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NOTE: This document was excerpted from a larger report and is not citable.  
 
This section of the Illex illecebrosus Research Track Stock Assessment will be presented to the MAFMC 
SSC by John Manderson, Open Ocean Research 
 
GENERALIZED DEPLETION MODEL (GDM; Manderson & Mercer 2022) 
 
Introduction 
 
Depletion models can use short time steps (days to months) in the analysis of fishery catch and 
effort to estimate the abundance of the vulnerable portion of a population required to support 
fishery catches. The approach is used in many parts of the world to assess cephalopod 
populations because the time scale of the analyses can be made to match the dynamics of short 
lived, semelparous, and environmentally controlled populations that are typically not well 
sampled by fishery independent surveys and with respect to age composition (see Arkhipkin et 
al. 2020). Depletion modeling does not provide a full stock assessment of population abundance, 
productivity and condition relative to fishery reference points. Instead, depletion models develop 
minimal assessments of species catchability by the fishery, the abundance of the population 
vulnerable to the fishery (No), fishing mortality (F) with respect to the vulnerable population, and 
natural mortality (M). The results of intra-annual depletion analysis can used in a hierarchical 
manner to inform assessment models that develop a full suite of fishery reference points (e.g. 
Roa-Ureta et al. 2021) 
 
Depletion models can also be used to estimate fishery escapement (H) relative to sustainable 
biomass targets by calculating the proportion of the vulnerable stock (N0) remaining at the end of 
the fishing season (see Roa-Ureta 2012, Arkhipkin et al. 2008, Lin et al. 2017, Maynou et al. 
2021). This is an important application in assessments of squid that have sub-annual life cycles 
and therefore lack portfolios of age classes that can buffer populations from recruitment failure 
(Beddington et al. 1990). Depletion modeling is considered useful for in-season assessment and 
management of cephalopod fisheries (Robert 2010). Since the early 1990s, depletion based 
methods have been discussed in U.S. Illex illecebrosus assessments as potentially useful for 
developing flexible, responsive strategies of in-season fishery management (NEFSC 1992, 1994, 
1996, 1999, 2003, 2006). 
 
Classical depletion models combine submodels for the harvested population and the fishery 
observation process. In the simplest case (Leslie model) the population submodel is: 
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1. Nt=N0-Kt-1 
 
where Nt is population size at time t, N0 is the initial size of the population just before the fishery 
begins and Kt-1 is cumulative catch prior to time t. 
 
The observation submodel is: 
 

2. Xt=qNt 
 
where Xt is observed catch per unit effort and q is catchability of the stock per unit effort in the 
fishery and Nt is the latent population size at time t. 
 
Substituting the submodel of the harvested population into the observation model yields 
 

3. Xt=q(N0-Kt-1) 
 

or 
 

4. Xt=qN0-qKt-1 
 
This linear expression applied to data yields estimates of the catchability coefficient of the fishery 
(-1*slope=q) and initial population abundance before the fishery begins (intercept/q). In real 
world applications, depletion models account for losses of individuals resulting from natural 
morality (M) during the fishing season using Pope’s (1972) recursive relation (Chapman 1974). 
Classical depletion models make the following assumptions: 
 
1) The population is physically and demographically closed to processes of immigration and/or 
recruitment that increase abundance or emigration that results in losses of animals from the 
fishing area during the fishing season independently of the fishing process and natural mortality, 
 
2) Losses due to natural mortality are constant over the fishing season, 
 
3) Fishery catch and population abundance are linearly related by the catchability (q) parameter 
which can therefore be used to estimate vulnerable population abundance (N0) from the fishery 
catch, 
 
4) Catchability (q) is constant over the period of fishery removals. A large pool of animals in the 
population does not have a refuge from the fishery and therefor a q=0, 
 

5) Units of fishing effort are independent and do not compete with each other, 
 
6) Fishing capacity is sufficiently large to deplete the vulnerable portion of the stock at levels 
required to estimate of output parameters; at a minimum q and N0, and 
 
7) Assumptions of linear regression are met including random sampling, error free measurement 
of catch and effort, and independent and normally distributed errors. 
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Recently, Rago (2021) applied classical Leslie-Davis depletion analysis to weekly U.S. catches of 
and fishing effort for Illex illecebrosus during 19 of the years from 1997 through 2019. 
Landings per unit effort (LPUE) decreased continuously to produce significantly negative 
regression slopes as required by classical depletion modeling in only 4 of the 19 years. In 7 years, 
LPUE increased substantially over fishing seasons, regressions produced positive slopes, negative 
qs, negative x axis intercepts and thus negative initial population size estimates. Rago (2021) 
concluded “the failure of the Leslie-Davis depletion models suggests that migrations into the 
fishing area, variations in growth, and recruitment overwhelm depletions associated with the 
fishery” (i.e. violations of the open population assumption [#1 above] and possibly assumptions 
of sufficient fishing capacity in the fleet [#6 above]). 
 
Roa-Ureta (2012, 2015, 2020) and others (Paya 2009, 2016, McAllister 2004, Robert 2010) have 
modified the Leslie-Davis method to develop a Generalized Depletion Modeling approach 
(GDM) that relaxes the closed population and linear catchability assumptions. GDM relaxes the 
closed population assumption by modifying the population submodel to account for successive 
perturbations in catch associated with immigration or recruitment into the fishery, or emigration 
out of the fishery that reset and restart the depletion process. The method has been successfully 
applied to a catadromous fish stock (glass eels, Anguilla japonica) with transient dynamics on 
fishing grounds that are completely controlled by immigration and emigration (see Lin et al. 
2017). GDM also modifies the fishery observation submodel to allow nonlinear relationships 
between fishery catch and effort and fishery catch and the abundance of the vulnerable population 
(assumption #3 above). Multiple fleets in a fishery can be modeled explicitly and multiple years 
can be analyzed in a Multi-Annual Generalized Depletion modeling (MAGD) framework (Roa-
Ureta 2015, Maynou 2015, Maynou et al. 2021), or results of intra-annual GDM can be used as 
inputs to inter-annual stock recruitment models (e.g. Pella-Tomlinson surplus production model; 
Roa-Ureta 2020, Roa-Ureta et al. 2021). The method, originally developed for the assessment of 
Patagonian longfin squid (Doryteuthis gahi), has been successfully applied to data-limited 
fisheries for spanish mackerel (Roa-Ureta 2015), glass eels (Lin et al. 2017), sand eels (Maynou et 
al. 2021), octopus (Roa-Ureta et al. 2021) and to evaluate the degree to which the establishment of 
artificial reefs led to increases in fish production or increased fish aggregation (Roa-Ureta et al. 
2019). The method can be implemented using the R package CatDyn (Fishery Stock Assessment 
by Catch Dynamics Models CatDyn version 1.1-1 2018-12-18). 
 
More specifically, GDMs describe the true fishery catch in numbers of individuals (Ct) as a 
function of observed fishery effort (Et) and the size of the vulnerable portion of the population (Nt) 
such that 
 

5. Ct = f(Et, Nt) = fE(Et)fN(Nt) = kEαtNβte-M/2 

where t is the time step, C, E and N are as defined above. Effort (E) is assumed to be observed 
without error, while population size, N, is unobserved and latent. M is natural mortality per time 
step and is assumed to be constant over the time steps. Parameters associated with catchability are 
k, a constant scaler (similar to q where CPUE=C/E=qN); α, an effort response parameter; and β, 
an abundance response parameter. The effort response (α) modulates the output of catch so 
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that it can be saturable α < 1 (fishing gear catches proportionally less with additional effort), 
proportional α ~ 1 (catch is proportional to effort), or synergistic α > 1 (additional effort yields a 
disproportionate increase in catch). The abundance response (β) reflects the degree to which 
fishers perceive true population abundance where β<1 indicates hyperstability and a stable catch 
rate when population abundance declines, while β >1 indicates hyperdepletion and a catch rate 
that declines faster than population abundance. Spatial aspects of the fishing process are implicit 
in the approach. 

GDM uses Pope’s (1972) recursive equation to make abundance manifest by including N0 and 
M. It can also include in-season perturbations of catch abundance {Pj} (immigration, recruitment 
or emigration) that reset and start the depletion process within the fishing season. A multi-fleet (f) 
GDM with abundance perturbations associated with immigration and emigration is specified as 
follows: 
 

6. Ct = ∑fCt,f 
 

=∑kfEαff,t m(N0e-Mt-m[∑t-1i=1Cf,ie-M(t-i-1)] ] + ∑j=Pj=1 IjPj,fe-M(t-τj,f) - ∑j=Pj=1 JjPj,fe-M(t-vj,f))βf e-M/2, vj>τj 

where f indexes fleet, j indexes abundance perturbations, P is the total number of perturbations. N0 
and M per time step are as described above. m = exp (− M/2) and is an adjustment that makes all 
catch occur instantaneously during the middle of the time step. The term in the square brackets in 
equation 6 accounts for losses due to fishery catch. The summation following losses to the fishery 
accounts for perturbations associated with immigration events (I) at time steps τ detectable by 
each fleet. Emigration events (J) have time steps of v for each fleet and are accounted for in the 
last summation. Note that natural mortality M of emigrants as well as immigrants is accounted 
for. If no perturbations of emigration are specified are specified and J=0, the GDM resolves to a 
model with perturbations associated with only with immigration. If no in-season abundance 
perturbations are specified at all, GDM resolves to a pure depletion model with a closed 
population assumption, but the possibility of a nonlinear catchability assumption (e.g. equation 5). 
Expected catch in numbers (Ct) at each time step is assumed to be a random variable with a 
known distribution. The discrete time equation is formulated so that survivorship is calculated for 
the middle of each time step using exponential terms. 

The nonlinear regression can be solved using maximum likelihood statistical inference in CatDyn 
for a variety of candidate distributions for the time series of observed catch (Ct,f;Poisson, 
negative binomial, as well as normal, lognormal, gamma; Roa-Ureta 2020). The package optimx 
(Nash and Varadhan 2011) is called for the optimization. The parameters M and N0 are common 
to all fleets in a fishery. Fleet specific parameters include observation (~ fishery catchability) 
parameters kf, αf, and βf as well as perturbations to abundance Pf and their timings (τf,vf). It is 
assumed that fleet effects that are additive and provide complementary information about the fish 
population. Competition between fleets is not accounted for. Fishing mortality per time step is 
also estimated from abundance, natural mortality and catch using a numerical resolution of the 
Baranov equation (Roa-Ureta 2020). In a complex GDM with multiple fleets and perturbations of 
abundance due to immigration or emigration the number of free parameters is 2(M and N0) + 
3*f(kf, αf, βf) + 2*P*f (the magnitude and timing of abundance perturbations that can be fleet 
specific). It is important to note that the method requires at least ~ 3 times more data than the 
number of parameters, for parameters to be estimated accurately and with sufficient certainty 
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(Roa-Ureta 2012, 2015, 2020). A multi-fleet GDM with abundance perturbations as specified 
above requires data with a short time step and high temporal resolution. 
 
To develop GDM based hypothesis related to immigration, recruitment, or emigration during the 
fishing season Roa-Ureta (2012) developed a fleet specific catch spike statistic (St) using fishery 
dependent data that accounts for spikes in catch that are independent of by variations in fishing 
effort (Et). Lin et al. (2017) developed a complementary parametric catch spike and used fishery 
independent information about environmental drivers of glass eel migration to develop alternative 
start values for the timing of abundance perturbations. Calculation of the parametric and 
nonparametric spike statistics are described in the methods section. Spikes in catch can result 
when animals migrate onto or off of fishing grounds or when fishing fleets shift to more 
productive fishing grounds or when forced to poorer grounds by fishery regulation (Roa-Ureta 
2015). It is therefore important to inspect the spatial dynamics of fishing fleets to understand 
whether catch perturbations are the result of movements of animals or of fishing fleets. 

While GDM relaxes the closed population assumption (# 1); the linear catchability assumption 
(#3), and allows greater flexibility in the choice of error distributions, several assumptions are 
made about the migration process when the method is applied to fisheries for fully transient 
stocks on fishing grounds (e.g. Lin et al. 2017). 
 
These include: 

8) immigrants mix well with and have the same catchability as the stock on the fishing ground, 
and 

9) abundance added by an immigration pulse at time τj is removed from fishing ground when it 
emigrates at time vj. 

It is important to note that like other catch-only methods, GDM assumes inferences about stock 
characteristics can be made from fishery catch (Ovando et al. 2021). GDMs continue to rely on 
assumptions #2, #4, #5, #6 listed above. Assumption #4, which posits that the stock does not 
have refuge from the fishery, is important to consider when making inferences about the Illex 
illecebrosus population in the Northwest Atlantic using GDM. The directed U.S. fishery is a 
seasonal fishery that operates from May through October on the outer edge of mid Atlantic Bight 
continental shelf, from Oregon Inlet, North Carolina to Welkers Canyon off southeast 
Massachusetts. I. illecebrosus is believed to produce approximately 4 overlapping cohorts 
throughout the year and we believe the directed U.S. fishery harvests 1-2 of these cohorts. In the 
western Atlantic, Illex illecebrosus ranges from the Florida Straits northeast to Labrador, the 
Flemish cap, Baffin Island and Southern Greenland (Trites 1983, Dawe and Beck 1985, Jereb and 
Roper 2010), so only a small part of the species range is vulnerable to the fishery (Manderson et 
al. 2022). Market forces, technical aspects of processing squid and fisheries regulations also 
strongly influence fishing effort and catch in US Illex fishery (see Mercer et al. 2022). 
 
If, as Rago (2020) suggests, the principle cause of the failure of classical depletion analysis when 
applied to the U.S. Illex illecebrosus fishery is the violation of the closed population assumption 
(assumption #1 above), the GDM approach may more successfully applied to Illex to provide 
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information useful for assessing the risk of overfishing for the stock. In this work the application 
of GDM is evaluated using the R library CatDyn (Fishery Stock Assessment by Catch Dynamics 
Models v1-1.1) to five years of landings, effort, and individual squid weight data collected in the 
U.S. Illex illecebrosus fishery, aggregated to a weekly time step. Intra-annual models were 
developed for 2 years (2012, 2016) in which fishery performance was evaluated as poor and three 
years (2012, 2018, 2019) in which performance was evaluated as good, based on statistical and 
qualitative industry based assessment of fishery performance (Mercer et al. 2022). The steps 
needed to develop a “best” GDM with an open population assumption for a single year are 
described and the precision of parameter estimates are presented, and quantities of interest to 
fishery assessment are calculated. The precision and accuracy of parameter estimates and 
quantities produced by “best” GDMs are developed for the 5 years. Finally, recommendations are 
provided for the next steps required to determine whether GDM can be operationalized in the 
assessment, including in-season assessment, of the risk of overfishing in the U.S. Illex 
illecebrosus fishery. 
 
Fishery Data 
 
Landings and effort data 
 
To assessed the utility of generalized depletion modeling to produce information useful for 
assessment of the risk of overfishing in the Illex fishery we analyzed 5 years of weekly landings 
data including years of poor (2013, 2016) and good fishery performance (2017, 2018, 2019) as 
described in (Mercer et al. 2022). 
 
The cumulative landing biomass of squid in kilograms was calculated for ISO 8601 standardized 
weeks (Monday-Sunday). Several metrics of fishing effort were developed from vessel trip 
reports (VTR) including number of days fishing (DF), number days absent (DA), and numbers of 
unique fishing permits responsible for weekly landings. Days absent (DA) is the difference 
between date-time landed and date-time sailed and includes time steaming between ports and 
fishing grounds and between fishing grounds. Days fishing (DF) eliminates steaming times and 
was used here as the preferred effort metric. Effort metrics could only be developed for landings 
for which there was a 1-to-1 match in dealer reports and VTR records. Fishing effort was 
curtailed by fishing regulations and seasons closed early in 2017 (09-17; week 37), 2018 (08-14; 
week 33) and 2019 (08-21; week 34). 
 
We partitioned weekly landings and effort amongst two fleets; vessels that process and freeze 
squid at sea (“freezer trawlers”) and vessels that store squid in recirculating seawater systems 
(RSW) or on ice and deliver them to shore side plants for processing and freezing onshore 
(hereafter called “wet boats”). We developed two fleet GDM models for the following reasons. 
a) Freezer trawlers that process squid at sea can search larger areas for longer times (as long as 
14 days) but have longer prey handling times than wet vessels that catch squid and must 
transport them quickly to nearby shoreside processing plants before the squid spoil (usually 
within 72 hours; see Mercer et al 2020 for more details). As a result, we expected the scaling, 
effort and abundance response parameters (k, α, β) as well as timings of detection and 
magnitudes of pulses of ingressing or egressing squid catch to be different in the two fleets. b) 
An examination of historical fishery data indicates the ratio of fishing effort in the two fleets 
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fluctuates with fishery performance. In the years landings were low freezer trawlers dominated 
the fishery and there were sometimes much fewer wet boats. During years of “good” fishery 
performance wet boats are dominant while many of the freezer trawlers continue to operate in 
the fishery (Table 5.13). Since 2016, fishery performance has been “exceptional” and some 
freezer trawlers have been converted to wet boats. 
 
Fishery weigh-out data 
 
Depletion analyses require landed biomass to be converted to number of individuals captured in 
the fishery for the analysis. We used weights of squid in grams collected for the purposes of 
inventory and marketing by the two primary processor/dealers in the fishery: Lunds Fisheries, 
Cape May, New Jersey and Seafreeze Ltd. Davisville, Rhode Island. Whole body weight samples 
(g) are routinely collected from every trip because the product is marketed by body weight size 
category. Seafreeze Ltd. primarily inventories squid caught on fishing grounds both north and 
south of the Hudson Shelf valley that have been frozen at sea on freezer trawlers. 
Squid from 69 to 100% of trips are thawed and measured in a given year and sample sizes of 
freezer trawler body weights are typically very high. 
 
Generally landings from fishing grounds south of the Hudson Shelf Valley (~39.5 N) are 
delivered to Lunds Fisheries which primarily accepts unculled squid for shoreside processing and 
freezing from wet boats. Weight sampling of the wet boat fleet is less comprehensive. The 
weight data were provided with the date of measurement but without attribution to fishing ground 
or the type of vessel responsible for the landing. These data were used in the evaluation of the 
GDM. The operationalization of the method will require squid weight data that are more 
representative the fleets, fishing grounds and the time step of analysis. 
 
Greater than 10,000 weights were available for each year and a median of 1690 measurements 
were available during most weeks of the fishing seasons (5% and 95% quantiles =100 and 4573 
wk-1). To develop mean weights of squid (grams) for each week, local polynomial regression 
(loess) with R defaults (span=0.75; fitting by weighted least squares) was applied to describe the 
relationship between the weight of squid in grams and day of the year within each fishing year 
for the fishery as a whole. The loess regressions were then used to predict mean weights (and 
standard errors) of squid for the day falling in the middle of each week for which landings were 
reported. This approach has been applied in other studies developing GDMs for data limited 
fisheries (e.g. Roa-Ureta 2015, Mayou 2021). 
 
GDM Modeling 
 
Strategy for intra-annual generalized depletion model development using CatDyn 
 
The GDM was applied to catch data for the two fishing fleets independently for each fishing 
year. It is possible to develop Multi-Annual Generalized Depletion models (MAGD; see 
Maynou et al. 2021) but they assume levels of strengths of stock-recruitment relationships and 
inter-annual autocorrelation in natural mortality not justified for Illex illecebrosus. It is also 
possible to use the results of intra-annual generalized depletion models to inform assessment 
models in a hierarchical manner and more formally develop biological reference points (Roa- 
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Ureta 2020, Roa-Ureta et al. 2021). This type of hierarchical analysis is beyond the scope of this 
work. Here, the potential utility of the GDM for the assessment the Illex fishery is evaluated by 
developing intra-annual GDMs using data with a weekly time step for recent years classified as 
good (2017-2019) and poor fishing years (2013, 2016). 
 
Intra-annual GDMs are developed in three steps: 1) the development and selection of model 
variants for hypothesis about movements of squid onto and off of fishing grounds during the 
fishing season beginning with a pure depletion model (Null Model) that assumes the fishery is 
closed, 2) the selection of the “best” hypotheses about in-season movements of squid from the 
suite of hypotheses developed for the specific fishing season, and finally 3) the use of the “best” 
model variant reflecting the “best” hypotheses to develop parameter estimates and derived 
quantities useful for stock assessment in a given year. 
 
Step 1. Development and selection of GDM variants for closed and open fishery hypotheses 
 
Generalized depletion models representing closed and open fisheries were developed for each 
fishing season using 12 different likelihoods assumptions. Eight model variants applied the same 
likelihood and distribution assumption to freezer trawler and wet boat fleets [normal (n), adjusted 
profile normal (apn), lognormal (ln), adjusted profile lognormal (apln), poisson (p), negative 
binomial (nb), and gamma (g)]. Four additional models were developed for each model hypothesis 
that applied different likelihoods to the two fleets (freezer trawler: wet boat fleet, apn:apln; 
apln:apn; n:ln; ln:n). Each of these 12 “likelihood” model variants were fit using four different 
numerical optimization methods ("spg", "CG", "Nelder-Mead", "BFGS"). Thus, 48 possible 
model variants were produced for each model hypothesis in each season. 
 
Reasonable initial starting values for parameters are required for fitting GDM model variants to 
data using maximum likelihood through calls from CatDyn to the optimx function in the R 
package optimx. Initial values for M, N0 as well as the fleet specific parameters k, α, β are 
required for fitting pure depletion models (H0). Model variants with an open population 
assumption also require starting values for the timing and magnitudes of in-season pulses of 
squid. Starting parameters were refined before model fitting based on the visual inspection plots 
generated with the CatDynExp function that allows visually exploration of initial parameter 
values. We selected starting values that minimized the difference between observed and predicted 
catch, and temporal trends in deviance residuals. The ranges for starting parameter values are 
reported in the following text table. 



9  

 

Ranges for initial starting values for fitting model variants that were refined using the CatDyn exploratory tools and plots 
of observed and predicted catch, and temporal trends in deviance residuals. 

Initial Starting Parameter Value or equation Logic 

M (weekly) 0.01-0.15 Literature values from Roa-Ureta & 
Arkhipkin 2007; Arkhipkin et al. 
2021b; Hendrickson 2004, Hendrickson 
& Hart, 2006; Hoenig 2005 as 
described in text below. 
Adjusted on the basis of weekly trends 
in observed vs predicted catch. Lower 
threshold relaxed in null models or 
those missing pulses evident in catch 
perturbation analysis. 

N0,a 

 
 
(M unaccounted for) 

Total Annual Catch * 1/0.25 pure 
depletion models 
 
Total Annual Catch * 1/0.33 
when pulses evident 

Industry estimates of industry net 
efficiency ~0.25 (Mercer et al. 2022; 
Manderson et al. 2022) 
Reduced when vulnerable population 
open and in-season pulses are probable 

N0,b 

 
 

(M accounted for) 

Total Annual Catch * 1/0.25 + (Total 
Catch * 1/0.25) * 1-exp(-M*number of 
fishing weeks)/2 
 
As above but with M accounted for 
when pulses evident 

Account for net efficiency as well as 
losses due to natural mortality over ½ 
of fishing season 

Fleet specific start values   

kf 1/total days fished by fleet /n n ~100-350. Often different for the 
fleets 

αf Effort Response 0.8-1 Assume close to linearity 

βf Abundance Response 1-1.3 Assume close to linearity 

Pf (Sign, timing) Determined on the basis of catch 
perturbation analysis described in text 
below 

Assumes that inferences about in- 
season immigration/emigration can be 
developed soley on the basis of rom 
perturbation analysis of fishery 
dependent data. 

P1f magnitude ¼ of N0 * proportion of cumulative 
catch caught by fleet 

Assumes that size of incoming pulses is 
smaller than the size of the vulnerable 
fraction before the fishery began. This 
assumption is probably not valid. 

multiplicative dispersion 
parameter 

0.25*sd(log(total catch))^2 When the likelihood is lognormal, 
negative binomial, gamma 

additive dispersion 
parameter 

0.25*sd(total catch)^2 When the likelihood is the normal 
distribution 
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Probabilistic model selection criterion (AIC, BIC, MDL) can only be used to compare models that 
assume the same likelihood and numerical optimization method. As a result, GDM variants of 
model hypotheses were selected using a set of criteria associated with statistical properties and 
biological realism. Statistical criteria included the selection of converged models that produced 
numerical gradients for parameter estimates < |1| (Thorson et al. 2015, Roa-Ureta et al. 2021). 
Remaining models were compared with respect to their ability to produce asymptotic standard 
errors, %CVs for parameter estimate, and multi-collinearity among parameter estimates. 
 
Models (usually ≤ 4) that produced standard errors for most estimates, relatively small standard 
error/ parameter ratios, and relatively small parameter inter-correlations were compared with 
respect to biological realism criteria, placing greatest weight on natural mortality, M wk-1 
estimates. Unrealistic values of M were identified based on the literature (Roa-Ureta & 
Arkhipkin 2007, Arkhipkin et al. 2021b, Hendrickson 2004, Hendrickson & Hart 2006, Hoenig 
2005). Weekly M estimates generally exceed 0.01 wk-1 for Ommastrepid squid. It has recently 
been shown with GDM that natural mortality for Illex argentinus (Argentinian shortfin squid) and 
Doryteuthis gahi (Patagonian longfin squid) in the Falklands island is ~ 0.092 wk-1 (Roa- Ureta & 
Arkhipkin 2007, Arkhipkin et al. 2021a). Hendrickson (2004) reported a maximum age of 215 
days for squid captured on US fishing grounds. For animals with this max age, the Hoenig 
(2005) age based equation predicts M wk-1 ~ 0.134 (SE=0.017). Therefore, models producing M 
wk-1 estimates between 0.01 and 0.15 were considered plausible. A relatively conservative 
approach was adopted that did not include the higher M wk-1 values estimated for mature squid 
by Hendrickson and Hart (2006). M wk-1 estimates > 0.1 were rarely estimated in the more than 
750 GDM model variants examined in this work. M wk-1 estimates <0.01 were often estimated in 
pure depletion model variants and variants that did not include in-season pulses evident in catch 
perturbation analysis. The lower bound to M wk-1 was relaxed under these circumstances. 
 
Generalized depletion modeling is an exercise in multi-model inference; the selection and 
evaluation of hypotheses about the timing and magnitudes in-season pulses of animals onto and 
off of fishing grounds. Typically these hypotheses are developed from catch perturbation 
analysis of fishery dependent data sources because fishery independent data describing stock 
movements are unavailable. This is indeed the case with Illex illecebrosus in U.S. waters. The 
perturbation analyses conducted in this work summarized 4 lines of evidence: 
 
1) Development of pure depletion models (H0) that assumed the fraction of population 
vulnerable to the fishery was closed to immigration or emigration during the season; identified 
weeks when observed catch was higher or lower than predicted catch and tallied these residuals 
(e.g. Figure 5.17). 
 
2) Use of fleet specific catch nonparametric and parametric spike statistics to identify weeks 
when catches in the fleets were disproportionally high or low when compared to fishing effort 
(e.g. Figure 5.18). The nonparametric spike statistic Sl,t, internally generated in CatDyn, was 
developed by Roa-Ureta (2012) to identify spikes in observed catch (Xt) unexplained by 
variations in fishing effort (Et). Such that 
 

7. Sl,t = 10(Xl,t/max(Xl,t) – El,t/max(El,t)) 
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We also computed the complementary parametric residual catch spike statistic developed by Lin 
et al. (2017) that uses plots of residuals from the regression 
 

8. log (Xt) = A + α log (Et) 

where the intercept, 

9. A= β log (Nt) – M/2 
 
3) We examined plots of gridded weight frequencies of squid landed in the fishery to identify 
weeks of the season when weight classes of squid may have entered or exited the fishery (e.g. 
Figure 5.19) 
 
4) Finally, to determine if pulses of squid evident in statistics above reflected the in-season 
movements of squid into or out of the fishery or movements of the fleet to different fishing 
grounds, we examined spatially explicit plots of the relative magnitudes of catches of squid 
reported by NOAA observers, and self-reported by fishers on vessel trip reports VTR and the 
NOAA study fleet program (e.g. Figure 5.20). 
 
These lines of evidence were entered in a perturbation summary table (e.g. Table 5.14) and 
synthesized into a set of alternative hypotheses about the timings of in-season movements of 
squid onto or off of the fishing ground. Hypotheses were only developed for timings when two 
more indicators recorded in the perturbation summary table coincided in time. 
 
Model variants were developed and selected for each open population hypothesis using methods 
described above. The “best” model variant (distribution assumption, numerical method) for each 
hypothesis was selected using the statistical and biological realism criteria described above. 
 
Step 2) Selection of the “best” hypotheses about in-season movements of squid 
 
We used statistical and biological realism criteria described above as well as the protocol of Lin 
et al. (2017) who used the Akaike information criterion (AIC) to objectively select the “best” 
hypothesis for a fishing season. This required selecting likelihood and numerical optimization 
algorithms resulting in convergence for all model hypotheses including the pure depletion model 
(H0). In most cases several combinations of likelihood and numerical method could be found, but 
this was a compromise since one or more of the model hypothesis failed to meet the criteria 
described in the previous section. We selected the hypothesis with the lowest AIC, from a 
consensus of the likelihood and numerical method combination that could be used to compare the 
hypotheses. Once the “best” hypothesis was selected, the “best” model variant meeting statistical 
and biological realism criteria in step 1 representing “best” hypothesis was used in step 3, to 
develop final parameter estimates and derived quantities useful for stock assessment. 
 
Step 3) Develop parameter estimates and derived quantities useful for stock assessment using 
“best” model variant reflecting the selected hypothesis 
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The best model variant (step 1) reflecting the selected hypothesis (step 2) was used to produce 
final estimates of fishing and population parameters, including N0, M wk-1 , fishing mortality (F 
wk-1), exploitation rate, the magnitude and timing of in season pulses of squid into the fishery and 
escapement biomass at the end a fishing season. All of these quantities are computed within 
CatDyn software or can be developed from computed quantities. 
 
The results section proceeds as follows. We describe the development of a “best” general 
depletion model with an open population assumption for a single the fishing year of 2016. We 
selected 2016 because the final model was relatively well behaved with respect to the statistical 
and biological realism criterion described above. Models were constructed in the manner 
described in all years. We then discuss parameter estimates and their uncertainties from the 
“best” GDMs developed for all 5 years before presenting quantities that could be of use in 
assessments. We discuss the potential role of model time step and sample size in determining 
parameter uncertainties and suggest next steps that may lead to use of generalized depletion 
models in the operational assessment, including in-season assessment if necessary, of the risk of 
overfishing in the US Illex illecebrosus fishery. 
 
GDM Model Results 
 
Development of GDM with open population assumption for the 2016 fishing year 
 
Statistical and qualitative industry based assessments of fishery performance indicated that the 
2016 fishing year was relatively poor (Table 5.13). The fishery landed 7,004,000 kg of squid 
during the season. Overall fishing effort was relatively low and 12 vessels were responsible for 
the landings (J. Didden personal communication). Only 5 of vessels landed more 226 mt. While 
the freezer trawler fleet accounted for 68% of total landings and 56% of total landings, no effort 
was recorded for freezer trawlers in 6 of the 19 weeks of the season. This probably occurred 
because the duration of most freezer trawler trips was longer than 7 days. Nevertheless since there 
were 19 weeks in the season, 38 datum were available to estimate the population parameters N0 

and M, while 19 datum were available to estimate fleet specific parameters (k, α, β) and the 
timings (τ, or v) and magnitudes of perturbations (Pj) associated with in-season ingress or egress 
of squid. 
 
Seven of 48 pure depletion model variants converged, had numerical gradients less than 1, and 2 
or fewer incalculable standard errors (Table 5.15a). Natural mortality estimates (M wk 10-3 – 10- 
7) were much lower than the lower bound indicating that squid may have moved onto the fishing 
grounds during the fishing season. The pure depletion model variant with the smallest CVs 
(Table 5.15b, others not shown) and parameter correlations (Figure 5.21) assumed a normal 
distribution for freezer trawler catches, a lognormal distribution for “wet boats” and was 
optimized with the CG algorithm. 
 
In the catch perturbation summary table (Table 5.14) we recorded residuals from the time series 
plots of observed vs predicted catch for the freezer trawler and wet boat fleets (Figure 5.17) 
developed from the “best” pure depletion model. We also tallied high positive and low negative 
values for nonparametric and parametric catch spike statistics (Figure 5.18), weeks of appearance 
for weight classes of squid (Figure 5.19), along with the weekly positions where the majority of 
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catches were relative to the Hudson Canyon (Figure 5.21) in the catch perturbation summary table 
used to develop hypothesis about in-season ingress or egress of squid for the 2016 season. 
 
Using the multiple lines of evidence in the 2016 catch perturbation summary table (Table 5.14) 
we framed 3 hypothesis for the development and evaluation of GDM model variants with an open 
population assumptions. Hypothesis H1, posited ingress of squid into the fishery detected by the 
wet boat fleet landing in week 33 and in the freezer trawler fleet in week 34. Hypothesis H1 was 
supported by weight frequencies, residuals of the pure depletion model, and spike statistics in the 
freezer trawler fleet, and spike statistics in wet boat fleet. Hypothesis H2 added a second pulse of 
ingress detectible in landings in in weeks 37 (freezer trawlers) and 38 (wet boats). H2 was 
supported by the parametric and non-parametric catch spike statistics. 
Hypothesis H3 added early season egress in both fleets to Hypothesis H2a that was a post hoc 
modified the H2 inference. H3 posited that the second pulse of ingress was only detectible in the 
wet boat fleet. Some model variants with input perturbation parameters reflecting H1, H2 and 
H2b converged when fit to the data using maximum likelihood. Model variants for H3 did not 
converge. H3 had 9 fleet specific parameters for the wet boat fleet with a parameter to data ratio 
of 0.67 (9/19; 7 parameters in the freezer trawler fleet) and a total of 18 parameters and parameter 
to data ratio of 0.47 (18/38). 
 
Model variants best reflecting H1 and H2 and H2b were selected on the basis of statistical and 
biological realism criteria described in the methods and demonstrated for the pure depletion 
model H0 above. For the sake of brevity only parameter estimates of “best” model variants 
reflecting the 4 (H0-H2b) hypotheses are presented here (Table 5.15b-d). The H1 model with a 
single ingress of squid into the fishery produced an M falling within the bounds of biological 
realism criteria and %CVs for parameter estimates that were less than 57% except for the catch- 
ability scaler for wet boats (k CV=168%) and the magnitude of the relatively of ingresses into the 
freezer trawler fleet (CV >5000%, 4c) which was 0.24% of the magnitude of the pulse detected in 
the wet boat fleet. Parameters associated with the fishing process (k, α, β) for the H1 model 
variant appear unrealistic. Developing H2 by adding the second in-season pulse of squid ingress 
to both fleets increased CVs for nearly all the parameters including M which fell below the lower 
bound unless the error is considered (Table 5.15d). Model variants for H2b with the first ingress 
event detectible in both fleets and the second detectible only in the wet boat fleet were developed 
in response to statistical properties of the best H2 variant and further inspection of the 
perturbation summery (Table 5.14). This scenario was supported by more lines of evidence in 
catch perturbation analysis, including weight frequencies (Table 5.14). M Fell within the bounds 
and parameter CVs for the best H2b variant were somewhat smaller than for the H2 variant 
(Table 5.15e). However fewer standard errors were produced in the H2b variant. Parameter 
estimate correlations were also higher for the best H2b variant than the H2 variant. 
 
The H1 model variant (apln apln BFGS) appears to best explain the weekly fishery dependent 
data available for the 2016 season compared with the other hypothesis variants based on most of 
the statistical and biological realism criterion. This is supported by the AIC comparison of 
hypotheses H0-H2b made by holding constant distribution assumptions and numerical 
operationalization method constant for all the hypothesis developed for the 2016 fishing season 
(Table 5.16). 
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The “best” H1 model variant had a single squid ingress event detectable by the freezer trawler 
fleet in week 35 and in wet boat fleet in week 33 (Figure 5.23). Deviance residuals did not show a 
temporal trend for either fleet. However plots of predicted vs observed catch indicate that the wet 
boat fleet was fit better than the freezer trawler fleet that did not land trips in 6 of the 19 weeks of 
the fishing season. 
 
Quantities derived from the best H1 GDM variant in 2016 and useful for assessing the risk of 
overfishing are shown in Figure 5.24. The weekly natural mortality estimate was 0.026 
(SE=0.015). The median weekly F for the fishery was 7.75E-5 (2.5 and 97.5 quantiles: 1.00E-09, 
4.22E-04) with a cumulative F over the season of ~0.0023 (Table 5.20, Figure 5.24a). The 
median observed exploitation rate (F/Z) for the fleet was estimated to be 8.96E-07 (7.46E-08, 
4.87E-06; Table 5.20, Figure 5.24b). Cumulative F/M was ~0.005 well below the value of 0.667 
proposed by Patterson 1992 as biological reference point appropriate for small pelagic fish (Table 
5.20, Figure 5.24c). The GDM model predicted escapement biomass at the end of the fishing 
season to be 3,889,492 metric tons (Table 5.0, Figure 5.24d). This value fell at the 96th percentile 
of values developed using the Rago (2021) Indirect Estimation Methods approach to developing 
plausible bounds using spring and fall NEFSC trawl surveys on the continental shelf (Figure 
5.25). 
 
Caution is warranted in interpreting some of these quantities given the uncertainties for some 
parameter estimates, specifically those related to the fishing process and the small in-season pulse 
of squid in 2016. However, the small Fs and large escapement value are not out of the realm of 
possibility given the small size of the fleet and its fishing effort. 
 
Review of modeling results for final models for all years 2013, 2016-2019 fishing years 

Hypothesis selection 

Models that included in-season pulses of squid into the fishery and an open population 
assumption generally better explained Illex fishery catches than pure depletion models with a 
closed population assumption (Table 5.16). In 2 years (2016, 2017), models with a single pulse 
of squid ingress detected in landings by both fishing fleets had the lowest AICs. In 2019, the 
“best” model had 1 in-season pulse into both fleets followed by a second positive pulse detectible 
in the wet boat fleet. In 2018 a pure depletion model with a closed population assumption had 
the lowest AIC; 2018 had the shortest fishing season (12 weeks), the smallest sample size, and 
AICs for the three 2018 model hypotheses developed were very similar. There was not strong 
evidence for an in-season pulse of ingress in the 2018 perturbation summary (not shown). 
Furthermore, the pure depletion model variant that passed statistical criteria produced reasonable 
estimates of M wk-1 (0.045-0.093). In the seasons for which open population assumption GDMs 
better explained catches, pure depletion model variants with a closed assumption produced 
mortality estimates orders of magnitude lower than the plausible bounds (0.01-0.15). 
 
There was no evidence for significant in-season pulses of squid emigration from the fishery in the 
week fishery landings data analyzed in this work. There were no model variants meeting 
statistical criteria that produced M wk-1 estimates greater than 0.1. High values for M wk-1 
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would be expected for model variants that did account for substantial pulses of in-season 
emigration. However, weight frequency plots suggested that in some years larger squid leave the 
fishery by emigration or mortality (e.g. Figure 5.19). Fishers also observe squid moving off of 
continental shelf fishing grounds response to weather and oceanographic events (Mercer et al. 
2022). In addition Illex are known to move off the continental shelf in a sex specific manner 
during the fall (O’Dor & Dawe 2013). 
 
We believe the hypotheses about the number in-season pulses of ingress were limited by the 
weekly time step since ratio of the number of parameters to be estimated to the amount of data 
was high and increased for open population models. Pure depletion GDMs with 2 fleets (P0P0) 
that assumed the fishery “closed” during the season estimated eight parameters (N0, M wk-1 as 
well as k, α, β for each of the two fleets; Table 5 & 10). The timings and magnitudes of each in- 
seasons pulse of squid into or out of the fishery are detected in the landings in a fleet specific 
manner. Four additional parameters are estimated when a single in season pulse is detected in 
landings in both fleets for a total of 12 parameters. Sixteen parameters are estimated in models 
with two perturbations in each fleet. The longest season (2016) produced only 19 data points per 
fleet. Even in that year the best GDM with a single pulse in each fleet produced a parameter to 
data ratio of 0.316. Generalized depletion modeling requires a parameter to data ratio less than 
0.333 (Roa-Ureta 2012, 2015, 2020). Sample sizes in the weekly Illex fishery data fell as low as 
24 in 2018 when the pure depletion model best explained the data. 
 
Models best representing supported hypotheses 
 
GDM variants best representing the hypotheses and chosen on the basis of numerical quality, 
statistical quality, and biological realism criteria described in step 2 were fit with using the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) numerical optimization algorithm. The best 
variants assumed a variety of data distributions, but with the same distributions applied to both 
fleets (Table 5.17). The normal distribution best explained the data for both fleets in two years 
(2017, 2019) while adjusted profile lognormal, negative binomial, and gamma models were also 
represented. 
 
Parameters describing the fishing process (k, α, β) were extremely variable and difficult to 
estimate with GDM using data with a weekly time step (Table 5.17). Asymptotic standard errors 
could not be estimated for all fishing parameters except for 2016 that had the largest sample size 
and 2018 when the pure depletion model best explained the available data. 
 
Estimates for the scaling parameter k (~q) varied by 13 orders of magnitude for freezer trawlers 
and 11 orders of magnitude for the wet boat fleet (Table 5.17). The standard errors for k could not 
be computed for freezer trawlers in 2017 and 2019 and for wet boats in 2013 and 2019. The pure 
depletion model for the 2018 season produced a k that had particularly low precision 
(CV=4524%). 
 
Estimates for the effort response parameter were variable for both fleets; saturable (α < 1, gear 
catches proportionally less with additional effort) in some years and synergistic (α > 1, additional 
effort yields a disproportionate increase in catch) in others (Table 5.17). While patterns were not 
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consistent among the fleets, asymptotic standard errors were produced in all cases and CVs for α 
estimates were < 45% for freezer trawlers and < 64% for wet boats. 
 
Estimates for the abundance response parameter were also variable, standard errors frequently 
inestimable, and when they were estimable, they were often quite high (Table 5.17). β estimates 
for the wet boat fleet were less than <1 in 4 of the years (2016-2019; hyperstability: stable catch 
rate when the vulnerable fraction of the population changes). However, standard errors could not 
be produced in 2 years (2013, 2019) and the CV for β was 256% in 2018. β estimates for the 
freezer trawler fleet were greater than 1 in 3 years (2016-2018, β >1, hyperdepletion: catch rate 
changes faster than abundance of the vulnerable fraction of the population) less than 1 in 2 years. 
In 2013 the freezer trawler β estimate was 0.005 and the CV, 1500%. 
 
GDM makes inferences about in-season pulses of squid into or out of fishing areas based on their 
detectability in landings made by the individual fleets. In a two fleet model half the total sample 
size is used to estimate the timings and magnitudes of pulses along with the catch-ability 
parameters. Like catchability parameter estimates, the magnitudes of in-season pulses of squid 
were very imprecise; probably again a result of the small sample sizes (Table 5.18). The CVs for 
pulses were greater than 3000% for pulses in the freezer trawler fleet which were more than 400 
times smaller than estimates in the wet boat fleet. However, the CVs for pulse magnitudes also 
exceeded 400% for the wet boat fleet except in one case (2016, CV=22%). 
 
Natural mortality (M wk-1) and the numerical abundance (N0* 1000) of the vulnerable fraction of 
the population before the fishing season appeared to have been better estimated with the GDMs 
(Table 5.19). This is to be expected because the entire datasets (2 fleets * length of the season) are 
used to estimate population parameters. M wk-1 ranged from 0.26 (SE=0.015) to 0.97 (SE=0.012) 
and CVs were less than 58% in 3 seasons (2016, 2017, 2018). CVs for M wk-1 were greater than 
100% in 2013 and 2019. It is also important to acknowledge that M wk-1 served as a diagnostic 
criteria for biological realism in our model selection process. However, M wk-1 fell into a range 
between 0.02 and 0.1 in all model variants meeting statistical criteria if in-season pulses evident in 
the perturbation summaries had been specified. Error estimates for N0 were produced in all years 
except 2018. CVs for N0 were greater than 400% in 2013 and 2019; CVs were less than 75% 
2016 and 2017. 
 
Derived quantities of interest for assessing the risk of overfishing and sample sizes 
 
Quantities derived from the final GDM useful for assessing the risk of overfishing (M, F, 
Exploitation rate, F/M, Escapement biomass) are reported in Table 5.20. Weekly Fs generally fell 
below 0.027 and observed exploitation rates fell below 3.25E-04 in all years. F/M ratios ranged 
from 3.89E-08 to 4.08E-01, with seasonal means ranging from 0.002 to 0.115. Finally, in all years 
except 2013, escapement biomass predictions from the GDMs exceeded 1,000,000 metric tons. 
These values fell near the upper bounds (>85th percentiles) of escapement estimates develop by 
Rago (2022) using fishery independent survey estimates and ranges plausible values for survey 
gear efficiency q and availability v and ratios of F/M. 
 
The uncertainty of the parameter estimates is too large to make a reasonable conclusion about the 
risk of overfishing for every year analyzed in this work except 2016. Even for 2016, the 
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uncertainty of the estimated fishing process parameters is large. The overall lack of precision in 
this analysis might be eliminated by moving from a weekly to a daily time step and increasing 
sample sizes. Moving to a daily time step would reduce the ratio of parameters to data in the 
models specified here from an average of 38% to %11 (Table 5.21). This could dramatically 
increase the precision of fleet specific parameters associated with the fishing process and in- 
season pulses of squid. However, it is also the case that catch data with a daily time step will be 
noisier due to the influence of nuisance variables (holidays, stormy weather, etc.). 
 
Conclusion 
 
Generalized depletion modeling appears to be a very useful technique providing historical and in-
season assessments of the risk of over fishing for stocks that are transient on fishing grounds 
during the fishing grounds. The technique is used to estimate the abundance of the fraction of the 
population vulnerable to the fishery (No), natural mortality (M), fishing mortality (F), and fishery 
escapement (H) in a manner that accounts for in-season migration that confounds the estimation 
of those parameters. While we believe that some parameters had reasonable precision in some 
years, overall the GDM analysis indicates that a weekly time step is not sufficient in the 
U.S. Illex fishery to support the precision required for operational stock assessment. This is very 
much the case during years when the fishing is good and the fishery is closed early upon 
achieving the quota. We recommend, in order of priority, 4 steps that could allow generalized 
depletion modeling to be operationalized for the assessment of the U.S. Illex fishery in the future: 
 
1) Use analysis of existing landings and weight data along with data simulation to determine the 
effects of moving to a daily time step on the accuracy and precision of parameter estimates 
developed using GDM. In the simulations, test the effects of variations in data quality and 
quantity on parameter estimate accuracy and precision under different and realistic scenarios of 
in-season ingress and egress of squid onto fishing grounds. 
 
2) Refine existing catch and landings reporting programs to meet requirements determined in 
#1. 
 
3) Determine the requisite frequency of sampling of squid weights representative of the fishery, 
its fleets and its fishing grounds required to estimate mean daily weights of squid (and errors) 
accurately at the time step required for GDM. Co-create with the fishing industry a sampling 
program based on those findings that is mutually beneficial to fishing businesses as well as 
fisheries science. 
 
4) Develop a research program investigating the in-season movements and migration of squid 
through fishing grounds including roles played by oceanographic processes and variations in 
structure. Develop from this research fishery independent indicators that can supplement fishery 
catch perturbation analysis used to inform plausible open population hypotheses for GDM. 



18 
 

WG CONCLUSION ON THE GDM 
 
The WG believes GDM approach is promising but requires further research. The GDM results 
suggest in a qualitative way that F was lower than M (from internal GDM F to M ratios results) 
and that stock biomass was lightly fished in 2019 (from comparison of the estimated range of 
annual biomass to the Rago (2021) Mass Balance bounds). The WG concludes that the GDM (as 
currently configured with weekly fishery landings data) does not provide an adequate quantitative 
basis for stock status determination using any of the candidate BRPs, including Mass Balance 
bounds, F to M ratios, or previously published estimates of biological reference points for the 
stock (i.e., Hendrickson and Hart 2006). 
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