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Abstract: 6 

In US waters of the Atlantic, black sea bass support important commercial and recreational fisheries. The 7 

northern stock ranges from the Gulf of Maine to Cape Hatteras, North Carolina. It is well documented 8 

that ocean conditions are changing in this region of the Atlantic and it is hypothesized that black sea 9 

bass distribution and productivity could be affected by climate change. The current stock assessment 10 

does not account for environmental effects and accounts for spatial dynamics by splitting the stock into 11 

two regions at Hudson canyon: the north and south. Despite this spatial split, the assessment still has 12 

poor retrospective patterns, which could be caused by numerous factors including changing ocean 13 

conditions or spatio-temporal dynamics. Here, we fit a series of spatio-temporal models to 10 seasonal 14 

trawls surveys in the stock region.  Seasonal models were used to produce both aggregated and age-15 

based distribution and abundance estimates. Model selection indicated that for all models, bottom 16 

temperature was an important covariate influencing fish density, and survey influenced catchability. 17 

Model results suggest that black sea bass center of gravity has shifted northeast in the South and that 18 

their range has expanded poleward. Age-based estimates in the spring suggest that all ages have shifted 19 

northeast and in both seasons, age-1 fish have increased their range. Results suggest that relative 20 

abundance has increased in the North and remained stable in the South.  Ultimately, results characterize 21 

changes in spatial distribution and provide indices and age-compositions that are robust to spatio-22 

temporal changes for consideration in stock assessment.  23 
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Introduction: 28 

In United States waters of the northwest Atlantic, fisheries are an important cultural and economic part 29 

of society. Because of this, many governmental agencies, both state and federal, have devoted 30 

resources to conducting annual scientific surveys in the region. A primary purpose of these surveys is to 31 

monitor fish abundance, distribution, and provide inputs to population assessments. An assumption of 32 

using survey estimates in stock assessment is that trends are directly proportional to population 33 

abundance. Thus, ideally surveys are designed to have consistent sampling that are representative of 34 

populations, in space and time, and can be compared across years.  35 

Even the most well designed surveys are often subject to sampling changes over time (e.g., weather, 36 

mechanical issues, changes in survey vessel, Covid -19) that cannot be avoided. Further, many fish have 37 

complicated spatio-temporal dynamics that are linked to the environment, while surveys typically have 38 

limited temporal sampling windows and for smaller surveys, limited spaital footprints. In the northwest 39 

Atlantic, it is well documented that ocean conditions are changing causing spatio-temporal changes in 40 

species distribution and abundance (Nye et al., 2009: Pinksy et al. 2013). Failure to account for these 41 

changes can lead to inaccurate perception of abundance trends and poor understanding of population 42 

dynamics (Wilberg et al. 2010, Link et al 2011).  43 

Spatio-temporal models can estimate changes in population density over time at multiple locations 44 

while accounting for environmental variables and unknown processes. These models are being used 45 

frequently in climate, habitat and stock assessments (Thorson, 2019). Spatio-temporal frameworks are 46 

especially useful for estimating center of gravity because it allows for multiple explanatory covariates to 47 

be explored in the same framework (Perretti and Thorson, 2019). These models can then incorporate 48 

the potential drivers and spatial changes into indices of abundance and composition data for input into 49 

stock assessment (O’Leary et al. 2020). Spatio-temporal models can also be used to integrate multiple 50 

surveys into a single index of abundance (O’Leary et al. 2022).  A joint index can help reconcile noisy or 51 

conflicting indices, account for changes in availability and simplify inputs to stock assessment, allowing 52 

for improved assessment performance (Conn, 2010). Additionally, using the results from spatio-53 

temporal models has been demonstrated to yield more precise/accurate indices of abundance (Shelton 54 

et al. 2014). Fitting assessments to spatio-temporal standardized indices can also lead to less 55 

retrospective bias and outperform assessments with design-based indices (Cao et al. 2017).  56 



Black sea bass are a coastal species that supports important commercial and recreational fisheries. In 57 

the western Atlantic, they are assessed as two separate populations: the northern stock and South 58 

Atlantic stock. The northern stock is further split into two regions: North and South, with the dividing 59 

line being Hudson Canyon. The stock was split into two regions to account for spatial dynamics and 60 

improve model diagnostics (NEFSC 2017).  Since the last major benchmark in 2017, the stock assessment 61 

is fit to 17 indices of abundance, including 14 trawl surveys. Nine of the indices are produced from 62 

inshore trawl surveys and have small spatial footprints, while five of the indices are from the Northeast 63 

Fisheries Science Center bottom trawl survey, which has a large spatial footprint.  64 

Black sea bass make seasonal migrations, moving inshore in the spring and offshore in the fall (Moser 65 

and Shepherd, 2009). Black sea bass distribution has been linked to warming waters on the Northeast 66 

US Shelf (Bell et al. 2016) and it is hypothesized that black sea bass are especially susceptible to climate 67 

change with likely shifts in distribution and productivity due to warming water temperatures (Hare et al., 68 

2015). Current assessments have major retrospective patterns and account for spatial dynamics by 69 

splitting the stock into two assessments. Neither assessment directly accounts for climate effects (NEFSC 70 

2022). Incorporating spatio-temporal dynamics or climate effects could potentially help to improve 71 

retrospective patterns (Cao et al. 2017; Mazur et al. 2023). Thus a major research recommendation for 72 

this species is to better understand how changes in the environment are affecting life history and spatial 73 

dynamics. 74 

Here we fit a series of spatio-temporal models to all available trawl survey data and environmental 75 

covariates for the northern stock of black sea bass. Results provide estimates of distribution shifts, area 76 

occupied and environmental drives. Further, model output produces a series of joint indices and age 77 

composition data that account for these changes and can be directly incorporated into future stock 78 

assessments.  79 

 80 

Methods:  81 

Ten trawl surveys were available (Table 1; Figure 1). All surveys collected information on: catch (kg & 82 

numbers), latitude, longitude, time of tow, bottom temperature and depth of tow. Shelf water volume 83 

anomaly was matched to survey data because previous studies suggested this covariate might influence 84 

over wintering survival (Miller et al. 2016). There was temporal variability in survey sampling so surveys 85 

were grouped into two seasons: Spring (January - June) and fall (July - December). Length information 86 



was available from all surveys; however, ages were not available for all surveys. Ages were available 87 

from the Northeast Fisheries Science Center Survey and Massachusetts Division of Marine Fisheries 88 

Survey. When ages were not available, lengths were converted to ages using seasonal age-length keys 89 

from the available age information. These are the same age-length keys that are used in the stock 90 

assessment.  91 

 92 

Model: 93 

Vector Autoregressive Spatio-temporal (VAST) is a delta-model that models the probability of an 94 

encounter and positive catch rate as two separate generalized linear mixed models. Here we use a 95 

binomial distribution for probability of a positive catch and a log-normal distribution for positive catch.  96 

Probability of a black sea bass observation:  97 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝑃𝑃1,𝑖𝑖� =  𝛽𝛽1(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔1(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜀𝜀1�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖� + �

𝑛𝑛𝑗𝑗

𝑗𝑗=1

𝜆𝜆1(𝑗𝑗, 𝑐𝑐𝑖𝑖)𝑥𝑥(𝑗𝑗, 𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑖𝑖)𝑄𝑄(𝑙𝑙, 𝑘𝑘1) 98 

Black sea bass catch on positive trips:  99 

𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃2,𝑖𝑖� =  𝛽𝛽2(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜀𝜀2�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖� + �

𝑛𝑛𝑗𝑗

𝑗𝑗=1

𝜆𝜆2(𝑗𝑗, 𝑐𝑐𝑖𝑖)𝑥𝑥(𝑗𝑗, 𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑖𝑖)𝑄𝑄(𝑙𝑙, 𝑘𝑘2) 100 

Where P1 is the probability of positive catch, P2 is the probability of the catch given the catch is positive, 101 

𝛽𝛽(𝑙𝑙𝑖𝑖) is the intercept for each year t and age-group c and is modeled as a random walk, 𝜔𝜔(𝑠𝑠𝑖𝑖) is a time-102 

invariant spatial autocorrelated variation for knot s and age-group c,  𝜀𝜀�𝑠𝑠𝑖𝑖,𝑐𝑐𝑖𝑖,𝑙𝑙𝑖𝑖� is a time-varying spatial-103 

temporal autocorrelated variation for knot s and age-group c in year t, 𝜆𝜆(𝑗𝑗, 𝑐𝑐𝑖𝑖) is the effect of covariate j 104 

on length group c , nj is the number of covariates and 𝑥𝑥(𝑗𝑗, 𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑖𝑖) is the value of covariate j in knot s in 105 

year t, 𝑄𝑄(𝑙𝑙, 𝑘𝑘) is the fixed effect estimates for catchability, and the integer subscripts denote the model 106 

component (1: presence/absence, 2: non-zero density) for observation i.  107 

The spatial processes (𝜔𝜔1(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) ;  𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖)) were modeled as Gaussian Markov random fields with 108 

correlation over two spatial dimensions. 109 

𝑣𝑣𝑣𝑣𝑐𝑐�𝛺𝛺𝑝𝑝�~𝐺𝐺𝐺𝐺𝐺𝐺(0,𝐺𝐺𝑝𝑝⨂𝑉𝑉𝑤𝑤𝑝𝑝) 110 



Where 𝛺𝛺𝑝𝑝is a matrix composed of 𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) at every knot s and length bin c, 𝐺𝐺𝑝𝑝 is correlation between 111 

knots, and 𝑉𝑉𝑤𝑤𝑝𝑝 is correlation between length bins. 112 

𝑉𝑉𝑤𝑤𝑝𝑝 = 𝐿𝐿𝑤𝑤𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑇𝑇  113 

Where 𝐿𝐿𝑤𝑤𝑝𝑝 is a matrix representing covariance among age bins. The spatial covariance between knots s 114 

and s* was modeled as a Matern process. 115 

𝐺𝐺𝑝𝑝(𝑠𝑠, 𝑠𝑠∗) =  
1

2𝑣𝑣−1𝛵𝛵(𝑣𝑣) (𝐾𝐾𝑝𝑝𝐻𝐻| 𝑠𝑠 − 𝑠𝑠∗|)𝑣𝑣𝐾𝐾𝑣𝑣(𝐾𝐾𝑝𝑝𝐻𝐻| 𝑠𝑠 − 𝑠𝑠∗|) 116 

 117 

Where v is a smoothness parameter that is fixed at 1, 𝐾𝐾𝑝𝑝 controls the distance correlation and reduces 118 

to zero, 𝐾𝐾𝑣𝑣 is a Bessel function and H is a two dimensional anisotropic distance function. The spatio-119 

temporal processes (𝜀𝜀1,2�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖�) were fit independently for each year, and were modeled with 120 

Gaussian Markov random fields assuming a Matern covariance.  121 

In addition to catchability covariate effects, estimated values of the fixed and random effects predicted 122 

local density (d(s, t)) for knot s and length-group c in year t.  123 

𝑑𝑑(𝑠𝑠, 𝑙𝑙) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1  �𝛽𝛽1(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔1(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜀𝜀1�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖�� ×  𝑣𝑣𝑥𝑥𝑒𝑒 �𝛽𝛽2(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜀𝜀2�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖�� 124 

 125 

The index of abundance (B(t)) is calculated as the sum of the density of each knot using an area 126 
weighted approach: 127 

𝐵𝐵(𝑙𝑙) = �
𝑛𝑛𝑠𝑠

𝑠𝑠 =1

(𝑎𝑎(𝑠𝑠) × 𝑑𝑑(𝑠𝑠, 𝑙𝑙)) 128 

Where B(t) is the area weighted density for each knot in year t throughout the specific domain and a(s) 129 

is the area of knot s. A mesh approach (200 knots) which allows for anisotropy was used to fit the 130 

model. Parameter estimation used Template Model Builder (Kristensen et al. 2016) and the R program 131 

(R Core Team 2020). Model convergence was examined by ensuring the maximum gradient of the 132 

likelihood estimation was less than 0.0001 for all parameters and the Hessian matrix was positive 133 

definite. 134 

Model configuration: 135 



In total, four different models were built: 1) spring annual index; 2) spring age-composition; 3) fall 136 

annual index; 4) fall age-composition. For each model we explored: bottom water temperature, depth 137 

and shelf water volume as modulates of density or catchability. Survey was also explored as a modulate 138 

of catchability.  Collinearity of covariates was examined using generalized variance-inflation factor (GVIF) 139 

scores. Any covariate with a score greater than three was removed, and the GVIFs were recalculated 140 

(Zuur, et al. 2012). Akaike Information Criterion (AIC) scores were used to determine the best-fitting 141 

model. If AIC scores were within two units of one another, the most parsimonious model was selected 142 

(Burnham and Anderson, 2004).  143 

Results:  144 

For both the spring and fall, AIC supported including survey as a covariate on catchability and bottom 145 

water temperature as a modulate of density (Table 2).  The age models also included an interaction of 146 

survey/age to account for age-specific catchability between the surveys. 147 

In general, VAST estimates suggest that black sea bass are more abundant inshore in the fall and more 148 

abundant offshore in the spring (Figure 3 & 4). For both seasons, the total proportion of black sea bass 149 

caught in the northern region has increased over the time series (Figure 5). The stock-wide center of 150 

gravity has shifted northeastward (Figure 6). 151 

For both seasons, the center of gravity of black sea bass has generally shifted north in the southern 152 

region, while the spatial distribution in the northern region has remained relatively stable (Figure 7 - 8). 153 

In contrast, effective area occupied has increased in the northern region in both the fall and spring, 154 

while effective area occupied estimates in the south have been variable with no clear trend (Figure 9).  155 

Coast-wide age-based estimates suggest that the center of gravity for all ages in the spring has shifted to 156 

the northeast (Figure 10). In the fall, coast-wide age estimates show some signs of northeast changes in 157 

center of gravity of ages 3-5; however, there is no clear trend (Figure 11). Stock-wide age-based 158 

effective area estimates suggest that age-1 fish are using a greater area in both the spring and fall over 159 

the course of the time series (Figure 12). 160 

Annual index estimates from VAST suggest that abundance in the north has increased in the spring and 161 

fall, while abundance has remained relatively stable in the south (Figure 13). In the spring, stock-wide 162 

age-based abundance estimates suggest an increase of age-2 and older fish (Figure 14). In the fall, stock-163 

wide age-based abundance estimates show variability for all ages with no clear trend (Figure 15). In the 164 



spring, age compositions in each region indicate an expansion in the age structure beginning in 165 

approximately 2005.  Additionally, spring proportions-at-age in the north show the progression of 166 

multiple cohorts through the population, including the 2011 and 2015 year classes.  In the south, the 167 

progression of the 2011 year class is also evident in the spring age compositions, but it is not as 168 

pronounced as in the north.  In the fall, age compositions in the north show a similar expansion in age 169 

structure and progression of the 2011 cohort as in the spring; however, age compositions in the south 170 

are dominated by age-2 fish and do not vary notably over the time series (Figure 16). 171 

Discussion:  172 

For the northern black sea bass stock, spatio-temporal models suggest a range expansion to the north, 173 

while fish in the south (between Hudson Canyon and Cape Hatteras) are using the same area but with a 174 

northeastward shift in their center of gravity. These results support previous studies that have 175 

hypothesized and demonstrated poleward shifts in black sea bass distribution (Hare et al. 2015; Bell et al 176 

2016). It is also expected that these poleward shifts could continue into the future due to projected 177 

increases in warming and biological demands (Slesinger et al. 2019).  178 

Another previous hypothesis about black sea bass is that their productivity in waters north of Hudson 179 

Canyon could be increasing due to increased water temperature and improved overwintering survival 180 

(Hare et al. 2015; Miller et al. 2016). Results from this study show that age-1 fish in the spring have 181 

shifted northeast and are occupying a greater area. Age-1 abundance has increased in the spring but has 182 

remained relatively stable since 2000, while age-1 abundance in the fall has been stable throughout the 183 

time series. Thus, the results from the spatio-temporal models suggest that changes in spatial 184 

distribution are occurring at a faster rate than changes in productivity. However, it is important to note 185 

that the surveys used in this study were not specifically designed to capture age-1 black sea bass. 186 

Additionally, productivity is one of the most difficult metrics to measure in fisheries science (Maunder 187 

and Thorson, 2019).  188 

Aggregated black sea bass abundance estimates show increases in the northern region and stable trends 189 

in the south. Increasing abundance is not surprising given that black sea bass have a preference for 190 

warmer water and their range appears to have expanded in the north. Additionally, higher abundance 191 

could be the result of increased overwintering survival in the north due to warmer water temperatures 192 

(Miller et al 2016). Increasing abundance is also supported by the last black sea bass stock assessment, 193 

which estimated large increases in biomass (NEFSC 2022). Black sea bass abundance could continue to 194 



increase in the future. Offshore wind development is rapidly occurring in the northeast US continental 195 

shelf with multiple lease areas. These wind farms will increase the amount of structured habitat in the 196 

region, which is the preferred habitat for black sea bass (Friedland et al. 2021).  197 

The spatio-temporal models used in this study have several assumptions and limitations. VAST is an 198 

area-weighted model, thus, it gives weight to surveys that sample a larger area. In this study, that is the 199 

spring and fall NEFSC surveys. Thus, the combined index produced by VAST is pre-weighted (by area) to 200 

give more leverage to the offshore surveys. Another assumption of this approach is that the trawl 201 

surveys all have similar catchabilities. The model does account for differences between the surveys 202 

(using a factor); however, this is a relatively simple adjustment that does not directly account for specific 203 

differences (e.g., tow time or net width). Additionally, not all of the surveys have the same temporal 204 

coverage but they are grouped into spring and fall (Table 1). The inclusion of water temperature, which 205 

is correlated with time of year, should help to account for these differences in the model. 206 

Another limitation of this study was that some environmental covariates that have been shown to affect 207 

black sea bass could not be included in the model. For example, black sea bass abundance has been 208 

linked to salinity (Miller et al. 2016). We weren’t able to explore salinity in the spatio-temporal models 209 

because this covariate was not collected by every survey.  However, even if other important explanatory 210 

covariates were not included, it is likely that they are correlated with the covariates that were explored. 211 

Additionally, the random effects of the model can absorb variation that was not attributed to 212 

explanatory variables (Perretti and Thorson, 2019). Despite this, further work should consider exploring 213 

additional covariates and their effect on black sea bass abundance and distribution.  214 

Despite the limitations, the study also has several advantages. The combined spatial footprints of the 215 

different surveys allows for trends representative of the entire stock, while previous studies only 216 

focused on offshore waters (Bell et al. 2016; Miller et al. 2016) . The results of the VAST models provide 217 

direct inputs for the assessment of the northern stock of black sea bass that can account for changing 218 

spatio-temporal dynamics and environmental effects. Another strength is this framework uses a 219 

consistent model platform to standardize both the annual index of abundance and composition data. 220 

Previous standardizations of inshore surveys only standardized the index of abundance and not the age 221 

compositions. Thus, the annual index is corrected for variables influencing catchability, but the age 222 

compositions are not.  Further, previous standardization models included environmental effects as 223 

modulates of catchability. Thus, the annual index is de-trended for these variables. However, if these 224 

environmental covariates affect density and not catchability, the standardization could be de-trending 225 



the abundance estimates. The model platform used in this study allowed environmental covariates to 226 

influence density estimates and suggests bottom temperature influences black sea bass distribution and 227 

abundance.   228 

Another strength of this approach is that this model can be updated for future use. It is clear that ocean 229 

conditions are variable and black sea bass distribution and abundance are changing. This framework can 230 

be updated with additional data and environmental covariates to quantify and account for these 231 

changes in the assessment. Further, with the inclusion of wind farms in the northeast, it is likely that 232 

surveys will have to change their sampling protocols and spatial footprints. The VAST models used in this 233 

study can be used to make predictions in areas that can no longer be sampled.  234 

The spatio-temporal models presented here integrated 10 different trawl surveys to estimate seasonal 235 

changes in the distribution and abundance of the northern black sea bass stock. Results suggest that 236 

black sea bass distribution and abundance are driven by bottom water temperature. The distribution of 237 

black sea bass is shifting northeast and their range is expanding poleward. Relative abundance has 238 

increased in the northern region (north of Hudson Canyon), while remaining relatively stable in the 239 

southern region (Hudson Canyon to Cape Hatteras). Age-based estimates suggest shifts in center of 240 

gravity and area occupied for all ages in the spring. The indices and age compositions created from the 241 

spatio-temporal models account for these shifts and provide time series that can be directly 242 

incorporated into the black sea bass stock assessment.  243 

  244 
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Table 1: Summary of trawl surveys that catch black seabass in the mid-Atlantic.  299 

 300 

 301 

  302 

Survey Years Months region Ages 
Northeast Fisheries Science Center 
(NEFSC) 

1989 – 2022 
 

1-12 North and South Yes 

Northeast Assessment and Monitoring 
survey (NEAMAP)  

2007 – 2022 
 

4-6; 9_12 North and South  

Massachusetts Division of Marine 
Fisheries (MADMF) 

1989 – 2022 
 

4-6; 9,10 North Yes 

Rhode Island Division of Environmental 
Management (RIDEM) 

1989 – 2022 
 

4-6; 9-11 North  

Connecticut Department of Energy and 
Environmental Protection 

1989 – 2022 
 

4-6; 9-10 North  

New York Department of Environmental 
Conservation  

1989 – 2022 
 

4-11 North  

New Jersey Department of 
Environmental Protection 

1989 – 2022 
 

1-12 South  

Delaware Department of Fish and 
Wildlife 

1989 – 2022 
 

1-12 South  

Maryland department of Natural 
Resources 

1989 – 2022 
 

4-10 South  

Virginia Institute of Marine Science 1989 – 2022 1-12 South  



Table 2: AIC scores for VAST models. 303 

Model Season Covariate Type AIC 
Annual index Spring - - 67201 

Survey Catchability 52846 
Bottom temperature Density 52013 

Depth Density 52048 
Shelf water volume anomaly Density 54031 

Annual index Fall - - 64801 
Survey Catchability 54202 

Bottom temperature Density 53308 
Depth Density 53446 

Shelf water volume anomaly Density 54482 
 304 

 305 



 306 

Figure 1: Different trawl surveys fit by VAST.  307 



 308 

Figure 2: Covariates explored as influencing density in VAST model runs.  309 

 310 
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Figure 3: Abundance estimates produced from VAST for black sea bass in the Spring.  312 

 313 



 314 

Figure 4: Abundance estimates produced from VAST for black sea bass in the fall.  315 



 316 

Figure 5: Proportion of black sea bass caught between the two regions for the spring (A) and fall (B). 317 



 318 

Figure 6: Black sea bass center of gravity estimates from VAST models for the spring and fall. 319 

  320 



 321 

Figure 7: Spring center of gravity estimates from VAST for black sea bass in the north and south regions.  322 



 323 

Figure 8: Fall center of gravity estimates from VAST for black sea bass in the north and south regions.  324 
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 326 

Figure 9: Effective area occupied estimates from VAST models for black sea bass for each season and 327 
region 328 



 329 

Figure 10: Age specific changes in center of gravity of black sea bass in the spring.  330 



 331 

Figure 11: Age specific changes in center of gravity of black seas bass in the fall.  332 



 333 

Figure 12: Age specific changes in effective area occupied of black sea bass in the spring (A) and fall (B).  334 

 335 



 336 

 337 

Figure 13: Annual abundance indices produced by VAST (black line) and their associated CVs for the 338 
North fall and spring ( A & B) as well as the South fall and spring (C & D). Colored points represent the 339 
designed based annual abundance estimates from each survey included in VAST.  340 



 341 

Figure 14: Age based abundance estimate produced VAST for the spring.  342 

 343 



 344 

 345 

Figure 15: Age based abundance estimate produced VAST for the fall.  346 

 347 



 348 

Figure 16: VAST age composition estimates for the northern region (A) and southern region (B) in the 349 
spring. VAST age composition estimates for the northern (C) and southern region in the fall (D). 350 


