer periods between assessments (Figure 4), possibly reflecting 

the degree of change between successive models. As such, inter- 
assessment CVs cannot be interpreted as an index of assessment 
quality.

Dramatic ecological changes within an ecosystem can also lead 
to greater uncertainty among assessment estimates. For example, 
simulation models have shown that differences between the as-
sumed and the true natural mortality rate can lead to retrospective 
patterns in sequential model estimates (Hurtado- Ferro et al., 2015; 
Mohn, 1999). Changing environmental conditions, such as warming, 
could impact survival, abundance, or productivity of a large number 
of stocks within a region (e.g., Hare et al., 2016; Pershing et al., 2015), 
and such changes could result in disconnects between assessment 
model assumptions and signals in the data used in the model fitting 
(e.g., Wiedenmann & Legault, 2022). Changes in the abundance of 
top generalist predators can also have wide- ranging impacts on the 
survival of many stocks within a region (e.g., Swain & Benoît, 2015). 
Exploration of the roles of these and other environmental factors on 
assessment uncertainty is warranted and should be a focus of future 
work that expands on this analysis.

In summary, we have quantified region- specific uncertainties in 
estimates of biomass, fishing mortality, reference points, and rela-
tive biomass and fishing mortality rate, as well as OFL among as-
sessments for the same stock. This study presents one method of 
comparing uncertainty among assessments and provides a base for 
determining the minimum buffer for scientific uncertainty. Which 
climatic, environmental, ecological, and assessment- related factors 
best predict assessment performance remains unclear, but should be 
a focus of future empirical analyses based on these results.
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